COE 561 Digital System Design & Synthesis Introduction

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

Outline

- Course Topics
- Microelectronics
- Design Styles
- Design Domains and Levels of Abstractions
- Digital System Design
- Synthesis Process
- Design Optimization

Course Topics				
 INTRODUCTION Microelectronics, semiconductor technologies, microel design styles, design representations, levels of abstract domains, Y-chart, system synthesis and optimization, is system synthesis. 	ectronic ction & issues in 0.5 week			
 MODELING OF DIGITAL SYSTEMS Introduction to Hardware description languages(HDLs). Hardware Description and design using VHDL. Basic modeling concepts, Language elements, Behavioral modeling, Dataflow modeling, Structural modeling, some hardware modeling examples. 				
LOGIC SYNTHESIS	6.5 weeks			
Introduction to logic synthesis				
 Boolean functions representation, Binary Decision Satisfiability and Cover problems 	n Diagrams, 0.5 week			
	1-3			

Microelectronics	
Enabling and strategic technology for development hardware and software	ronics strategic technology for development of software kets: systems. hications. croelectronics ts in device technology: rouits. formance. bes on a chip. te of integration. blex systems. t in packaging and interconnect. formance.
 Primary markets: Information systems. Telecommunications. Consumer. 	
 Trends in microelectronics Improvements in device technology: Smaller circuits. Higher performance. More devices on a chip. Higher degree of integration. More complex systems. Lower cost in packaging and interconnect. Higher performance. 	
Higher reliability.	1-8

Microelectronics Design Styles

- Adapt circuit design style to market requirements
- Parameters:
 - Cost.
 - Performance.
 - Volume.

Full custom

- Maximal freedom
- High performance blocks
- Slow
- Semi-custom
 - Standard Cells
 - · Gate Arrays
 - Mask Programmable (MPGAs)
 - Field Programmable (FPGAs))
 - Silicon Compilers & Parametrizable Modules (adder, multiplier, memories)

Standard Cells

- Cell library:
 - Cells are designed once.
 - Cells are highly optimized.
- Layout style:
 - Cells are placed in rows.
 - Channels are used for wiring.
 - Over the cell routing.
- Compatible with macro-cells (e.g. RAMs).

1-15

Macro-cells

Module generators:

- Synthesized layout.
- Variable area and aspect-ratio.

Examples:

• RAMs, ROMs, PLAs, general logic blocks.

Features:

- Layout can be highly optimized.
- Structured-custom design.

Array-based design

- Pre-diffused arrays:
 - Personalization by metalization/contacts.
 - Mask-Programmable Gate-Arrays.
- Pre-wired arrays:
 - Personalization on the field.
 - Field-Programmable Gate-Arrays.

1 - 17

MPGAs & FPGAs

MPGAs:

- Array of sites:
 - Each site is a set of transistors.
- Batches of wafers can be pre-fabricated.
- Few masks to personalize chip.
- Lower cost than cell-based design.

FPGAs:

- Array of cells:
 - Each cell performs a logic function.
- Personalization:
 - Soft: memory cell (e.g. Xilinx).
 - Hard: Anti-fuse (e.g. Actel).
- Immediate turn-around (for low volumes).
- Inferior performances and density.
- Good for prototyping.

Semi-custo	om style	e trade	-off	
	Custom	Cell-based	Pre-diff.	Pre-wired
Density Performance Flexibility Design time Man. time Cost - Iv Cost - Iv	Very High Very High Very Long Medium Very High Low	High High Short Medium High Low	High High Medium Short Short High Low	Medium-Low Medium-Low Low Very Short Very Short Low Medium-High
				1-1

sign Domains & evels of Abstraction						
	Design Domain					
Abstraction Level	Behavioral	Structural	Physical			
System	English Specs	Computer, Disk Units, Radar, etc.	Boards, MCMs, Cabinets, Physical Partitions			
Chip	Algorithms, Flow Charts	Processors, RAMs, ROMs	Clusters, Chips, PCBs			
Register	Data Flow, Reg. Transfer	Registers, ALUs, Counters, MUX, Buses	Std. Cells, Floor Plans			
Gate	Boolean Equations	AND, OR, XOR, FFs, etc	Cells, Module Plans			
Circuit (Tr)	Diff, and element Equations	Transistors, R, C, etc	Mask Geometry (Layout)			
				1-		

Design Automation & CAD Tools

- Design Entry (Description) Tools
 - Schematic Capture
 - Hardware Description Language (HDL)
- Simulation (Design Verification) Tools
 Simulators (Logic level, Transistor Level, High Level Language "HLL")
- Synthesis Tools
- Formal Verification Tools
- Test Vector Generation Tools