A Globally-Asynchronous Locally-Synchronous VLSI Circuit for the SAFER Cryptoalgorithm

T.Villiger, J.Muttersbach, H.Kaeslin, N.Felber, W.Fichtner Integrated Systems Laboratory, Swiss Federal Institute of Technology

ACiD-WG Workshop, Neuchatel, Switzerland

Funded by: Infineon Technologies, Germany Philips Semiconductors Zürich, Switzerland Commission for Technology and Innovation, Switzerland

Outline

- GALS principle
- GALS building blocks
- Data channels
- SAFER cryptoalgorithm
- Architecture of the cryptochip
- Design flow
- Results
- Conclusion, Future work

GALS Principle

- Locally-synchronous (LS) modules perform all functionality
- Data are transferred in self-timed manner between LS modules

Benefits:

- ➔ Facilitates clocking of SOCs
- ➔ Modularity enhances optimization and re-use of LS blocks
- ➔ Provides a hook for low-power operation
- → Natural inclusion of totally asynchronous modules

The asynchronous wrapper

- Asynchronous port controllers allow for fast handshake processing
- Metastability of data is **prevented** by pausing the clock
- No extra latency (synchronizers, FIFOs. . .) introduced
- Wrapper shall be assembled from predesigned elements

Pausable clock generation

- Ring oscillator for local clock generation
- Arbitration with Mutual Exclusion (ME) elements
- Programmable delayline

Delayline and Arbitration

Principle of delayline using slices

- every slice can bypass rest of delayline
- delay adjustable over a wide range
- small delay increment (\approx 350ps per slice with 0.25 μm technology)

Multiple Arbitration block

- safely arbitrates between incoming requests and rising edges on rclk
- row of mutual exclusion elements
- scales linearly to multiple ports

GALS building blocks

- Port controller responsible for managing all data transfers
- Each unit is captured by a structural VHDL description
- Asynchronous port controllers achieve cycle times less than 350ps
- A **Poll-type** ports ask for clock stretching only to prevent metastability and ensure data correctness: "proceed while waiting"
- **Demand-type** ports also ensure data integrity but stop the local clock as soon as they are enabled: "sleep while waiting"
- **ROM (LUT) port:** Interface at the ROM port is just a fake delay between *Rp* and *Ap* matching the data delay
- **RAM access:** Essentially a Demand-Out port with bidirectional data transfer (two data vectors in opposite direction controlled by a common handshake pair)

D-input port

- Performs 2-phase to 4-phase conversion
- Transfer acknowledge (Ta) indicates successful transfer
- 3D-tools available for synthesis (by K.Y. Yun)

D-input port (cont.)

Synthesis results

 $Ri = Rp Ri + \overline{Den} Z0 + Den \overline{Ap} \overline{Z0}$ Ap = Rp Ai + Ai Ap $Z0 = \overline{Rp} Z0 + \overline{Ai} Z0 + Den \overline{Rp} Ap$

2-level AND-OR Implementation

Compact, fast and hazard-free implementation of async FSM

Data transfer mechanism

- The transfer channels all work with rendezvous scheme
- Push channels only, but pull channels would also be possible
- Data latches needed due to undetermined clock relation between the modules

Data channel simulation

P-out to D-in channel:

- Clock stretching infrequent for P-ports
- Fast transfer processing
- Local clocks restart in phase with data

SAFER cryptoalgorithm

- Secret-key iterated block cipher
- Encryption and decryption slightly different
- Byte oriented: blocks of 8 bytes
- Recommended number of rounds 10 to 12
- Additional input/output transformation
- Comes with variable key lengths (Implemented version: SK-128)

Design Example: MARILYN SAFER cryptochip

- SAFER block cipher algorithm
- Supports ECB, CBC, CFB, OFB
- Implements both encryption and decryption
- 5 "true" clock domains
- Synchronous counterpart named "MERLIN"

Area figures

	nominal	(sync.)	wrapper area	wrapper area
	cycle	module	w/o sync	with sync
	time	$[\mu m^2]$	$[\mu m^2]$	$[\mu m^2]$
controller	2.1ns	38 457	12 501	18 315
key prep	3.4ns	250 299	13 059	18 531
bias ROM	1.2ns	32 805	4 104	4 104
datapath	3.3ns	214 956	28 629	37 863
mux1	2.3ns	150 831	29 628	39 204
mux2	2.2ns	126 747	26 361	34 227
exp/log ROM	1.7ns	291 672	12 708	12 708
subkey RAM –		237 415	17 784	17 784
async FIFO	—	34 182	_	_
		1 377 364	144 774	182 736
	area	100%	10.5%	13.2%

Design flow

MARILYN

- Technology:
 0.25µm, 5 metal, CMOS
- Core: $1.7 \times 1.7 \text{ mm}^2$
- Die: 2 x 2 mm²
- 66 pads (\rightarrow JLCC68 package)
- Contains extra testblocks for GALS components
- GALS overhead \approx 10%
- Throuhgput 232Mbit/s at 10 rounds ECB
- Max. throuhgput up to 780Mbit/s (feedthrough)

Results

			MARILYN	MERLIN	MERLIN	GALS
			(GALS)	w/ clk-gating	w/o clk-gating	benefit
oughput 3C ECB c. enc.	с Э	10 rounds	232 MBit/s	303 MBit/s		-23%
	12 rounds	194 MBit/s	255 MBit/s		-24%	
	ن ي	10 rounds	227 MBit/s	303 MBit/s		-25%
thr CE de		12 rounds	191 MBit/s	255 MBit/s		-25%
energy / MBit		ECB enc.	555 nJ	737 nJ	973 nJ	250/
	3it	10 rounds				25%
	Σ	CBC dec.	577 m l	733 nJ	965 nJ	210/
		10 rounds				Z1 70

Conclusion

- Complete methodology for GALS architectures developed
- Over 25% energy reduction (energy per MBit throughput)
- Area overhead below 10%
- Throughput up to 25% lower than synchronous version (due to datapath not running at full speed, reason currently being investigated)
- GALS building blocks:
 - Consist mainly of technology independent structural VHDL
 - Only mutual exclusion (ME) element requires cell design
- And most important: GALS works on silicon!

- Improve testability
- Extend the communication schemes beyond point to point links
- Adress system level aspects like deadlock analysis and system partitioning
- Improve tool flow support (hierarchical flow, timing verification, integration of asynchronous tools)
- Possibility to withdraw a data transfer request (bus deferral)
- Power estimation theory
- Finer time-slice resolution of ring-oscillator

