
ASYNCHRONOUS CIRCUIT DESIGN

A CASE STUDY OF A FRAMEWORK CALLED ACK

by

Hans Jacobson

A thesis submitted to the faculty of

Lule�a University of Technology

In partial ful�llment of the requirements for the degree of

Master of Science

Department of Computer Engineering

Lule�a University of Technology

May 1996

Abstract

As design systems have grown in complexity and clock speeds are constantly increasing, sev-

eral limitations to the conceptual framework of synchronous design have begun to be noticed.

Some notable problems due to higher performance demand are clock skew, power dissipation,

interfacing di�culties and worst case performance. It is therefore not a surprise that the area

of asynchronous circuits and systems, which generally do not su�er from these problems, is

experiencing a signi�cant resurgence of interest and research activity. However, a number of

important problems have to be solved before asynchronous design methods can be success-

fully transferred to the CAD industry. First, asynchronous circuit design should be based on

high level synthesis methods that are based on standard HDLs, the same basis as used for

synchronous circuits. Second, tools to synthesize asynchronous circuits should be capable of

handling and generating e�cient implementations for reasonably large designs, such as the ones

found in high-level synthesis benchmarks. This requires a method that o�ers exibility to use

di�erent signaling protocols, to decompose large centralized controllers and to take advantage

of advances in standard logic synthesis. Third, where e�ciency is critical, it should be possible

to obtain customized complex-gate based circuits. Finally, in order to appeal to current VLSI

CAD tool users, asynchronous high level synthesis tools should be available as part of existing

CAD frameworks. In this thesis, a framework called ACK incorporating all these features is

presented.

2

Acknowledgements

Many persons have contributed to make my master project at the University of Utah a

memorable experience.

I would like to thank Glenn Jennings, my advisor at Lule�a University of Technology,

who has taught me most of what I know about digital design. His enthusiasm and willingness

to work closely with his students has been an invaluable source of inspiration during my years

of study.

I would like to thank Ganesh Gopalakrishnan for the great opportunity he has given me

of doing research in asynchronous design. His guidance and enthusiasm for research has greatly

helped me to gain knowledge in asynchronous design methodologies.

I would like to thank Prabhakar Kudva who besides being a great friend has taught me

most of what I know of research in asynchronous design. His ability to sort out important

ideas together with his patient explanations of the intricacies of asynchronous design has been

a constant source of encouragement and has helped me greatly during the period of my project.

I would like to give special thanks to the great people at the Computer Science front

o�ce, and especially Colleen Hoopes, for all their help.

Erik Brunvand, Jens Spars� , Chris Myers, L�uli Josephson, Bill Richardson, Ratan

Namulasu, Robert Thacker, Wendy Belluomini, and Marshall Soares have all been great sources

for interesting and fun discussions.

I would also like to thank Prabhakar Kudva and Sophia Kartsonis for being such good

friends and for all the fun events they brought me to. Last but not least I would like to thank

David and Laura Richins for being best friends and a family to me away from home.

3

Contents

1 Introduction 11

1.1 Synchronous Design : 11

1.2 Synchronous Limitations : 13

1.3 Asynchronous Design : 14

1.4 Asynchronous Limitations : 15

1.5 Scope of the Thesis : 16

1.6 Contribution of the Thesis : 17

2 Introduction to Asynchronous Design 19

2.1 Advantages of Asynchronous Design : 20

2.2 Datapath and Control : 20

2.3 The Communication Style : 21

2.3.1 The Handshake Concept : 22

2.3.2 Transition and Level Signaling : 22

2.4 The Complete Circuit Model : 24

2.4.1 Delay Models : 25

2.4.2 Environment and Circuit Models : 26

2.5 Controller and Datapath Interaction : 28

2.5.1 Completion Detection : 28

2.5.2 E�ciency and Robustness : 29

2.5.3 Micropipelines : 30

2.6 Design Styles for Controllers : 32

4

2.6.1 Translation Methods : 32

2.6.2 Graph Based Methods : 33

2.6.3 Asynchronous State Machines : 35

2.6.4 Conclusions : 36

3 Introduction to ACK 37

3.1 Motivation : 37

3.2 Synthesis Overview : 40

4 High Level Modeling and Synthesis 42

4.1 The Environment : 42

4.2 The Design Description : 43

4.2.1 Structural description : 43

4.2.2 Module Description : 44

4.2.3 Speci�cation Languages : 46

4.3 Allocation and Control Re�nement : 48

4.3.1 Datapath Allocation and Synthesis : 48

4.3.2 Control re�nement : 50

4.4 Conclusions : 52

5 Partitioning 54

5.1 Related Work : 55

5.2 Partitioning Methodology : 55

5.2.1 Graph Classi�cation : 55

5.2.2 Create Partitioned Controllers : 56

5.2.3 Signal Sharing : 60

5.2.4 Partitioning Constraints : 67

5.3 Results and Conclusions : 69

5

6 Burst Mode State Machine Generation 71

6.1 Burst Mode Machines : 71

6.2 Conversion of Two Phase Petri Nets : 73

6.3 Conversion of Four Phase Petri Nets : 77

6.4 Conclusions : 78

7 Burst Mode State Machine Synthesis 80

7.1 Fundamental Mode Asynchronous Finite State Machines : : : : : : : : : : : : : : 80

7.1.1 Speci�cation and Synthesis Methodology : : : : : : : : : : : : : : : : : : 81

7.1.2 Input Constraints : 82

7.2 Two Implementation Methods for AFSMs : 83

7.2.1 The Self Synchronizing Style : 83

7.2.2 The Hu�man Machine Style : 87

7.3 Hazards : 89

7.3.1 Terminology and De�nitions : 90

7.3.2 Essential Hazards : 91

7.3.3 Function Hazards : 91

7.3.4 Logic Hazards : 93

7.4 Hazard Free AFSM Synthesis to Two Level Logic : : : : : : : : : : : : : : : : : : 94

7.4.1 Conditions for Hazard Free Burst Mode Transitions : : : : : : : : : : : : 95

7.4.2 Primitive Flow Table Generation : 97

7.4.3 Symbolic State Minimization : 98

7.5 State assignment : 103

7.5.1 Conditions for Critical Races : 104

7.5.2 Constraints for Critical Race Free Encoding : : : : : : : : : : : : : : : : : 105

7.5.3 Row Compatibility Constraints : 106

7.5.4 Finding a Minimum Number of State Variables : : : : : : : : : : : : : : : 106

7.6 Hazard Free Two Level Logic Minimization : 107

7.7 AFSM Synthesis in ACK : 111

6

7.7.1 Hazard Free Synthesis : 111

7.7.2 Technology Mapping : 111

7.8 Conclusions : 113

8 Synthesis and Technology Mapping to Complex Gates 114

8.1 Related Work : 115

8.2 Terminology : 116

8.2.1 Pass Transistor Networks : 116

8.3 Hazard-free Single CMOS gates : 117

8.3.1 Hazards in Dual Realizations : 117

8.3.2 SOP/SOP Realization : 118

8.3.3 Algorithm For SOP/SOP Realizations : 120

8.4 Multi-level Implementations : 121

8.4.1 Background and Overview : 121

8.4.2 CMOS Multilevel Networks : 122

8.4.3 Algorithm : 125

8.5 Results : 127

8.6 Conclusions : 128

9 Conclusions 130

9.1 Summary : 130

9.2 Future Work : 131

7

List of Figures

1.1 Example of synchronous controller implementation : : : : : : : : : : : : : : : : : 12

1.2 Example of a sender/receiver handshake : 15

2.1 Example of Handshaking Concept : 23

2.2 Two equivalent transitions : 23

2.3 Two and four phase handshake protocols : 24

2.4 Pure, Inertial and Asymmetric Delay Models : 25

2.5 Delay models for wire and gate delays : 26

2.6 Example of a micropipeline : 31

2.7 Example of a ring pipeline : 32

2.8 Example of I-Nets : 34

3.1 System Implementation : 40

4.1 Factorial example: HOP language and corresponding graph : : : : : : : : : : : : 47

4.2 Factorial example: Verilog�+ language : 47

4.3 Models for datapath resources : 49

4.4 Examples of Re�nement : 51

4.5 A Simple Example of Re�nement : 52

5.1 Example of partitioning. : 58

5.2 Algorithm for partitioning of SFJ's : 61

5.3 Example of signal sharing. : 62

5.4 Solution to input and output signal sharing using two phase protocol. : : : : : : 65

8

5.5 Solution to input and output signal sharing using four phase protocol. : : : : : : 67

6.1 Example of burst mode speci�cation : 72

6.2 Algorithm for Petri net to burstmode conversion. : : : : : : : : : : : : : : : : : : 74

6.3 Example of two phase burst mode translation : 76

6.4 Example of reshu�ing : 78

6.5 Factorial: (a) Original behavioral speci�cation, (b) re�ned four-phase handshake

based Petri net, (c) burst mode graph, (d) reshu�ed burst mode graph : : : : : 79

7.1 Locally clocked controller structure : 84

7.2 Example of locally clocked controller implementation : : : : : : : : : : : : : : : : 85

7.3 Example of locally clocked controller implementation : : : : : : : : : : : : : : : : 86

7.4 3D controller structure : 87

7.5 Example of 3D controller implementation : 88

7.6 Example of Essential Hazard : 91

7.7 Example of Function Hazards : 92

7.8 Example of Logic Hazards : 94

7.9 Safe state mergers for symbolic state variables. : : : : : : : : : : : : : : : : : : : 101

7.10 Hazard free symbolic state minimization applied to Burst mode example. : : : : 102

7.11 Example of minimum transition time state assignment : : : : : : : : : : : : : : : 108

7.12 Critical race free state assignment applied to Burst mode example. : : : : : : : : 109

7.13 Hazard free two level logic minimization applied to Burst mode example. : : : : 112

8.1 K-map and static hazard-free SOP/SOP complex gate : : : : : : : : : : : : : : : 120

8.2 Example of single hazard-free SOP/SOP complex gate implementation : : : : : : 122

8.3 Multilevel SOP/SOP complex gates : 123

8.4 Multilevel SOP/SOP complex gate example : 124

8.5 Algorithm : 126

9

List of Tables

5.1 Results for partitioning : 70

6.1 Results for burst mode generation. : 77

8.1 Single and Multilevel Complex-gate Versus Standard Gate : : : : : : : : : : : : : 128

10

Chapter 1

Introduction

The digital design methodologies of today are dominated by the synchronous style, where

execution of functions in a machine are kept in lock-step by a central timing generator. This

has not always been the case. In the early days of digital design a variety of design styles

ourished. One of the dominant research areas during this time was in a particular style

called asynchronous design. Asynchronous circuits are sequential circuits that do not require

any central timing to coordinate their internal operations. During the 1950's and 60's, many

computers and systems were built using this type of circuit. However, during the 70's, the

interest in asynchronous design started to decline and had all but disappeared in the early 80's.

The reason for this was the rapidly growing complexity of digital systems. Synchronous circuits

o�ered simplicity in their discrete and deterministic behavior. Designers only had to make sure

that the clock period was large enough for the system to reach a stable state before the next

clock tick. Asynchronous circuits, on the other hand, required very detailed examination to

ensure a proper behavior, a task that became too hard as system complexity increased.

However, with the advance of modern technology, system complexity and the demand

for higher performance has revealed several inherent problems with the synchronous design

style. Some of the more notable problems are clock skew due to high frequency operation,

power dissipation due to clock distribution and high speed interfacing with the environment.

Asynchronous circuits do not su�er from these problems and have therefore lately received

renewed attention from researchers and designers.

1.1 Synchronous Design

Synchronous systems operates in what is called the time domain. The time in a synchronous

circuit is quanti�ed and discrete. Information is hindered to ow freely by state holding elements

which let information propagate through only at the boundaries of a discrete time interval.

11

A system based on this approach consists of one or more subsystems which are sur-

rounded by an environment with which they communicate. The information and state of the

system is usually held in storage elements and is allowed to ow between those during the

duration of a discrete time interval. In synchronous design the boundaries of this time inter-

val are physically represented by the rising and falling edges of a clock signal generated by a

global clock generator. These edges are used to trigger the storage elements to store the new

information on their inputs. Since the information must be stable before storing it, the length

of the time interval is determined by the worst case performance of the slowest operation of

the system. Unfortunately this forces operations that are faster and thus complete early to idly

wait for the next occuring clock edge.

Each subsystem is divided into a control part and datapath. The control part uses a �nite

state machine to describe the behavior of the subsystem and the datapath contains arithmetic

operations and storage elements. The storage elements are often represented by registers in the

form of ip-ops or transparent latches.

The new states and output information of the controllers are calculated from the current

state and input signals by combinatorial logic residing between the registers. The idea is

illustrated in Figure 1.1 where the synchronous �nite state machine's current state is stored in

the ip-op waiting for the next clock tick to propagate the new state. The input and output

signals also have Flip-ops (not shown in the �gure) holding their values stable until the next

clock tick when the new values are copied through.

Machine

Finite

State
Old State New State

OutputInput

Flip-
Flop

Clock

Figure 1.1: Example of synchronous controller implementation

As mentioned, the major reason for synchronous design being so popular stems from that

it behaves in a discrete and deterministic way provided that some rules are met. These rules

12

include meeting setup and hold time for the registers, which requires matching the propagation

delay of information owing through the combinatorial logic accordingly. However, special

techniques are required when information is passed between domains ruled by di�erent clocks.

E�cient and safe communication between such domains is in general a hard problem to solve

with a synchronous design methodology.

1.2 Synchronous Limitations

When system complexity and clock speed increase, synchronous design has some inherent prob-

lems due to its way of keeping operations in lock-step execution. Some of the more obvious

problems are presented below.

Clock Skew. Since all operations in a synchronous design are required to be kept in

lock-step with each other, distribution of a global clock becomes a problem for high frequency

systems. As circuits grow in complexity and size, the time for the clock signal to propagate

to di�erent parts of the system takes di�erent amount of time resulting in a skew of the clock,

which if too severe, may cause the circuit to malfunction. This problem can be solved by either

slowing down the clock or building carefully balanced clock trees to minimize the skew but at

the cost of performance degradation or increased area and design e�ort.

Power Consumption has become an important issue with the increasing portability of

digital systems. Clock distribution over a whole circuit is a large source of power consumption

since it is constantly driving the clock bu�ers, latches and combinational logic although no

useful computation is done. This problem can be partly reduced by using gated latches and

clock gating to locally power down the circuit, but results in increase of area and design e�ort.

Worst Case Performance. Since a synchronous circuit is driven with a constant clock

rate, the clock period must be large enough to always comply with the worst case computation

delay under worst case process, voltage and temperature conditions. The performance degra-

dation of the system because of these restrictions is severe when compared to operation under

nominal conditions [15].

External Inputs. Synchronous systems pose a problem when synchronizing with external

inputs arriving at arbitrary times. If such a signal is sampled during a transition, we risk

synchronization failure [43] leaving the circuit in a metastable state during which its outputs

are unde�ned. Although metastability is usually resolved quickly, there is no bounded time for

its duration. This is becoming a notable problem with increasing clock speeds. There is no

known method to eliminate the problem of metastability although some methods to lower the

probability exist.

13

Modularity. Exchanging a component in a synchronous environment ruled by the same

clock require global changes to the environment in order to comply with the new component's

worst case behavior. If the component is slower than the currently slowest part of the system,

then the whole system must be slowed down accordingly. If the component is faster, other com-

ponents in the system may still be slower and thus limit us from exploiting the full performance

potential of the new component. Modularity simpli�es system organization and increase the

lifetime of a system. Unfortunately the modular design methodology is not easily incorporated

in synchronous systems.

Composability. One solution to increase the throughput of a synchronous system is to

use locally clocked components that execute at di�erent clock speeds. However, synchronous

systems have limited composability in that e�cient lock-step communication, although feasi-

ble for heterochronous subsystems if the local clocks are derived from the same global clock

(polyrythmic clocking [31]), can be hard to achieve.

In contrast, asynchronous design and circuits do not su�er from the above stated prob-

lems. Although asynchronous circuits have some problem of their own, their advantages make

them an interesting and viable alternative and complement to synchronous circuits.

1.3 Asynchronous Design

Asynchronous systems operates in what is called the event domain. Unlike the synchronous

style time has no direct meaning in asynchronous circuits in that it has no e�ect on when

operations are executed. Instead, operations are invoked by event signals generated by the

control logic.

By an event on a physical wire we mean that the signal on that wire is changing value.

Events are an abstract representation since we do not care about the actual value of the signal

(logic 1 or 0), only that it is changing. The information ows in an asynchronous system are

controlled by these events when they actually occur, meaning we do not have to wait for any

clock tick to occur before proceeding. This gives us the potential to exploit average case delay

of the circuit, rather than worst case delay as for synchronous circuits.

Asynchronous circuits communicate via handshakes. A handshake consists of a series

of signal events sent back and forth between the communicating elements. We can divide the

communicating elements into a sender and a receiver part. The sender is the element that

initiates the handshake sequence. If the sender wants the receiver to perform a certain task,

it makes a request to the receiver. When the receiver has �nished executing the task it make

an acknowledge to the sender that the task has been completed. This is the way sequencing of

actions is handled in asynchronous circuits - by handshake communications.

14

If two elements are to communicate in this fashion, they must be able to understand each

other. It is therefore necessary to follow established handshake protocols. The most common of

these are the two phase and four phase protocols which will be further discussed in Section 2.3.1.

Acknowledge

Request

Sender Receiver

Figure 1.2: Example of a sender/receiver handshake

When elements are using the two phase protocol for communication, the sender starts

by sending a request event to the receiver as illustrated in Figure 1.2. When the receiver has

�nished what it was requested to do, it sends an acknowledge event to the receiver. This

completes the two phase handshake sequence. Note that if the request and acknowledge wires

were initially set to zero, they will both be high after the handshake. The next time a handshake

is made between the sender and receiver the wires will be set to zero again.

Unlike synchronous design where the control part of the circuit is always modeled as a

�nite state machine, the control can take on many di�erent forms in asynchronous design. Some

methods use syntax translation targeting restricted macro module libraries, some use a series

of program transformations while others targets asynchronous �nite state machines. These

methods also di�er in how delays in the circuit are viewed. Some methods allow unbounded

but �nite delays giving very robust circuits, while others impose timing constraints on the delays

making them sensitive to process and runtime variations just as synchronous circuits.

1.4 Asynchronous Limitations

Although asynchronous circuits do not su�er from many of the problems found in synchronous

circuits, they do have some problems of their own. The most important of these are discussed

in the following paragraphs.

Hazards. Since asynchronous circuits rely on events on wires to communicate and se-

quence their order of execution, they are susceptible to glitches and hazards. Therefore special

care must be taken during synthesis to eliminate the possibility of function and logic hazards.

However, the resulting circuit is still sensitive to glitches caused by noise, ground bounces etc.

Handshake Latency. Due to their way of communicating via handshakes, asynchronous

circuits have a handshake overhead that reduces performance. This penalty can be reduced by

15

placing communicating elements close to each other during place and routing.

Di�erent Design Methodologies. There exist a wide variety of asynchronous design

methodologies. Unfortunately, this results in inconsistent speci�cation and implementation

styles, making it di�cult to make fair comparisons between systems. This also makes it hard

to leverage o� on existing research and algorithms.

Immature Synthesis Methodologies. For asynchronous design to be accepted as a viable

option by synchronous designers and industry, there is need for mature synthesis methodologies.

Unfortunately many proposed methods are still in their early stages of research and have not

yet been demonstrated on large industrial designs.

Despite these problems asynchronous design is a viable complement to synchronous de-

sign. It is especially useful for applications requiring low latency operations and applications

that can take advantage of average case delay. Low power applications is also an area where

asynchronous circuits have an advantage. Many designs have been e�ectively implemented as

asynchronous circuits, yielding better performance or power e�ciency than their synchronous

counterparts. Examples of large scale asynchronous designs are the post-o�ce chip [14], an in-

frared computer communication chip [63], a SCSI interface chip [74], a high-performance cache

controller [49], a DCC error corrector [48], a number of RISC processors [40, 15, 25], and a low

power hearing aid just to name a few.

1.5 Scope of the Thesis

This thesis has two main objectives. (1) To introduce the reader to the basics of asynchronous

design. (2) To present a new approach to high level synthesis of asynchronous circuits. There is

a vast area of research covering widely di�erent approaches to asynchronous design. This work

will therefore be constrained to the following issues:

In the �rst part of this thesis the reader will be introduced to the most rudimentary

and fundamental issues involved in asynchronous design. The thesis will present the basic

communication principles used by asynchronous circuits. The main advantages and problems of

asynchronous design will also be briey discussed. The thesis will also make a short presentation

of some of the methodologies most often used to represent control as well as datapath in

asynchronous design and also the advantages and disadvantages of these. There are many

subtleties of these methods that will not be discussed here since a thorough description of

these would take up a whole thesis by itself. This �rst part should only be seen as a survey

of asynchronous design. References are given locally in the text for the interested reader. The

second part of this thesis will focus on presenting a methodology of asynchronous design and a

framework developed at the University of Utah based on some of the techniques presented in the

16

�rst part. The techniques will mainly focus on methods for generating the control part of the

circuit. This will include presentation of a behavioral Petri net representation for asynchronous

design descriptions, a method for high level synthesis into re�ned controllers and allocation of

datapath, partitioning of the controllers, translation of the controllers into burst mode state

machines, synthesis of these state machines and a method for technology mapping of these

to a network of customized complex gates. These techniques used in this second part will be

described in more detail than those in the �rst part but the reader should be aware that it is

not possible to cover all details of the methods due to limited space. References are therefore

made where applicable.

1.6 Contribution of the Thesis

The contribution underlying this thesis is a new methodology for high level synthesis of asyn-

chronous circuits. This work was to a major part carried out by Dr. Prabhakar Kudva, which

the author joined at the later stages of implementation of the framework incorporating this

methodology. Most of the techniques are the work of Dr. Kudva, and was carried out during

his doctorate studies at the University of Utah.

The master project carried out by the author has included the following issues:

1. To learn the basics of asynchronous design methodologies. Some of the knowledge gained

by this part of the work is presented in section 2 of this thesis.

2. To help with the further development of the synthesis framework. This included:

(a) Gain full understanding of methodologies used in the system

(b) Help develope new techniques and improve already existing techniques. This included

participating in the development of a new technique for complex gate synthesis, a new

technique allowing four phase re�nement, a new technique for automating synthesis

and interconnection, a new technique for contraction of controllers, improvement

and formalization of a technique for partitioning controllers and a new approach of

signal sharing between incompletely speci�ed machines. These methods (except for

the interconnection and contraction) will all be presented in this thesis.

(c) Help deciding future extensions to the framework. Some of these are briey presented

in section 9.

(d) Implement a number of benchmark circuits to evaluate the e�ciency of the synthesis

methodologies. This included taking the designs from high level speci�cation and

simulation to layout and simulation at the transistor level. Results for some of these

circuits are given locally in the chapters of this thesis.

17

Additional parts of the framework, not directly a part of the authors work, will also be

described to give the reader a better understanding of the complete synthesis ow. This include

the burst mode synthesis section 7). The parts of the tool representing interconnection and

contraction are left out to keep the size of the thesis managable.

The new methodologies of this work are presented in this thesis and include a new

technique for representing behavioral design descriptions, a high level synthesis method for

targeting partitioned asynchronous �nite state machines that are incompletely speci�ed and

a state machine synthesis method targeting customized complex gates. These methodologies

have been incorporated into a synthesis framework called ACK.

18

Chapter 2

Introduction to Asynchronous

Design

Asynchronous circuits work very di�erently from synchronous circuits in their way of commu-

nicating and determining what parts of the circuit should compute. The conceptual framework

in synchronous design is that of a global clock driving all activity in the circuit in a lock step

fashion. As mentioned in section 1, the complexity and clock speeds in today's circuits is start-

ing to show the inherent limitations of this concept. To overcome this problem, we need a new

concept that does not su�er from these limitations. One such conceptual framework, that of

asynchronous design, has lately shown promise in the design of high performance as well as

low power circuits. This concept has promising features and advantages that motivates further

research and development of its design techniques.

Asynchronous design features a wide variety of methodologies. Some of the main ap-

proaches will be briey presented in this section, but the reader should be aware that there are

many subtleties accompanying each individual style that will not be mentioned here since that

would be beyond the scope of this thesis.

Subsection 2.1 will �rst discuss some of the advantages that motivate asynchronous

design. Subsection 2.2 then briey discusses the dividing of a design into separate control and

datapath. Subsection 2.3 will thereafter present the communication style used by asynchronous

circuits. The model for a complete circuit will then be discussed in subsection 2.4 including

a presentation of the di�erent timing models existing in asynchronous design. Subsection 2.5

will take up the issue of control and datapath interaction and is followed by a presentation of

di�erent asynchronous design speci�cation and synthesis styles for control implementation in

subsection 2.6.

19

2.1 Advantages of Asynchronous Design

Asynchronous circuits exhibits many interesting possibilities for e�ective implementations and

ease of design.

The fact that made digital designers go synchronous in the 1970's, namely the overwhelm-

ing complexity of ensuring a proper behavior of asynchronous circuits laid on the designers back,

is a thing of the past. In fact, ease of design may come to be one of the main advantages of

asynchronous design. With the help of modern computers, much of the tedious and complex

work of ensuring correct behaviors has been automated. Several asynchronous tools can gener-

ate a complete circuit layout from a behavioral speci�cation, correct by construction, ready for

fabrication without any intervention from the designer, e.g. [32]. Some tools can also mathe-

matically prove that a design is correct before it is built, a capability that is very important as

designs grow in complexity.

The modularity of a system will also play an increasingly important role in digital design.

With the rapid progress in VLSI design comes accelerated research and development costs. Cost

can be reduced by increasing the lifespan of the products by making incremental improvements,

something asynchronous circuits automatically can take advantage of by running as fast as the

individual modules allow it to. Such an approach would also result in a tremendous win in

terms of time to market.

By removing the global clock and taking advantage of the low latency and average case

delay, asynchronous circuits also show promise in performance compared to similar synchronous

solutions. Removing the global clock also results in power savings as there is no clock tree or

latches drawing power although they do no useful work. Instead, the distributed control of

operation in an asynchronus circuit works as an automatic �ne grained power down of inactive

parts. If a circuit runs faster than it needs to, large power savings can also be made by

dynamically scaling down the supply voltage [48, 11].

Some styles of asynchronous circuit design also generate very robust circuits. Such

circuits do not depend on any delay constraints on wires or gates for correct operation. They

are therefore well suited for operation under high variations in temperature and supply voltage.

2.2 Datapath and Control

As in synchronous design, the circuit is often divided into separate controllers with associated

datapaths for modeling and e�ciency reasons.

The datapath represents the circuitry implementing speci�ed operators, such as adder

or multiplication units. Registers and muxes to store data and direct the data ow also belong

20

to the datapath. Such circuitry is called a datapath resource. The datapath resources are

usually allocated and synthesized into a gate netlist separately from the controllers since they

use di�erent synthesis methods.

The controllers represent the circuitry that controls the sequence of actions as speci�ed

in the design speci�cation. The controllers act on the datapath resources and by communication

let the resources know when they should perform their designated task. There are many ways

of implementing the control circuitry which will be discussed later.

Unlike synchronous circuits where the datapath resources are passive entities, asyn-

chronous datapath resources must contain some portion of control not only to be able to know

when to perform their task but also to let the requesting controller know when they have com-

pleted it. This logic can range from a simple delay to a sophisticated completion detection

mechanism. The synthesis method used for the datapath elements therefore also depends on

which of the many styles of control implementation that is used.

Since asynchronous circuits communicate by passing event signals between each other,

special circuitry is needed to translate level signals to event signals when we need to know a

boolean value from the datapath. This function can be implemented by a select element which

takes a level signal (from the datapath) and an event signal from a controller and generates an

event signal on one of two outputs depending on if the level signal was high or low.

Once all datapath resources and controllers have been synthesized to gate level models

they are connected to each other forming the whole speci�ed design.

2.3 The Communication Style

Synchronous and asynchronous design are built on two completely di�erent conceptual frame-

works. Because of that, the communication styles, the way circuits communicate information

between themselves, are quite di�erent. In synchronous design, information propagates with

each clock tick in a steady lock step fashion, whether it is needed or not. In asynchronous design,

the information propagates through the circuit only when and where it is needed. Much like in

synchronous circuits controllers decide where the information is needed, but unlike synchronous

circuits there is no clock deciding when it is propagated. Instead, each controller decides for

itself, through interaction with other controllers and the environment, when information under

its control is supposed to propagate to other parts of the circuit. In synchronous design this

could to some extent be seen as if each separate controller generates a clock tick locally to an

individual part of the circuit when needed. Of course, the di�culty here would be to synchro-

nize the information ow when controllers want to interact or more than one controller act on

the same part. This is due to the clocks in this case being asynchronous with respect to each

21

other.

2.3.1 The Handshake Concept

The idea with asynchronous circuits is that di�erent parts of the circuit are allowed to carry out

their tasks at their own pace. However, in order to ful�ll a useful purpose, the information ow

between parts of the circuit must occur in a certain sequence. We therefore need to synchronize

the actions to meet this sequence ordering. Since we have no global clock doing the job for us,

we must introduce other means of synchronizing actions. The concept used in asynchronous

design is that of handshaking.

The idea of handshaking is that the parts (controllers and datapath resources) of the

circuit should be viewed as independent and self managing entities which through communi-

cation between themselves control the ow of information in the circuit. The communication

between such entities are conducted via handshakes.

For instance, let's take the example illustrated in Figure 2.1 where an entity called the

sender wants another entity, called the receiver, to carry out a computation. Underlined signals

represent input signals. The handshake between these entities is then carried out in the following

fashion. The sender initiates the handshake by sending a request to the receiver. When the

receiver sees the request it carries out the requested computation. When the computation has

�nished the receiver sends an acknowledge to the sender. When the sender sees the acknowledge

signal, it knows that the computation has completed and it can then carry on with the next

task.

These request and acknowledge signals sent between the sender and receiver are phys-

ically represented by transitions, also referred to as events, on wires. Since all asynchronous

circuits rely on events for communication, an important requirement is that transitions on wires

change monotonically. If there is a glitch (if a signal goes 0 ! 1 ! 0) on a wire, then that

glitch may be seen as an event which may cause the circuit to enter a wrong state resulting in

malfunction.

There are two main styles of signaling, transition signaling and level signaling. These

styles are presented next.

2.3.2 Transition and Level Signaling

In transition signaling any transition on a physical wire, either rising or falling, has the same

meaning, as can be seen in Figure 2.2. For a synchronous circuit there is a distinct di�erence

between the levels and the rising and falling edges of a signal. In an asynchronous circuit using

transition signaling, there is no distinction between di�erent levels or the edges of the signals.

22

Sender Receiver

Request

Acknowledge

request

acknowledge

0 1

2x

Sender

0 1

2x

request

acknowledgeReceiver

(a) Handshake at the structural level

(b) Handshake at the state machine level

Figure 2.1: Example of Handshaking Concept

The only thing that is important is that there is an event on the signal, that it changes value,

not what it changes value to.

Event Event

Figure 2.2: Two equivalent transitions

Since transition signaling is not concerned about the value of the signal, it is an abstract

representation of the circuit as it will �nally be implemented in hardware. Transition signaling

is often referred to as the two phase signaling protocol.

In level signaling, as in synchronous circuits, we distinguish between the di�erent transi-

tions on a wire. When performing a handshake using level signaling the resources used, such as

ip-ops, are often only sensitive to the high going transition (positive edge) or one value of the

signal. It is therefore necessary to reset the wires to zero again after conducting the �rst phase

of the handshake (when the signals go up to high values). Level signaling is often referred to

as the four phase signaling protocol.

Figure 2.3 shows the two di�erent signaling styles. For the two phase protocol only one

event on each of the request and acknowledge wires is needed for a complete handshake. For

the four phase protocol, we need two events on each wire. Since all computations are usually

23

�nished after the �rst half of the handshake, the returning of the wires to zero results in an

overhead.

Acknowledge

Request

(a) Two Phase Protocol

First handshake Second handshake

(a) Four Phase Protocol

One handshake

Acknowledge

Request

Sender Receiver

Request

Acknowledge

1

2

1

2

1

2

3

4

Figure 2.3: Two and four phase handshake protocols

The reason for having di�erent signaling protocols is that di�erent designs have di�erent

characteristics due to their interaction with the environment and its datapath resources. These

di�erences will be discussed further in subsection 2.5.

2.4 The Complete Circuit Model

A complete circuit is a closed system and consists of two main parts, the circuit and its envi-

ronment. A circuit model describes how delays in gates and wires are viewed. An environment

model describes how the environment is allowed to interact with the circuit.

24

2.4.1 Delay Models

Central to circuit implementation is the notion of delay [71]. It is important to distinguish

between stray delays which are an inherent physical property of any circuit, and delay elements

that are explicitly added by the designer.

Stray delay occurs in gates and wires as a result of their physical properties such as

resistance and stray capacitance in gates and propagation delays in wires. Delay elements are

delays explicitly added by the designer to ensure certain functional properties of the circuit.

Delay elements can be divided into two main categories, the pure delay and the inertial delay.

Pure delays simply propagate the input signal to the output after a �xed time d, as can be seen

in Figure 2.4(a). A pure delay is often implemented as a chain of inverters. Inertial delays only

propagate signals that have persisted for a �xed amount of time, delaying them a �xed time d.

Such delays are often used to �lter out undesired glitches, as illustrated in Figure 2.4(b)(the

M-gate in this �gure is a Majority gate). However, inertial delays are not reliable since they

require time to "recover", are sensitive to process variation and produce slow transitions that

are sensitive to noise. There is also a third category that is often used in asynchronous circuits,

namely that of asymmetric delay. An asymmetric delay has di�erent delay times depending on

the level of the signal propagating through. Signals going through the asymmetric delay shown

in Figure 2.4(c) have a propagation delay dh when the signal is high and dl when the signal

goes low. The gate in this �gure is an AND gate which quickly resets the output to a logic

zero. For all circuits in this thesis we assume the use of pure delays.

(c) Asymmetric Delay

dh d l

(b) Inertial Delay

M

d d

(a) Pure Delay

d

In Out

In

Out

Figure 2.4: Pure, Inertial and Asymmetric Delay Models

There are di�erent ways to view the e�ects of the stray delays and delay elements in a

circuit model. The wire delay through a network of gates is usually modeled as delay elements

residing on the input wires of the gates. The gate delays are modeled as delays on the output

wires of the gates, while the gate in itself is viewed as a function evaluator with zero delay. Some

circuit models use delays on both in and outputs meaning they assume delays in both wires

and gates, while others only use the delays on either inputs or outputs. The model using delays

on both in and outputs is the most general, but is also the most di�cult one to implement.

Figure 2.5 shows how delays on input and output wires are viewed. These two models only

25

di�er when we have multiple fanouts from a gate. If a wire delay model is used, the forked

signals due to a multiple fanout can arrive to the destination gates at arbitrary times. If a gate

delay model is used, since the wire delay is assumed to be zero, the forked signals will reach the

destination gates at the same time. The fanout points are then seen as isochronic with respect

to each other.

d1

d4
d2

d3
d1

d2

d3

(a) Wire delays only (b) Gate delays only

Figure 2.5: Delay models for wire and gate delays

2.4.2 Environment and Circuit Models

The way a circuit and its environment interact can be classi�ed into two categories. If the

environment is allowed to respond to the outputs from a circuit without any timing restrictions,

they are said to operate in input/output mode. Otherwise they operate in a mode where there

are timing constraints assumed. Two of the most commonly used timing constraint methods

are those of fundamental mode and timed circuits.

Circuit models are used to de�ne how the circuit is a�ected by stray delays and delay

elements. There are several models that can be divided into two main categories, those that

can handle unbounded or bounded delays. In an unbounded delay model, a delay can assume an

arbitrary �nite value for the time it takes a signal to propagate through. In a bounded model,

the delay can assume any value within a given time interval. Pure delays are assumed in these

models.

The circuits that use input/output mode for its interaction with the environment are

also those that use the concept of unbounded gate and wire delays. Circuits that have a set of

restrictions for interacting with its environment use the bounded delay model. The classes of

circuits that use these models will be discussed next.

Input/Output Mode Circuits

Common to all circuits operating in I/O mode is that they must rely completely on input and

output signals to know when actions are started or have completed. For example, to be sure

that all receivers have absorbed an output signal from a controller they are all required to

generate acknowledge signals going back to the controller. Similarly, the environment must

receive an output signal response from a controller in order to know that a set of input changes

26

to it have been absorbed. To guarantee a correct circuit behavior under unbounded delay

assumptions it is therefore also necessary to use special completion detection circuitry for the

datapath resources. Circuits operating in I/O mode can be further categorized into four main

styles of asynchronous circuits. The categories are divided by the extent to which they assume

unbounded delays in gates and wires.

In the delay insensitive circuit model both gate and wire delays are assumed to be

unbounded. That means that the circuit has to function properly regardless of the delays and

that signal transitions can occur at arbitrary times. The main di�culty in this type of circuit is

that an acknowledge has to be generated for every wire fork, often resulting in complex circuitry.

Very few circuits can be built out of basic gates using this model [39], however, useful circuits

can be built using more complex components [20].

Quasi delay insensitive circuits resemble the model for delay insensitive circuits very

closely by assuming arbitrary delays in both gates and wires. However, it relaxes the constraints

for multiple fanouts by allowing isochronic forks [38]. This way of modeling wire forks can

simplify the design process signi�cantly, but requires that the di�erence in delay of the wire

forks are negligible compared to gate delays and that the destination gates have similar threshold

values.

Speed independent circuits assume arbitrary gate delays but zero or negligible wire delays

and therefore in all important aspects essentially work as quasi delay insensitive circuits. The

assumption that wire delays are negligible may allow less complex logic and solutions to a larger

set of problems. However, the number of problems that can be implemented using this style is

still quite limited.

A Self timed circuit is a legal interconnection of self timed elements [43]. Each self timed

element is assumed to be contained in a small area called an equipotential region. Within such a

region one may treat a signal as identical on all points of a wire, that is, wire delays are assumed

to be negligible. A self timed element may itself be implemented as a speed independent circuit

or may contain other types of logic using careful timing analysis. For communication between

these self timed elements unbounded delays on wires is assumed. Delay insensitive signaling

conventions must therefore be used between elements.

Fundamental Mode and Timed Circuits

Unlike for input/output mode circuits, fundamental mode (de�ned shortly) and timed circuits

expect the environment to behave in a certain manner or their implementations will not work

properly. A circuit working under such assumptions does not need to generate an output as

response to a set of input changes. The environment can assume that the circuit has absorbed

the input changes after a certain bounded amount of time. It does not necessarily need an

27

output response even if that is often the preferred and safest way to do it.

A Fundamental mode circuit [30] is in its construction very similar to a synchronous

state machine in that it is arranged as a combinational block with state signals fed back to

hold the state. Associated with the combinational block are restrictions on when signal changes

from state feedback and environment may occur. These restrictions require that the logic in the

combinational block must have stabilized, i.e., all internal activity must have ceased, before new

inputs may arrive. This restriction is usually ful�lled without intervention from the designer

since the environment is often slow compared to the state change and settling time for the logic.

Otherwise, delay elements must be inserted.

Timed circuits [47] take advantage of special timing knowledge of the environment. The

circuit is therefore specially designed to meet the timing behavior of the environment. This

approach does incapacitate the modularity of a system to some degree, since the environment

may change its timing characteristics when elements are replaced. However, explicit knowledge

of the environment's timing often result in more e�cient circuit implementations.

2.5 Controller and Datapath Interaction

2.5.1 Completion Detection

All asynchronous circuits must have a way to determine the completion of actions. With

completion detection of actions we usually mean a way to determine when the actions taking

place in the datapath elements have �nished. The control part of the circuit already ful�ll

this requirement by its guaranteed output response to input signals. The methods to detect

completion are many and some are only usable by certain styles of circuit realizations.

There exist two main styles of signal representation on wires, single rail and dual rail [43].

When using single rail a signal is represented by one wire that can assume a high or low

state (logic 1 or 0). A ternary signaling scheme using only valid logic 1 and 0 signals can be

implemented when using dual rail. A signal is then represented by two wires which are encoded

to allow representation of three states, 00 for unde�ned, 10 for a logic 0, and 01 for a logic 1.

Since we know the state of each individual signal when using dual rail, we can build

completion detection trees to determine when an action has �nished. Before the action is

started, all wires are set to zero, meaning that the signals are unde�ned. Any gate that has

one or more of its inputs in an unde�ned state also has an unde�ned output. The input signals

can then arrive at arbitrary times, and we can tell when the action has completed by making

sure all outputs from the element are in a valid state. This is achieved by a completion tree

connected to all outputs of the element. The advantage of this method is that it is possible

28

to exploit average case delay of the action. The disadvantage is that it requires twice as many

wires as single rail, resulting in increased area, power consumption and routing di�culties. The

delays through the completion tree also add an overhead. The fanout of this completion tree

together with the request signal of the handshake forms the acknowledge signal.

An often used method for single rail circuits is that of simply modeling the worst case

delay of the action by a matching delay on the request wire. The output of the matching delay

then forms the acknowledge signal. This method has a disadvantage since it does not exploit

average case delay and exact layout simulations are needed to determine the value of the delays.

The advantage is that it is very easy to implement.

Another detection mechanism for single rail circuits is that of completion detection

through current sensing [16]. When all activity in the element requested for the action has

ceased, the element no longer draws any current, which together with the request signal trig-

gers a current sensitive device to generate the acknowledge signal. This method exploits average

case delay but also adds an overhead and can be di�cult to implement.

2.5.2 E�ciency and Robustness

Several issues such as robustness, performance and power consumption needs to be taken un-

der consideration when choosing which style, in terms of delay modeling, completion detection

and handshake protocol, to use for circuit implementation. There are some important trade-

o�s between the di�erent methods and a single style may not be the one best suited for all

applications.

Using delay insensitive circuits means that the whole circuit can be generated automat-

ically without simulations to verify that no timing constraints are violated. Since the datapath

signals are encoded with dual rail, there is no problem with data values arriving too late and

causing metastability. The resulting circuit is also very robust and will work under very vary-

ing environmental conditions. From a performance and power consumption aspect however, a

delay insensitive circuit may not be the best choice due to its many wires and complex com-

pletion detection mechanisms. Another disadvantage is that very few problems (applications)

can be implemented as delay insensitive circuits. Using the quasi delay insensitive or speed

independent approach gives a larger number of problems that can be implemented but also

compromises the robustness of the system. These design approaches also tend to give better

performance in the face of many isochronous forks. Using the self timed circuit style allows

more problems to be solved, but also raises the question of how large a self timed element can

be under the equipotential region assumption. This style might improve performance but will

not be as robust.

As for the fundamental and timed models they can o�er very good performance, but

29

are not as robust to environment variations. Especially the timed model which uses explicit

knowledge of timing and gate delays is very sensitive to process and environment variations.

These methods use bundled data constraints to communicate datapath signals. This means

that the datapath signals must arrive to their destination before the request signal. If not, the

register may go metastable or store the wrong values. The order of arrival is usually ensured

by inserting delays on the request wire. As completion detection, a simple delay is often used

by these methods. Using delays to model the worst case delay in a datapath resource is not

very robust and requires careful timing analysis at the layout level. The inability to exploit

average case delay also results in a certain performance degradation. A more robust method

is to use current sensing logic to detect completion. This will add some overhead but will also

allow us to exploit average case delay. Whether this overhead will justify the use of matching

delays instead depends largely on the di�erence between the minimum and maximum delay and

frequency of operation of the datapath resource.

As for which handshake protocol should be used for best performance and power con-

sumption depends on the characteristics of the design. Two phase signaling is often used when

implementing control intensive circuits or for designs which are transition oriented by nature,

such as many bus protocols. Two phase signaling is also used with advantage for o�-chip com-

munication, that is, communication between separate integrated circuits. Two phase signaling

also consumes less power since it only makes two wire transitions for each handshake compared

to four for the four phase protocol. Using four phase signals often has an advantage when

implementing datapath intensive circuits. This is because four phase signaling allows use of

synchronous datapath elements such as single edge triggered ip-ops or transparent latches.

Flip-ops for the two phase protocol need to be double edge triggered, which means we have

to add extra circuitry to be able to latch on both positive and negative edge. The result is

that two phase latches are often slow or have large area. The four phase protocol is not as well

suited for o�-chip communication since returning the wires to zero over long distances gives too

much overhead.

2.5.3 Micropipelines

One style of design that has proven to be useful in both synchronous and asynchronous design is

that of pipelines. Pipelines are often a good and relatively easy way of increasing the throughput

of a system. There are two types of pipeline structures in asynchronous design. One style called

micropipeline [66] which is an ordinary straight pipeline, and ring pipelines [73, 62] which are

self-iterating pipeline loops.

In asynchronous design pipelines have their own form of interaction between control

and datapath elements. Micropipelines work much as an ordinary synchronous pipeline. The

30

di�erence is that the control structure is a part of the pipeline structure itself. A classic structure

of a micropipeline using transition signaling (two phase protocol) is illustrated in Figure 2.6.

R
eg

is
te

r

Processing
 element

CC

R
eg

is
te

r

request

acknowledge

R
eg

is
te

r

Processing
 element

Data in

C

acknowledge

request

Data out

Stage 1 Stage 2

Figure 2.6: Example of a micropipeline

Such a pipeline is formed as a FIFO bu�er with processing elements between each stage

of registers. The control part of the pipeline consists of C-elements that work as an AND-gate

for transition signaling. (When all inputs to a C-element are low, the output goes low, and when

all inputs are high the output goes high, otherwise it holds it current state. A bubble means the

signal is inverted.) Delay elements that model the delay of the processing elements are inserted

on the request wires between the stages. The pipeline in Figure 2.6 makes use of the bundled

data concept. At initialization all signal values are set to low. When the environment wants to

send data through the pipeline for processing, the data signals must �rst stabilize at the input

register of the pipeline. The environment then sends a request signal to the pipeline telling it

to start computation. The request makes a high going transition on the input to the C-element

which in turn generates a high going transition on its output. The register now propagates

the data and the processing element in the �rst stage starts executing. The generated request

signal goes through a delay matching the processing element's delay and ends up making a high

going transition at the input of the C-element at the second stage requesting it to store the

computed data. The request signal also goes back to the environment as an acknowledge signal.

When the environment has received the acknowledge it is free to make a new request at any

time. The data already being processed in the �rst stage is safe since it cannot be overwritten

with new data from the environment until the second stage has stored the computed data and

sent back an acknowledge signal to the C-element of the �rst stage. So even if the environment

is fast, the new data will not be stored in the register of stage 1 until stage 2 has safely stored

the computed data.

If other completion detection mechanisms such as current sensing are used, the pipeline

has the advantage of using average case delay which, depending on the processing elements,

31

can result in signi�cant increase of throughput.

Stage 3Stage 2Stage 1

Figure 2.7: Example of a ring pipeline

Another data processing structure well suited to asynchronous circuits is that of ring

pipelines. Rings are implemented as FIFO bu�ers with the output of the last stage fed back to

the input of the �rst stage as can be seen in Figure 2.7. This structure is very well suited for it-

erative computation since the computation stages in a ring structure only need to communicate

with the environment once before each sequence of iterations is started. Since communication

overhead thus can be avoided during the iteration sequence and since the stages also can exploit

average case delay, this type of pipeline is very e�cient in many situations. Examples where

asynchronous ring pipelines are especially e�ective is for shift and add multiplication and di-

vision units [73, 62] which can yield up to four times better performance than synchronous

solutions.

2.6 Design Styles for Controllers

There are many di�erent design styles that have been proposed for asynchronous controllers.

They can be divided into roughly three main categories: translation methods, graph based

methods, and asynchronous state machines.

2.6.1 Translation Methods

Translation methods o�er an elegant way of specifying high level descriptions of asynchronous

designs. They also o�er an easy way to verify the design using standard veri�cation tools [72].

Another advantage is that they o�er a simple way of specifying and implementing arbitration

for concurrent processes sharing the same hardware.

These methods synthesize a design by translating statements in the speci�cation based

on their syntactic structure. Since the synthesis is based on local transformations this style

often results in less e�cient circuit implementations. The two most common styles in this

category is that of direct syntax translation to a limited library of standard controllers and that

of syntax translation via a series of program transformations to customized controllers.

32

The direct translation to a library of standard controllers is often called the macromodule

approach [7, 3]. The libraries are built up of standard control units such as C-elements, toggles,

decision-waits etc. [66] which are considered to be rather slow components. Since this method is

based on local transformations and targets a limited library of components, the resulting circuit

implementation is not as e�cient as might be desirable. A method of peephole optimization

is therefore often applied to the implemented circuit after synthesis. The idea is to replace

ine�cient portions of the circuit with more e�cient implementations. The method presented

in [26] achieves this by extracting a delay insensitive behavior of local portions of the circuit by

using parallel composition on trace structures [18]. This behavior is then captured in a state

machine description and implemented using asynchronous state machine synthesis. Although

it has been shown that better implementations can be achieved using this and similar methods,

the resynthesis still can only achieve local optimizations.

The method of translation using a series of program transformations has been described

in [41]. This method starts from a high level description based on the language CSP [29]. The

idea here is to optimize the �nal circuit by performing program transformations on the design

description. These transformations are done at several di�erent levels of abstraction before the

�nal design description can be synthesized into a circuit representation. The method targets

customized controllers based on C-elements and standard gates such as AND and OR but has

also used generalized C-elements with custom transistor networks. Many designs have been

implemented using this method, among them the �rst asynchronous microprocessor [40].

2.6.2 Graph Based Methods

Another synthesis approach makes use of graph based descriptions in the form of I-Nets (a

subclass of Petri nets [46]) and Signal transition graphs (STG - also a class of Petri nets). The

design descriptions of these methods are usually made at the handshake level. This gives the

designer greater exibility to generate more e�cient descriptions by manipulating the separate

event signals. However, they do not have the power of directly describing the behavior of a

system in a high level description. This makes it hard to capture the system structure of a

design rather than the individual controller structures.

As illustrated in Figure 2.8 an I-Net consists of a non-empty set of places (circles) and

transitions (horisontal lines) with directed arcs (arrows) between them. The input places of

a transition are all places with an arc leading directly to the transition. Similarly the output

places are the places at the end of all arcs going out of the transition. An I-Net is marked by

tokens residing in places. When all input places to a transition are marked, the transition is

enabled. The I-Net is executed by �ring transitions that are enabled. When a transition has

33

�red, all its markings in the input places are moved to the output places. A one-safe I-Net

is a graph where no more than one marking can occur in the same place at the same time.

(This means no concurrency is allowed and is a requirement for the state machines used in the

synthesis methodology presented in the next part of this thesis.)

I−Net with choice I−Net with concurrency

a b c

f

j

a

b c ad

Figure 2.8: Example of I-Nets

I-Nets can be used to describe the behavior of a circuit to be implemented by assigning

the names of primary in and outputs to the transitions. Every �ring of a transition in the graph

then represents a transition on the corresponding signal wire in the circuit.

The synthesis of such a graph to a circuit implementation is done by �rst generating an

interface state graph (ISG) by exhaustively simulating the I-Net. For every marking a state is

created, and for every enabled transition an arc (going between states) labeled with the signal

name is created. An extended interface state graph (EISG) is then created by assigning initial

values to the signals. In this graph the states have the same signal encoding and are separated

by the di�erent values of the signals in the di�erent states. (When a transition occurs for a

signal, that signal toggles its value giving adjacent states separate state codes.) Conicts in

state encoding are solved by introducing state variables. Since this method enumerates all

markings the algorithms used can be exponential in the number of places which will hinder

synthesis of larger graphs. A Karnaugh map can now be generated from the EISG. Hu�man

or self-synchronized style state machine circuit implementations can then be derived by using

methods presented in [22, 44, 58]. However, these methods do not generate hazard-free logic

and therefore make use of either inertial delays or clocked latches to �lter out glitches which

slow down the circuit.

Signal transition graphs are also a class of Petri nets. The basic idea of STGs is to

avoid the exponential worst case complexity that is present during synthesis of I-Nets. This is

achieved by introducing restrictions on the graph making it a less general Petri net than I-Nets.

An STG in its simplest form is called STG/MG and belongs to the class of Petri nets

34

called marked graphs. The places in such a graph are only allowed to have one input and one

output transition. This means that choices are not allowed which severely limits the number

of problems that can be represented by this method. More advanced forms of STGs that allow

choices also exist but are associated with a number of restrictions.

When synthesizing an STG the properties of the graph are �rst examined. This is

because if some restrictions are ful�lled then it might be possible to use more e�cient syn-

thesis algorithms, avoiding exponential worst case complexity. Unfortunately many synthesis

methodologies for STGs require that the designer manually ensure these restrictions, making

the speci�cation of large designs very hard. This of course also goes against the reason for using

STGs in the �rst place - to be able to synthesize large controllers. Still STGs are a viable alter-

native in graph based synthesis since at least for some type of designs it can directly synthesize

larger descriptions than when using I-Nets. Unfortunately, many methods used to implement

STGs have logic hazards requiring insertion of delays or ip-ops to �lter out glitches thus

slowing down the circuit just as for those generated with I-Nets. A method in [4] generates

hazard-free logic but the gates used often have high fanin and cannot be easily decomposed.

This method also makes use of algorithms having exponential worst case complexity, taking us

away from the basic idea of STGs.

2.6.3 Asynchronous State Machines

An asynchronous �nite state machine is a controller having speci�cation, implementation and

functionality much like that of a synchronous state machine. The speci�cation of a controller is

often described as a Mealy state machine with a set of primary inputs and outputs. The state

machine consists of a combinational block implementing the output and next state functions

and its state is realized through internally fed back state signals.

The synthesis approach is similar to that of synchronous state machines. Due to its way

of moving from state to state, the speci�cation of a state machine is often described as a ow

table. The synthesis then proceeds by �rst performing state minimization to reduce the size of

the ow table by merging compatible states. This is followed by a state assignment step that

assigns binary values to the symbolic states. Boolean functions for the output and state signals

are then generated from the ow table. Methods in [74, 49] use some special requirements during

this step to ensure that the output signals of the combinational logic behave in a monotonic

fashion. This step is called hazard free logic minimization. Other methods use inertial delays

or constantly clocked latches. The last step is to generate combinational logic for the Boolean

functions which is done by technology mapping. This synthesis methodology often targets an

implementation in the form of a two-level AND/OR gate network, called a sum of products.

This style of implementation has been shown to make it possible to deal with logic hazards [50]

35

in a straight forward way.

There is a major attraction with using �nite state machines compared to other method-

ologies for asynchronous controller implementation. The state machine synthesis method can

perform global optimizations which would be di�cult or impossible to do with other synthe-

sis methods. Because of this, state machine synthesis often results in very e�cient gate level

implementations. Another important advantage is the possibility to use boolean manipulation

on the synthesized gate network allowing decomposition of large and slow AND and OR gates

into smaller and faster ones.

The draw-back of this method is the complexity of state machine synthesis in general.

Algorithms for exact solutions have exponential complexity which makes it impossible to syn-

thesize large controllers.

Many e�cient designs and synthesis methods for asynchronous �nite state machines have

been implemented and presented [14, 74, 49, 63]. These methods generate hazard-free logic and

can therefore avoid use of inertial delays or constant clocking of latches, making the circuit fast.

These methods have shown that state machine modeling and synthesis is indeed a viable option

for asynchronous design.

2.6.4 Conclusions

This section has presented some of the advantages of asynchronous design. It has also explained

the handshake scheme used for communication in and between asynchronous circuits. Further,

di�erent circuit models and their use of delay models and the interaction between control and

datapath have been discussed. Finally, the di�erent design styles for controller implementations

were discussed.

As for which design style of those presented is preferable in terms of synthesis com-

plexity and circuit e�ciency, such a comparison is di�cult to make since detailed results from

synthesized examples are seldom made available. There is also a lack of standard benchmark

designs for asynchronous circuits. Existing results often target di�erent designs which adds to

the di�culty to make fair comparisons.

What has been shown is that targeting �nite state machines indeed gives very e�cient

implementations compared to a macromodule approach. It has also been made clear that

taking advantage of timing information in a circuit can result in more e�cient but also less

robust implementations. Our approach in the synthesis system presented in the next part of

this thesis will target state machines for synthesis of controllers and use the single rail approach

for communication and datapath.

36

Chapter 3

Introduction to ACK

3.1 Motivation

The area of asynchronous circuits and systems is experiencing a signi�cant resurgence of interest

and research activity. However, a number of important problems have to be solved before asyn-

chronous design methods can be successfully transferred to the CAD industry. First, tools to

synthesize asynchronous circuits must be capable of handling and generating e�cient implemen-

tations for reasonably large designs, such as the ones found in high-level synthesis benchmarks.

This requires a method that o�ers exibility to use di�erent signaling protocols, decompose

large centralized controllers and take advantage of advances in standard logic synthesis. Sec-

ond, asynchronous circuit design should be based on high level synthesis methods that are based

on standard HDLs, the same basis as used for synchronous circuits. Third, where e�ciency is

critical, it should be possible to obtain customized complex-gate based circuits. Finally, in order

to appeal to current VLSI CAD tool users, asynchronous high level synthesis tools should be

available as part of existing CAD frameworks. We present a tool called ACK that incorporates

these features.

There exist a wide variety of methodologies in asynchronous high level synthesis, that

target various implementation styles. Methods targeting restricted macromodule libraries for

control implementation have been developed [2, 7]. A synthesis style based on a high level lan-

guage called Tangram [32] and an approach called Martin-style synthesis [38] using a CSP-style

high level language for speci�cation have been presented. Our method presents an asynchronous

synthesis paradigm that generates data path and asynchronous state machine controllers from

a behavioral description in a standard HDL. Such a method has the advantage that it closely

tracks progress in asynchronous high level and state machine synthesis techniques as well as

advances in synchronous CAD such as logic synthesis algorithms, commercial tools and HDLs.

We see these as important factors for asynchronous integration in industry designs.

37

ACK is a high level synthesis tool that can generate logic level datapaths as well as

control paths starting from a standard HDL description. Although there is no consensus on

the requirements for a good HDL, based on strong research some factors have emerged as

important for asynchronous synthesis [2, 7, 38, 32] such as channel communication, process

descriptions, and direct support of concurrency. Meanwhile, languages such as Verilog and

VHDL have emerged as standards in the industry. Support for these languages is becoming

an important factor in the acceptability of tools for VLSI design, for ease of use and design

portability as well as behavioral simulation purposes. To balance these factors we de�ne a

language called Verilog�+, which is a synthesizable subset of Verilog that supports many of

the required features in asynchronous design.

Syntax directed translation [2, 7, 38, 32] has proved to be a successful technique in high

level asynchronous synthesis. Often synthesis methods that use this technique have targeted

restricted module libraries, sometimes referred to as macromodules, for implementation. This

method does not generate the most e�cient implementations. Resynthesis techniques such as

peephole optimization [26], where ine�cient parts of the macromodule controllers are identi-

�ed and replaced by more e�cient implementations based on asynchronous �nite state machines

synthesis, have shown that FSM representations are a viable option for e�cient control imple-

mentation. We have developed a method where the high level description is directly translated

into dedicated FSM controller structures which are customized to the application.

Using a high level description for system speci�cation that is protocol independent gives

us the exibility to choose between di�erent handshake protocols during synthesis. Currently,

two phase and four phase handshake protocols are supported. A synthesis tool that is exible

enough to allow support of both these protocols, starting from the same high level description

and targeting similar gate-level circuits, will help in making fair comparisons and help evaluate

exact tradeo�s between the two styles.

Partitioning is an important component of our high level synthesis approach. There

are two main reasons to partition a controller. The �rst is that the complexity of �nite state

machine synthesis increases as the size of the centralized controllers grow. In some cases the

synthesis methods fail to generate circuits for these state machines. The second reason is

to improve e�ciency of the implementations. Certain constructs such as loops often execute

faster when partitioned, due to reduced logic overhead. Also as wire delays become signi�cant,

the ability to generate controllers local to their corresponding datapath is important. The

incompletely speci�ed nature of most asynchronous controllers makes partitioning in general a

hard problem. More speci�cally, the steps of state assignment and logic minimization in many

synthesis methods rely on the fact that the environment of the controller does not present

any of the unspeci�ed behaviors. Under this assumption, the sharing of signals between the

partitioned controllers is a non-trivial problem which has not previously been addressed. This

38

is a particularly important issue in asynchronous synthesis and we therefore present a general

technique that allows e�cient user-de�ned partitioning of such controllers.

In order to generate high-performance controllers, ACK generates asynchronous �nite

state machines for the partitioned controllers. Many asynchronous design styles have targeted

the problem of generating e�cient control structures and dealt with the issues of design com-

plexity and correctness. One class of such techniques target Hu�man mode asynchronous �nite

state machines starting from burst mode speci�cations and use standard gates for implemen-

tation [14, 49, 63, 74]. We therefore target interacting burst mode controllers based on the

previous control partioning and take advantage of the logic synthesis techniques available in

burst mode controller synthesis to generate e�cient controller circuits.

Although the interacting burst-mode controllers can be built e�ciently using standard

gate-level cell libraries [49, 63], even better performance can be obtained by mapping the burst-

mode controllers to custom CMOS complex-gate implementations. Customized CMOS gate

implementations have been used successfully to design a large number of burst-mode Hu�man

style asynchronous controllers [14, 65], however, a systematic analysis and synthesis method-

ology for deriving these has not been given. There are several reasons for considering custom

CMOS complex-gate based circuits. As VLSI feature sizes decrease and wire delays become

signi�cant, they can provide more e�cient controller implementations compared to standard-

cell place and route tools. In ACK we have developed a method to derive complex-gates that

relax some constraints of hazard-free synthesis of boolean functions, providing signi�cant area

and delay improvements in many cases.

If design tools are to be used by a wide audience, and also to continue to bene�t from the

rapid improvement in CAD tools in general, it is important to leverage o� of existing CAD tools

where appropriate. In addition to our algorithms, ACK makes use of many commercial and

public domain tools. The Viewlogic and Cadence LAS [10] synthesis tools are used to generate

datapaths and automatic synthesis of the complex gate controllers. Currently the complete

ACK tool set is also encapsulated into, and can be run directly from, the Viewlogic cockpit.

The Lager tool set is used for place and route of standard cells and LAS is used when targeting

complex gates. Both commercial and public domain Verilog simulators have been used. The

3D [74] tool is used for synthesis of the burst mode controllers.

The rest of the thesis will examine each of these features of ACK in greater detail,

providing experimental data to support our claims.

39

 Inter-
connect

Verilog-+

Verilog Veriwell
simulator

Petri Net
Language

Allocation

Refinement

Partition Petri Nets
 to
Burstmode

 3D
synthesis

Tech map
 to
standard
 gates

Complex
 gate
realization

Magic

Viewlogic / Cadence
 Datapath Synthesis

Viewlogic
simulator

Cadence
simulator

Lager
layout

Cadence
 layout

SPICE

MOSIS

Select
2 or 4
phase

Figure 3.1: System Implementation

3.2 Synthesis Overview

A distinctive feature of ACK is its ability to derive controllers as well as datapaths starting

from high-level descriptions, all the way to layout. Figure 3.1 shows a top-level description of

this process. A description of a system to be synthesized consists of HDL programs describing

a collection of communicating modules. Each module has process descriptions, local variables

and interface ports for communication. ACK uses Verilog�+, a synthesizable subset of Verilog

extended to handle channel communication. A description in this HDL can be used for high-level

behavioral simulation using a standard Verilog simulator. The description is then translated

into our internal Petri net format for synthesis. A HDL based on the Petri net format can also

be used as input.

Once in Petri-net form, synthesis proceeds by �rst choosing a protocol, either two-phase

or four-phase, for control signaling. The rest of the synthesis will assume this selected protocol.

This is followed by allocation of datapath resources for computation, and other resources for

communication. High level actions are then re�ned (macroexpanded) into a series of signal

transition actions on allocated resources. The allocated datapath is automatically synthesized

using standard commercial synthesis tools (we currently use Viewlogic and Cadence). Details

of the high level description and synthesis aspects of the tool are provided in Section 4.

The controller generated after re�nement is then partitioned. For each Petri net, both

required (to resolve the fork-joins in each process if any) and user de�ned partitioning is per-

formed. Details are given in section 5. After partitioning, the resulting Petri net controllers are

converted into burst-mode state machine descriptions. These burst-mode descriptions are then

synthesized using the 3D synthesis system [74]. Details of conversion of Petri net controllers

to burst mode state machines is given in section 6. The synthesis of these controllers is then

40

considered in section 7.

Synthesis of the burst mode descriptions and technology mapping is then performed

either to a standard gate implementation or a customized complex gate implementation. If

customized complex-gate implementations are synthesized, the Cadence layout tool LAS is

used to generate automatic layout. For standard cell based circuits, the Lager auto place and

route tool Timberwolfe is used. Details of technology mapping is given in section 8. Finally, the

layout can be extracted in Magic and simulated using SPICE or other transistor level simulators.

The extracted layout can then be converted to a format supported by MOSIS and fabricated.

Results for synthesized examples will be given locally in each section. Conclusions and future

work will be provided in section 9.

41

Chapter 4

High Level Modeling and Synthesis

A description of a system being modeled is usually divided into two di�erent speci�cations, one

for the actual design (circuit) being modeled and another for the environment it interacts with.

The environment can be speci�ed in many ways, but basically consists of an interface together

with a communication protocol and a set of timing constraints for the individually occuring

signals. The design speci�cation contains more detailed speci�cations about the circuit and is

often divided into a hierachical structure with di�erent levels of modeling complexity. A design

in ACK is represented by a structural description consisting of a set of interacting modules

communicating via shared registers, channels and event signals. Each module represents a

basic functional entity of the system and consists of an interface description, a set of local

variables, functions and a graph describing its behavior.

In subsection 4.1 the environment model will be briey discussed followed by a presen-

tation of the structural model of a design and the module entity in subsection 4.2. The high

level synthesis of the description will then be presented in subsection 4.3.

4.1 The Environment

For a circuit to be able to communicate with its environment in a meaningful manner it is re-

quired that the designer must have knowledge of its behavior. This behavior is often expressed

by an interface description that describes the physical properties such as input and output com-

munication and data ports of the environment. Signaling protocols de�ning how communication

with the interface is to proceed is also a part of the environmental speci�cation. Although other

signaling schemes exist [6, 67], these protocols are usually restricted to follow the two phase or

four phase protocols for compatibility reasons. Associated with the environment is also a set

of timing rules that de�nes how fast the circuit is allowed to respond to incoming signals from

the environment and how fast the environment is in its response to signals from the circuit.

42

These timing restrictions can be especially important when targeting asychronous �nite state

machines for synthesis since they work under the fundamental mode assumption which sets a

constraint on how fast the environment is allowed to respond to a set of output signals. The

speci�cation of the circuit environment is not made part of the ACK design ow but is in part

implicitly de�ned in the circuit interface declaration.

4.2 The Design Description

The hierarchy of a design speci�ed in ACK consists of three implicit levels. The highest hierarchy

level is the structural level which is an interconnection of modules. Such a module corresponds

to the second hierarchy level. The third level is represented by functions declared inside the

modules.

4.2.1 Structural description

The structural description in ACK is implicit and represents the design at the architectural

level as an interconnection of basic module entities. Implicit means that there is no separate

description of the interconnection necessary. Instead, a naming convention similar to that in [28],

which has shown to be an e�ective way to handle automatic interconnection of large circuits,

is introduced. If several modules have the same name and type for an event wire, channel,

variable or function, it is assumed to be shared between these modules. Event wires and channels

having the same names are also connected together forming the physical interconnection of the

communication interfaces between the modules internal to the design. Variables and functions

not being shared are assumed to be speci�ed locally to a certain module and can only be

accessed by that module. Input or output event wires and channels of a module that do not

have any corresponding output and input in any other module are assumed to be connected to

the environment.

The modules are processes that execute concurrently. For such processes to share vari-

ables or functions without conicts, a mutual exclusion scheme is necessary. If arbitration is

not resolved through communication between the sharing modules before using the resources,

the designer must implement arbitration circuitry to ensure the resources are used in a mutual

exclusive fashion. Channels (de�ned shortly) are often used to ensure mutual exclusive access

by obtaining synchronization between such processes.

43

4.2.2 Module Description

A module is the basic entity being modeled. It consists of an interface declaration which

describes its in and out going event wires, channels and data ports. It also contains declarations

of variables and functions. All these constructs can be shared between modules under the

assumption that all access to them is mutually exclusive. Allowing several modules to share

the same resources can result in less area but since it limits concurrency it may also result in

a performance degradation. The decision of optimally sharing resources such as variables and

functions is currently left to the designer. The types of a construct are also speci�ed at the

time of declaration. The type can be a bit, an array of bits, integers or an enumeration of

integers. The declaration constructs mentioned above and what they are used for is discussed

in the following paragraphs.

Event wires are mostly used for e�ective communication between modules executing in

a sequential fashion. When an output event signal is generated by the sender it is assumed that

the receiver is ready to receive the event. This is hard to ensure when using modules executing

in parallel. For safe communication between such modules, channels need to be used. The value

on an event wire must of course change monotonically.

Channels are used both for synchronization between processes executing in parallel and

for sending data. A channel makes use of a C-element to ensure that both processes are

synchronized before proceeding. For instance, if a process wants to send data to a concurrently

executing process it must �rst synchronize the action with the other process. It does this by

�rst asserting the data wires and then generating an event signal to one of the inputs of the

C-element. It has now indicated that it is ready to send the data. When the other process is

ready to receive the data, it sends an event signal to the other input of the C-element. The

C-element then generates an event signal at its output that is fed back to both processes, which

are now synchronized, and the receiving process can store the data.

Data ports work as in synchronous designs, that is, the values on the wires are allowed

to change non-monotonically but are assumed to have stabilized by the time it is stored. Data

ports are often used together with event signals using the bundled data approach to transfer

data. The main disadvantage of this method is that the sender has no means of detecting if the

receiver is really ready to receive the data or not.

Variables are represented as registers in hardware. They are used to store data either

globally or locally depending on whether they are shared or not. Di�erent types of registers

are used depending on the chosen protocol. For two phase, double edge triggered ip-ops are

used. For four phase single edge triggered ip-ops are used.

Functions can be used either as a short hand for complex expressions or a commonly

occuring sequence of actions. Functions support variable passing as long as the passed variables

44

are of the same type as the declared parameters. The parameters can be used as local variables

but do not change the value of the registers of the originally passed variables.

The Behavioral Graph

Associated with each module is also a behavioral graph describing the high level behavior of

the module. The graph is a state machine with fork-joins (SFJ) and is described in the form of

a Petri net. There are two types of transitions in this graph description, action transitions and

fork-join transitions.

Action transitions have an in and out degree of one. Each of these transitions are

associated with one or more actions.

Fork and join transitions start several threads executing in parallel. The in degree din

(number of forking threads) and out degree dout (joining threads) must be the same. The fork

and join transitions themselves do not have any actions associated with them.

Each action transition in the SFJ graph has one input place and one output place. A fork

transition has one input place and N output places while a join transition has N input places

and one output place. Between the i:th output place of a fork transition and the i:th input

place of a join transition is a single threaded subgraph (STS) which has only one input and one

output place. In this section we will concentrate on the action transitions of the SFJ graph.

Fork-join transitions along with SFJ and STS graphs will be further discussed in section 5.

Actions

Associated with each sequential transition Ts is an action. Such actions can be an event on a

wire, a channel action, an assignment action, a choice action, a function call or a compound

action. These actions will be de�ned in the following paragraphs.

An event action, E, is a transition on an input or output wire of the module. Such an

action is given by E � f!!; ??g. The "!!" indicates the generation of an output transition from

a sender and "??" indicates the reception of an input transition to a receiver.

A channel action, C, represents a CSP style rendevouz action and is given by C�f!; ?g�

Y 2 fV;X; �g where V is a variable, X is an expression and � represents the case where neither

variable or expression is present. The "!" and "?" corresponds to a send and receive operation

respectively. A channel action can either be a pure synchronization action in which case Y =

�. A channel can also be used to send or receive data in which case Y = V . A sending channel

can also send an expression without needing to store it in a variable. In this case Y = X .

45

An assignment action, A, represents the storage of a data value and is given by V =

fK; V;X;Fg, where K is a constant and F is a function call. The result from the right side of

the equal sign must of course be of the same type and in the range of the declared type of the

left hand variable.

A choice action, B, is a place with two or more outgoing transitions (a branch). A choice

may be based on either boolean expressions or event actions. These actions must all be of the

same type (expressions or events) and must be mutually exclusive with respect to each other.

That is, not more than one branch may be taken. A choice based on a boolean expression is a

data dependent choice and is used to test values that are stored in the datapath.

A function call can either be an arithmetic expression which gives a return value or a

sequence of actions which is a separately implemented subgraph. A function call is given by

F (P)! R 2 fN; �g where P is a set of parameters and R is a return value, either a non-empty

bitvector/integer or an empty value. A function call with a non-empty return value can be used

in assignment, channel and choice actions.

A compound action allows multiple actions to execute at the same time given that they

are of the same type. It is given by (action 1,...,action k) where k is �nite. Compound

statements do not allow the same degree of concurrency as a fork-join but is well suited where

no more than one transition in a row has concurrent actions since it avoids the overhead of

invoking a fork-join.

4.2.3 Speci�cation Languages

A language called HOP has been developed and is a textual representation of the behavioral

graph discussed in the previous section. The language consists of a declaration section where

names and types of events, dataports, channels, variables and functions are de�ned. This is

followed by a behavioral description section which describes the high level behavior of the

module.

The behavioral description consists of a set of current and next states representing the

places in the Petri net graph. A set of statements represents the transitions with their associated

actions. To ease the design speci�cation a right arrow,!, can be used as shorthand notation for

the place between transitions. It can be seen as going from one transition to another in sequence

with an implicit place in between. A speci�cation of the algorithm for a factorial computation

unit in HOP is shown as a graph together with its corresponding textual description in �gure 4.1.

For designers not familiar with the HOP language, ACK also has an interface to allow

a synthesizable subset of Verilog, called Verilog�+, as speci�cation language. The reason for

choosing Verilog instead of VHDL as HDL front end is that it has direct support for event

46

Module Factorial

 Event START?? : bit;
 Variable a, n : array [7:0] of bit;
 Channel nchan?, reschan! : array [7:0] of bit;

 Behavior

 <always> <= START?? −> <forever>;

 <forever> <= nchan?n
 −> a = 1
 −> <while>;

 <while> <= (n == 0)
 −> <result>
 |(n != 0)
 −> a = a * n
 −> n = n − 1
 −> <while>;

 <result> <= reschan!a
 −> <forever>
End

START??

<always>

<forever>

<while>

<result>

nchan?n

a = 1

(n == 0) (n != 0)

a = a * n

n = n − 1

reschan!a

Figure 4.1: Factorial example: HOP language and corresponding graph

signals. It also has a one to one mapping of all basic constructs in HOP which makes it easy to

translate. However, Verilog does not directly support channels which are important for e�ec-

tive implementation of concurrent systems in asynchronous design. To overcome this problem

the subset has been extended with channels. The Verilog�+ language still allows behavioral

simulation in a Verilog simulator since the channel construct can simply be macroexpanded to

a sequence of event signals and variable assignments in Verilog. The Verilog�+ speci�cation of

the factorial unit is illustrated in Figure 4.2.

Module Factorial;

 reg [7:0] a, n;
 channel? [7:0] nchan;
 channel! [7:0] reschan;
 event START;

 always
 begin
 @START;
 forever
 begin
 nchan?n;
 a = 1;
 while (n != 0)
 begin
 a = a * n;
 n = n − 1;
 end
 reschan!a;
 end
 end
endmodule

Figure 4.2: Factorial example: Verilog�+ language

47

4.3 Allocation and Control Re�nement

We now have a model for the speci�cation of the system. This section will present the steps

used in the high level synthesis of this description.

During synthesis, the behavioral Petri net graph is divided into separate data and control

paths, both for modeling and e�ciency reasons. This is done by means of allocation and re�ne-

ment. Dividing datapath and control allow us to synthesize the datapath resources separately

using e�cient synchronous synthesis tools, and to generate customized state machine controllers

for the control part. This allows us to exploit the global optimizations possible in asynchronous

state machine synthesis and also track new developments in state machine synthesis methods.

Allocation is used as a step to �nd out what resources are needed in the datapath to

implement the di�erent actions in the behavioral speci�cation graph. An example of a datapath

resource is a register for storing the value of a variable. Re�nement is used to create a control

graph that acts on the allocated resources and makes sure they are used in a way corresponding

to the speci�ed actions in the behavioral graph.

As the �rst step in synthesis, a protocol, two or four phase, must be selected. This

protocol will be used by all modules in their communication with the environment as well as

between themselves and their corresponding datapaths. The synthesis method then proceeds

as follows.

We will �rst consider the synthesis of the structural description. First we allocate the

resources for event wires, channels, variables and functions that are shared between the modules.

For channels, we will allocate C-elements along with data wires. For event wires, we allocate

physical wires between modules. For shared variables we allocate registers and associated data

wires. Handling of functions depends on whether it is de�ned as a subgraph or as an expression.

If it is de�ned as a subgraph it will be divided into a separate control and datapath which will

in turn be subject to allocation and re�nement. If it is a simple expression, the same resources

as for an assignment action will be allocated, which will be discussed later.

The interface of each module is later connected to these shared resources. In the following

subsections we will consider the synthesis of each separate module.

4.3.1 Datapath Allocation and Synthesis

For each action that involves use of datapath logic, a datapath resource is allocated. A datapath

resource is a self-timed element that communicates with its environment under bundled data

constraints. A delay through the combinational parts of the element is modeled by a delay

48

CL

AckReq

Data_In Data_Out

(a) Function Block

CL

SELECT
True

False
Req

Data_In

Sel

(b) Predicate Block

AckReq

Data_In Data_Out

(c) Register

FF

Figure 4.3: Models for datapath resources

matching its worst case performance. To comply with the selected protocol, the resources will

di�er in their communication with the control logic depending on which protocol has been

selected. Their high level behavior however will be the same.

For event actions we simply allocate the physical wires that are used for the signals. No

other resources are needed since event actions are only signal transitions on wires.

Expressions can occur in the context of channels, assignments, choices and functions.

For an expression we will need to allocate hardware for the computation to be performed

together with means of detecting the completion of the computation. For this we allocate a

function block as can be seen in Figure 4.3. The computation part of the function block consists

of combinational logic representing the Boolean function to be computed. The completion

detection is modeled by a delay on the request/acknowledge wire matching the worst case delay

through the combinational logic.

For variables we allocate registers which, depending on the selected protocol, are double

edge triggered ip-ops for the two phase protocol, or single edge triggered ip-ops when using

four phase. A delay on the request/acknowledge wire matches the setup and hold times of the

register.

For choice actions based on boolean expressions we allocate a predicate block as illus-

trated in �gure 4.3. A predicate block consists of a combinational logic part representing the

comparison function to be implemented. The combinational block gives out a level signal, "sel",

that is high or low depending on whether the expression being tested was true or false. This

level signal is then fed into a select block. When the request event reaches the select block, it

generates an event on its true or false output depending on the value of the "sel" signal. A

delay on the request wire models the worst case delay of the combinational logic.

The functions representing the combinational parts of the allocated datapath resources

are later synthesized with ordinary synchronous tools such as Viewlogic and Cadence LAS

system. In the current implementation of ACK, communication and expression guards are

assumed to be mutually exclusive. Techniques to relax this restriction are standard [2, 7, 38, 32]

49

and will be added in future versions of ACK.

Currently the delays are computed from the worst case delay of the combinational logic

as given by the synthesis tools. Due to the conservative unit delay model used in Viewlogic, the

accuracy is far from satisfactory. A more exact technique for modeling of the datapath delays

is currently under evaluation and will be incorporated in future versions of ACK.

4.3.2 Control re�nement

Once the datapath resources have been allocated we translate the behavioral Petri net into

a customized control graph acting on these resources. The control graph communicates with

its datapath resources and the environment via handshaking protocols under bundled data

constraints. The control graph is generated by a re�nement procedure that translates each high

level action in the behavioral Petri net into a sequence of event signals by macro expansion. The

resulting graph will thus only contain input and output event signals. The following paragraphs

will discuss the re�nement process on a case by case basis. Only re�nement using the two phase

protocol is considered. The di�erences when using four phase will be discussed later.

An event action is translated into itself since it already consists of only an event signal.

The expansion of a channel action depends on if it is used only as a synchronization

action or if it is used for passing data. If it is used only for synchronization, then the action

is expanded into a simple handshake on the allocated C-element as seen in �gure 4.4(a). For

a data channel a handshake on the C-element is �rst performed synchronizing the sender and

receiver. The receiver thereafter performs a handshake on the allocated register used to store

the data as seen in �gure 4.4(b). If the sender wishes to send the result of an expression over

the channel it �rst generates a handshake to the function block incorporating the expression

and thereafter performs the handshake on the C-element.

An assignment action is expanded into one or two handshakes depending on if it is a

constant or an expression or function that is assigned to the variable. If a constant or variable

is being assigned to the variable, a handshake on the corresponding register is made as seen in

�gure 4.4(c). If the assignment is associated with an expression or function, a handshake is �rst

performed on the resource implementing the expression or function. When the computation has

�nished, a handshake is then made on the register storing the data as illustrated in �gure 4.4(d).

A data dependent choice action is expanded to a handshake on the predicate block

implementing the Boolean function and the select element. A request is �rst generated by the

controller which then waits for an input event from either the true or false output of the select

element as shown in �gure 4.4(e).

A compound action is re�ned exactly as its separate actions would be with the di�erence

50

that the handshakes for all the actions are generated simultaneously.

C = A + B

FB_Req

FB_Ack

C_Load

C_Loaddone

REFINE
C = A

C_Load

C_Loaddone

REFINE

C?A

C_C2in1_Req

A_Load

A_Loaddone

REFINE
C!A

C_C2in1_ReqREFINE

C_C2out_Ack

C_C2out_Ack

(a) Output Channel (b) Input Channel

(c) Assignment (d) Assignment with Expression

REFINE

C == 0C != 0
PB_TruePB_False

PB_Req

(e) Choice

Figure 4.4: Examples of Re�nement

In the case of four phase, we must do an extra handshake sequence to bring the wire

values back to their initial state (zero). An example of a four phase re�nement of an expression

assignment action can be seen in �gure 4.5. To lessen the impact of this extra handshake a

procedure called reshu�ing is later performed to hide the return to zero handshakes in the

handshakes of the following action. Since all calculations are made on the �rst event (rising

edge) when four phase protocol is used, the datapath resources use asymmetric delays to give

a quick acknowledge when the signals are returned to zero.

An example of the re�nement procedure is illustrated in Figure 4.5. The action a = b+ c

consists of two subactions. First the expression b+c is to be calculated, then the resulting value

51

is to be assigned to variable a.The datapath resources needed, an adder for the add operation

and a register for the assignment operation have already been allocated. We must now gen-

erate the control graph acting on these resources. We do this by �rst generating a handshake

sequence to the adder. The controller �rst generates an event on the request wire going to the

adder. It then waits for an event on the acknowledge wire from the adder which indicates the

computation has completed. The delay that models the worst case delay through the adder

ensures that the data is stable on the output of the adder once the controller receives the event

on the acknowledge wire. Once the addition has been completed, the result must be latched in

the register for a.This is done in the same fashion as for the adder computation. The controller

�rst generates a request signal to the register and then waits for the acknowledge signal indi-

cating the data has been stored. The delay in this case models the register's setup and hold

times.

a = b + c
load_req

load_ack

load_req

load_ack

add_req

add_ack

add_req

add_ack

load_req

load_ack

add_req

add_ack

load_ackload_req

A

add_ackadd_req

B

C

A_reg

A_reg+

Two phase Four phase

(a) High level action (b) Refined handshake actions (c) Datapath resources

REFINE

FF

Figure 4.5: A Simple Example of Re�nement

4.4 Conclusions

This section has presented the languages used for design speci�cations and their correspon-

dance to the structural hierachy. The module concept has been discussed and the high level

synthesis methods to create a control graph via re�nement and a datapath via allocation has

been presented.

As the reader may already have noticed, the handshake expansion is quite naive since

for all subactions every request signal is echoed back to the controller before a request to

52

the next subaction can be generated. Possible improvements can be made by allowing the

request to ow through several subaction stages before being sent back as an acknowledge

to the controller. Such a scheme would decrease the number of in and outputs to and the

complexity of the controller resulting in reduced synthesis time and less logic. When sharing

resources this method can result in extra logic for the datapath completion detection but this

overhead can often be hidden in the matching delays. A ow through scheme for ACK is

currently under developement.

Current research also include other techniques to optimize the behavioral Petri net and

the re�ned control graph. Standard techniques for high level optimizations frequently used in

synchronous synthesis such as those presented in [17] can be directly implemented. However,

optimization techniques directly related to asynchronous structures are also of importance and

are the aim of our research e�orts. Such optimizations require that we can share datapath

resources between di�erent actions. These techniques will be added in future versions of ACK.

The controller generated at this step may be partitioned before burst mode state ma-

chines are generated from them. In the next section, we will discuss how to partition large

controllers into a set of smaller interacting controllers.

53

Chapter 5

Partitioning

In this section a technique to partition a centralized control-ow graph to obtain distributed

control in the context of asynchronous high-level synthesis is presented. It solves the key problem

of handling signals that are shared between the partitions, a problem due to the incompletely

speci�ed nature of asynchronous controllers.

Targeting asynchronous �nite state machines for logic synthesis gives us several advan-

tages in its global optimization and possibility to perform Boolean optimizations at the gate

level. However, the complexity of state machine synthesis sets a limit for the size of controllers

that can be synthesized. A centralized controller can also often be more complex, in terms of

logic, than a collection of distributed controllers, and thus can have slower signal paths through

it. Certain constructs such as loops often execute faster when partitioned due to reduced logic

overhead. As feature size decrease and wire delays become signi�cant it is also important to

be able to generate controllers local to their corresponding datapath, thus reducing the wire

lengths and keeping timing assumptions local. A method for partitioning centralized controllers

is therefore necessary as well as desirable.

A key problem in partitioning stems from the fact that asynchronous controllers are, in

general, incompletely speci�ed. More speci�cally, the steps of critical race free state assigment

and hazard free logic minimization in burst mode synthesis rely on the fact that the environment

of the controller does not present any of the unspeci�ed behaviors. Under this assumption, the

sharing of signals between the partitions is a non-trivial problem. For example, suppose an

input signal is shared between a collection of partitions. When the environment generates a

change on this signal, to which of these partitions must the change be sent to? If the signal

is sent to a partition that is not supposed to see it at this time then it is an unspeci�ed input

change of this partition and the circuit behavior will not be predictable. The requirements for

a partitioning method are thus: (1) it must deal with control ow dependencies between parts

of the original graph as well as distribute shared input and output signals in a correct fashion;

54

and (2) the composite behavior of the system must be the same as for the original centralized

graph under the assumption that the system operates in fundamental mode. In this section we

will provide a method to address this issue.

5.1 Related Work

In [38], a technique called process decomposition is proposed. Process decomposition does not

involve signal sharing between incompletely speci�ed machines. Signal sharing is addressed in

macromodule based design systems [2, 7] by using additional macromodules such as Toggles

[66] and Decision-waits [21] to steer the global input to the correct sub-controller. Since

macromodule libraries contain only a limited number of macromodule types, distributed control

realizations based on macromodules are often ine�cient [26]. In [12, 55], a method called

contraction has been suggested as a decomposition technique for signal transition graph (STG)

speci�cations. Contraction preserves the global nature of the controller. It does not turn a large

grain controller into many smaller grain controllers and is therefore unable to take advantage

of spatial locality.

The partitioned synthesis problem addressed in this section is: given a centralized control

graph and a set of partitions chosen by the designer, how do we synthesize separate controllers

for each of the partitions that correctly orchestrate control ow between the partitions and

correctly handle signal sharings? The identi�cation of the partitions is not addressed here,

though a few automatable heuristics, such as keeping logically unrelated iterative loops that

share signals in separate partitions, usually yield good results in terms of increased performance

and reduced logic complexity.

5.2 Partitioning Methodology

This section will consider the classi�cation of graphs and subgraphs of the original control

graph. Methods for partitioning sequentially as well as concurrently executing parts of the

original graph along with arrangements necessary for sharing signals between these partitions

will be presented.

5.2.1 Graph Classi�cation

The centralized control graphs which form the input to the partitioning phase of ACK are single

threaded state machines with a limited form of fork-join concurrency called SFJ graphs. Such a

graph can be further categorized into substituent single threaded subgraphs called STS graphs.

An STS does not contain fork-joins. These graphs will be de�ned next.

55

The SFJ graphs are triples GSFJ = (P; T; F) where P = fp1; : : : ; png is a set of places

and T = ft1; : : : ; tmg is a set of transitions, where n andm are �nite, and F � (P �T)[(T �P)

is a ow relation.

The set of transitions T is divided into sequential transitions, Ts, fork transitions, Tf

and join transitions, Tj , All sequential transitions Ts have an in-degree and an out-degree of

one and is annotated with a non-empty set of event signals, a burst. Transitions in Tf and

Tj are labeled by an empty burst, �. There is a one to one correspondance between the fork

transitions and join transitions such that for each tf 2 Tf , there is exactly one tj 2 Tj such

that the out-degree of tf is the same as the in-degree of tj . N is said to be the degree, meaning

the number of threads, of the fork-join pair (tf ; tj). Such fork-join pairs have graphs with only

one input and one output place between them such that the i:th output place of fork transition

tf is the input place of a single threaded subgraph (STS). The output place of this subgraph

then is the i:th input place of tj .

An STS, GSTS = (PSTS ; TSTS; FSTS) is a subgraph of GSFJ where PSTS � P , TSTS �

Ts, and FSTS � F is the ow-relation restricted to PSTS and TSTS. Note that TSTS does not

include fork-join transitions, so all transitions in TSTS have an in-degree and an out-degree of

one. An STS can have a �nite set of input places pin and a �nite set of output places pout.

The number of input and output places of such an STS is indicated by the notation STSpinpout .

With this notation each thread of a fork-join is an STS11 since they are required to have only

one start place and one end place.

In order to generate legal burst-mode machines [49] from the partitions through burst-

mode reduction [26] (discussed in section 6), the original SFJ graphs must obey the following

restrictions, in that they are (1) initially quiescent, and attain quiescence in�nitely often; (2) de-

terministic, and (3) obey the subset property [49].

5.2.2 Create Partitioned Controllers

The goal of partitioning is to generate a stand alone controller for each of the speci�ed partitions

in the original graph. Each of these partitions then support a portion of the original graph and

should be invoked whenever that portion of the graph is to be executed.

There are two types of partitions in an SFJ graph. One type is required partitions which

consists of fork-joins. Since the approach used for synthesis of �nite state machines cannot

handle concurrent threads in one and the same state machine, we must separate the individual

threads in the fork-joins and put them in separate single threaded graphs. The other type is

user de�ned partitions which consists of single threaded subgraphs. Since an STS describes a

purely sequential ow (no fork-joins) the issue of partitioning such a controller is to split its

corresponding STS into separate STS's corresponding to the speci�ed partitions.

56

The problem then is to make sure that the behavior of the decomposed controllers is

consistent with that of the centralized controller. This require that the decomposed controllers

are able to be invoked repeatedly and that they correctly handle the ow of execution.

Partitioning of Concurrent Threads

We will �rst consider the partitioning of fork-joins. Each thread in a fork-join is represented by

a separate STS11. All STS11 subsiding within the same fork-join pair must be disjoint from all

other STS11 in that fork-join pair. This means they may not share any place or transition, i.e.,

they are completely separate threads. To simplify the exposition, we make two assumptions.

The �rst is that no two bursts labeling transitions contained in two di�erent STS's of the

same fork-join involve the same wire name. This means signals are not allowed to be shared

between separate threads in a fork-join. The second assumption is that a signal occuring within

a fork-join may not occur in a choice in any other partition.

By partitioning all fork-joins we want to create the following from the original SFJ graph:

� A set of STS11's representing the separate fork-join threads. The STS11's belonging to

the same fork-join will be invoked at the same time and will thus execute in parallel.

� An STSmn representing the original SFJ graph but with all fork-joins removed. This is

the part of the graph that will be responsible for invoking the fork-join threads.

Since the STS's will be implemented as separate stand-alone controllers, we need to make

them able to repeatedly execute their corresponding portion of the original graph. We must

also make sure that they are only invoked when their corresponding part of the original graph

is supposed to execute. To simplify the initial exposition we will assume that the SFJ contains

only required partitions (fork-joins). This assumption will be relaxed momentarily.

Partition the SFJ. Assume we want to partition an SFJ graph as illustrated in �gure 5.1(a).

We must �rst divide the original graph into subgraphs corresponding to the speci�ed partitions.

We do this by �rst removing the two fork-join pairs from the original SFJ graph. As a result

we get a set of two fork-joins along with an STSmn representing the rest of the graph as can be

seen in �gure 5.1(b). Now we divide each of the fork-joins into their constituent single threaded

subgraps, STS11's. We then assign a unique partition number i to each of these STS11's and a

unique partition number p to the STSmn.

Generate stand-alone controllers. We must now alter the partitioned STS's to become

stand-alone controllers and ensure that they execute when they are supposed to. This is achieved

57

(a) Original SFJ graph

FJ1 FJ2STSmn

0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

(b) Separated fork-joins and remaning STSmn

FJ1 FJ2

2

3

4

5 10

11

12

13

STSmn

1

6

7

8

9

14

15

0

(c) Partitioned graph containing
 only single threaded graphs

. . .SP

S01

S1

STS 111

2

3

i = 1

SP

S04

S4

STS 114

12

13

i = 4

STS 22 0

S , S03 04
S , S01 02

S , S1 2 S , S3 4

SP

1

6

9

14

p = 0

Figure 5.1: Example of partitioning.

58

by making each graph cyclic and by introducing handshake signals between them in order to

control their order of execution using the following procedure. Since the STS11's execute in

parallel they must each have their own handshake signals for completion detection.

We will �rst introduce a start place (SP) for each STS11 as well as the STSmn. For each

STS11 belonging to the fork-joins we create a transition going from the SP to the input place

of the STS11. This transition is then labeled with an input signal Si, where i is the partition

number of the current STS11. We also create a transition going from the output place of the

STS11 to the SP. This transition is then labeled with an output signal Spi where p is the name

of the partition following the fork-join, in this case the STSmn. The Si signals then corresponds

to the start signals of the four STS11's while the Spi signals correspond to their done signals

(the start signals for the STSmn partition).

We must now introduce the same kind of handshake signals for the STSmn since this is the

partition responsible for invoking the fork-join threads as well as detecting their completion. In

this case the STSmn is a STS22 since it has two input and two output places. For this STS22 we

will create two transitions, one transition going from the SP to each of the two input places. We

have two fork-joins, wherefore each of the transitions therefore corresponds to the completion

detection of a separate fork-join. Since each fork-join consists of two STS11's each transition is

therefore labeled with a burst of two input signals Spi
, corresponding to the completion signals

of the two STS11's. We will now create a transition from each of the two output places of

the STS22 to the SP. These transitions then should each generate start signals to the separate

STS11's in the fork-joins. We therefore label each of the transitions with an output burst of

two Si signals corresponding to the start signals of the STS11's of each fork-join.

The separate partitions of the original SFJ graph have now been made stand-alone

controllers. They are now made cyclic which allow us to invoke them in�nitely often and

have been labeled with start and completion handshake signals so that they by themselves can

determine when to execute. The graphs of the resulting stand-alone controllers are illustrated

in �gure 5.1(c).

By the procedure described above, the separate STS11's of the fork-joins and the STS22

representing the main body of the controller have now been converted into self managing cyclic

controllers. To ensure a correct ow of execution, event signals have been introduced to work

as start and done signals for the decomposed controllers.

Partitioning of Single Threaded Graphs

We will now relax the assumption that we only have required partitions. This means we can also

have user de�ned partitions in the STS11's as well as in the STSmn. To simplify the exposition

we will only consider the case where the STSmn is allowed to have user de�ned partitions.

59

However, an algorithm where the STS11's are allowed to have user de�ned partitions has been

implemented in ACK. Now that we have a method for partitioning and how to make stand-

alone controllers that communicate via handshaking for each partition, this is easily extended

to cover user de�ned partitions as well.

Partitioning of a single threaded graph proceeds much the same as for concurrent threads.

The main di�erence between partitioning of single threaded graphs is that each partitioned

graph may have multiple input and output places and that the resulting partitions execute in a

sequential fashion. The fact that these partitions are allowed to share signals introduce a subtle

problem in terms of ensuring correct circuit operation.

Partition the STS A single threaded graph to be partitioned is �rst divided into its con-

stituent STSmn subgraphs and each of these is then given a unique partition number p. As

for the partitioning of concurrent threads, a startplace is introduced for each partitioned sub-

graph. Transitions annotated with event signals are then added to control the ow of execution

between the partitions. These start and completion event signals are labeled with the corre-

sponding partition numbers in the same fashion as for the required partitions.

When partitioning of single threaded controllers is allowed we need to know which par-

tition follows each fork-join in order to determine the partition number p which is included in

the completion signal of each STS11. We therefore need to partition the STSmn after we have

removed the fork-joins from the original SFJ graph. In the partitioning of the STSmn each

partition is assigned a unique partition number p. This number is then used when labeling the

completion signals of the fork-join threads. The same holds true for each STSmn which needs

the partition number of each STS11 for the their labeling of the input and output transitions

of each SP.

The procedure of partitioning is given in algorithm 5.2. The �rst step is to separate the

SFJ into an STSmn and a set of fork-joins. The STSmn is then partitioned and each partition is

assigned a unique partition number p. The fork-joins are then partitioned into their constituent

STS11's which are each assigned a unique partition number i. To each partition that has been

created an SP is added and annotated with transitions labeled with start and completion signals

based on the partition numbers.

5.2.3 Signal Sharing

After the partitioning step we have a set of interacting controllers in the form of Petri net graphs.

The approach later used for state machine synthesis assume the state machine description to

be incompletely speci�ed. This means that in a given state of a controller, only signals that

are speci�ed to change in the output transitions from that state are allowed to change value at

60

Type place type = it : set of in-transitions
ot : set of out-transitions

Type STS type = ip : set of input places of place type
tp : set of internal transitions and places
op : set of output places of place type

Partition SFJ(SFJ):STSs of STS type
PSTS = fg;
STSmn [fFJ1,: : :,FJkg = SFJ;
fSTSmn1 ,: : :,STSmnlg = STSmn;
foreach FJj 2 fFJ1,: : :,FJkg

fSTS111 ,: : :,STS11gg = FJj;
foreach STS11i 2 fSTS111,: : :,STS11gg

create SP of place type;
SP.ot = Si;
STS11i.ip.it = SP.ot;
p = id number of partition following FJj;
SP.it = Spi ;
STS11i.op.ot = SP.it;

end

PSTS = PSTS [fSTS111,: : :,STS11gg;
end

foreach STSmnp 2 fSTSmn1 ,: : :,STSmnlg
create SP of place type;
fqa,: : :,tbg = id numbers of reachable partitions/FJs (q,: : :,t)

and their corresponding input places (a,: : :,b);
SP.ot = fSp1 ,: : :,Sprg; // f1,: : :,rg = STSmnp .ip

STSmnp .ip.it = SP.ot;
SP.it = fSqa ,: : :,Stbg;
STSmnp .op.ot = SP.it;

end

PSTS = PSTS [fSTSmn1 ,: : :,STSmnlg;
return(PSTS);

end

Figure 5.2: Algorithm for partitioning of SFJ's

that time. If this restriction is not ful�lled the synthesized circuit will malfunction.

The partitioning approach described above often result in signals being shared between

partitions. As mentioned earlier concurrent threads are not allowed to share signals and only

one sequential thread of a given controller is allowed to execute at any given time. Under these

restrictions it is easy to see that a decomposition resulting in two or more partitions sharing the

same signal will violate the assumptions made in the synthesis of incompletely speci�ed state

machines.

Take the simple example illustrated in �gure 5.3. In this example the controller has

been divided into two partitions using the approach described earlier. The decomposition of

the controller resulted in that the two partitions share the input signal a and the output signal

61

b. This means that both partitions are sensitive to input signal a, that is, a makes a transition

somewhere in each of the partitions. Partition 1 and 2 in the �gure start in states 0 and 5

respectively. In these states partition 1 is the active partition and is supposed to see an event

on input a while partition 2 is waiting to be invoked by an event on input S2. However, when

the environment generates an event on signal a both partition 1 and 2 will see it since they both

have a in their input sets. Partition 1 which has a as a speci�ed next transition will absorb

the signal change and correctly generate an output event on S2. Partition 2 however, does not

have a as a speci�ed next transition and will therefore absorb an unspeci�ed signal transition,

thereby entering an unspeci�ed state resulting in malfunction of the circuitry implementing the

partition. Sharing an output signal, such as b in the example, between partitions also results in

problems since an event on either the output b from partition 1 and the output b from partition

2 somehow must be merged to the same wire.

b

ad

S 2S 1

c

a b

S 2S 1

b

a

c

a

d

b

PARTITION

0

1

2

3

4

5

6

78

9

Figure 5.3: Example of signal sharing.

For the partitioning approach presented above to generate partitioned controllers that

correctly interacts with the environment we must �nd solutions for sharing input and output

signals between partitions. Two possible solutions to these problems are presented in the

following subsections. The method presented �rst treats the case where the two phase signaling

protocol has been used in the re�nement step and the second method deals with the four phase

protocol.

62

Two Phase - Resolving Output Sharing

A solution for the sharing of output signals must involve a method for merging several separate

output signals onto the same wire. Merging signals having arbitrary values onto the same wire

might seem to be an unsolvable problem and would be so without explicit knowledge of the

signal behavior and characteristics of the outputs. Even with such knowledge, merging output

signals could pose problems requiring complex circuitry to solve.

Fortunately the way our controllers are speci�ed and the way our partitioning approach

works gives us su�cient knowledge of both signal behavior and characteristics to allow an e�-

cient solution to the output sharing problem. First, our partitioning approach guarantees that

controllers sharing output signals can only generate events on these that occur in a sequential

fashion. Second, we are only interested in when there is an event on a wire, not the actual

value of the signal on the wire. To merge output signals having these characteristics it would

su�ce to have a device that for an event occurring on an arbitrary input generates an event

on its output. Such an approach would be desirable since the order in which the events on the

inputs are generated does not matter which would make the solution independent of the original

control speci�cation. Under the conditions outlined the problem can be solved by merging the

signals with an ordinary XOR gate. The speci�cation of an XOR gate is that for every change

in value on any of its inputs the output changes value. This behavior complies with the stated

requirement that for a signal event on an arbitrary input an event on the output should be

generated.

The approach for solving the problem of output sharing thus becomes the following. For

every occurance of a shared output signal o in partition x, rename o to ox. In our example in

�gure 5.4, b would be renamed to b1 in partition 1 and to b2 in partition 2. In the �nal circuitry

implementing these partitions these two outputs are then connected to the inputs of an XOR

gate. The output of the XOR gate then becomes the output signal b.

Two Phase - Resolving Input Sharing

As mentioned earlier, sharing of an input signal requires that only the partition that currently

is activated may see an event on that input. If other partitions were to absorb the same input

event they would enter an incorrect state and thereby malfunction. A solution to sharing input

signals between partitions therefore require a method for distributing the shared signal to the

right controller at the right time. To solve this problem we need explicit knowledge of when a

certain event on the shared input is to be distributed to which control partition.

We therefore need a device that given an event on the shared input can generate an event

on an output going to the correct control partition. Since no general characteristics of the input

63

signals can help us discern which control partition the event is supposed to reach, a general

device that is independent of the original controller description as that for shared outputs cannot

be used for input signal distribution. The conclusion is therefore that without knowledge of

the original controller speci�cation we cannot predict in what fashion the input signals are

supposed to be distributed to the di�erent partitions. We therefore need a customized device

for distributing the signals.

Since our partitioning approach guarantees that all partitions are sequential and that

no two concurrently executing threads may share the same signal, the events on an input wire

is guaranteed to occur in a sequential fashion. Because of this, the behavior of a signal is

exclusively determined by the occurrance of branches and the signal in question. Our approach

for generating the graphs describing the behavior of the customized signal distribution devices

is therefore as follows.

For a shared input signal we �rst make a copy of the original controller, that is, as it

was before the partitioning step. Since the shared signal of interest can only occur sequentially,

we then remove all fork-join threads that do not contain it. We then remove all signals in the

graph except choice signals and the signal of interest. We now have a graph that completely

describes the behavior of the shared input signal. We now need to generate output responses

going to the right control partition for each occurrence of these input events. An output signal

is therefore added after each occurrence of the input signal of interest. This output signal is

named after the input signal and the corresponding partition in which it would occur had the

copy of the original graph been partitioned. The graph that describes the Input Translator

State Machine (ISM), as it is called, is now completed. What remains is to also rename the

input signal of interest in the partitions, as created by the partitioning step. The new names of

the shared input signals of these partitions then becomes the original name concatenated with

the partition name it occurs within.

The ISM for the shared input signal a in the example illustrated in �gure 5.4 is thus

created as follows. Since the original graph contains no branches there are no choice signals

present. We therefore simply remove all signals except a from the original graph. We then

add an output signal a1 after the �rst occurrance of a and a2 after the second occurrance of

a. We then rename the corresponding input signals in each partition such that a in partition 1

becomes a1 and a in partition 2 becomes a2.

Four Phase - Resolving Output Sharing

The same arguments as those used in the case of sharing output signals using the two phase

protocol must also hold true for the four phase case to ensure correct circuit behavior.

However, since the four phase protocol gives us additional information about the state

64

aa

a 2

a 1

d

S 2S 1

c

S 2S 1

a 1

a 2

b 1

b2

a

d

a 2

a 1

c

b 1

b2

XOR
b

PART 1

PART 2

ISM

S 2S 1

0

1

2

3

4

5

6

78

9

Figure 5.4: Solution to input and output signal sharing using two phase protocol.

of the signals after a completed handshake sequence, less complex logic can be used to handle

output sharing. The four phase protocol ensures that after a completed handshake sequence,

the signals involved will be returned to the same values they had before the handshake was

initiated. Since each signal will be initialized to a logic 0 by later steps in the circuit synthesis,

an ordinary OR gate will ful�ll the required conditions outlined for output sharing. Using an

OR gate instead of an XOR gate also o�ers a slight advantage in that the OR gate is a better

current driver and thus is faster.

The renaming procedure is the same as for the two phase case. Thus, for every occurance

of a shared output signal o in partition x, rename o to ox. In the �nal circuitry implementing a

set of partitions these renamed outputs are then connected to the inputs of an OR gate network.

The output of the OR gate network then becomes the output signal o.

Four Phase - Resolving Input Sharing

As for the two phase case we need to generate customized controllers in order to ensure that

only the currently active partition will see changes on the shared inputs. Although applicable

also for four phase, the method of using ISMs to handle signal sharing can be greatly optimized

to reduce the delay introduced by the ISMs when using this protocol.

When using ISMs to solve sharing of input signals a \copy" of that signal must be

generated and sent to each of the partitions sharing the signal at the right time. The logic

65

complexity of such ISMs increase both with the number of choices and the number of occurrances

of the shared signal in the original Petri-net graph. This can result in quite complex logic for

many real designs. This means that much of the delay gained by reducing the complexity of the

control logic by partitioning is lost when these are sequentialized with the ISMs. An important

factor in designing high performance control circuitry is therefore to optimize the signal sharing

logic wherever possible. In the case of using four phase signaling a much more e�cient method,

adding only the delay of a single two-input AND gate for each shared signal, can be used.

A signal using the four phase protocol is always guaranteed to return to its initial value

after a handshake sequence is �nished. We therefore know that the current value of each signal

is a logic 0 as we pass control from one partition to another. Using this knowledge we can

deduce that the signal sharing logic does not have to keep track of the current state of the

shared signals as a new partition is entered, as was the case when using the two phase protocol.

One solution that can be used is therefore to let the original signal be directly distributed

to each partition without use of ISMs and instead block the signal whenever a partition is not

supposed to see it. Such blocking of shared signals can be done using a simple AND-gate which

has an enable signal on one of its inputs and the shared input signal on the other. Whenever the

partition in question is activated, the enable signal goes high and thus enables any changes on

the shared input signal to propagate to the controller. Whenever control is passed to another

partition the enable signal goes low, blocking any further changes on the shared input. This

way, no unspeci�ed signal changes will reach the controller during the time it is passive. The

enable signal is generated by a state machine that is sensitive only to the signals involved in

passing control between the partition in question and its reachable partitions.

Take the example shown in �gure 5.5. The enable signal for the start partition, par-

tition 1, generated by SM1 is initially set to high. The enable signal for the passive par-

tition, partition 2, is initially set to low by SM2. The AND gates thus hinder any signal

changes on wires c, d, and e from reaching the control logic for partition 2. When parti-

tion 1 has �nished executing it passes control over to partition 2 by the handshake sequence

S2r ! S2a ! S2r ! S2a. When SM1 sees the events on S2r it disables the AND gates by

setting the enable signal to low. At the same time, when SM2 sees the events on S2r it sets its

enable signal high, thus enabling changes on the shared signals to propagate to the control logic

of partition 2. Similarly, when control is passed over to partition 1 again via the handshake

sequence S1r ! S1a ! S1r ! S1a, SM2 will set its enable signal low while SM1 will set it

high.

Since a design often contains more choices than partitions and partitions usually have

very few input and output places (as de�ned earlier), and since we do not have to be sensitive

to when the shared input signal is changing, the logic for the state machines (SM) generating

the enable signals is very simple. The number of literals actually grows only linearly with

66

S2r

S2aS1r

S1a

SM1

SM2

Partition 1

Partition 2

OR

a

b
c

d

e

g
f
c

d

e

x

u

v

y

z

S2r

S2aS1r

S1a

SM1

SM2

Partition 1

Partition 2

OR

a

b
c

d

e

g
f

c

d

e

x

u

v

y

z

(a) Partition 1 is active. The AND-
 gates of partition 2 are disabled.

(b) Partition 2 is active. The AND-
 gates of partition 1 are disabled.

= passive/disabled

= active/enabled

Figure 5.5: Solution to input and output signal sharing using four phase protocol.

upper bound O(1 + n) where n is the number of input and output places of the corresponding

partition. The important thing to observe though is that the sequential delay introduced by

the signal sharing logic, the AND gates, is held constant regardless of the complexity of the

Petri-net graph and the number of partitions.

This method not only gives an advantage in reduced delay compared to the propagation

through the ISMs, but also makes it possible to localize the logic for input sharing to each of

the controllers. In fact, the enable signal can be included as an output in the control logic of

the partition itself, making fundamental mode delay analysis easier. Since the sharing logic for

a signal always consist of an AND gate it is also possible to merge it with the rest of the control

logic, something that may give performance advantages when considering gate decomposition.

Another advantage of the four phase signal sharing approach is that there is no restriction on

sharing signals pertaining to choices since the signal sharing logic is not dependent on the actual

graph ow inside a partition. The constraint that for the two phase protocol restricted us not

to use a signal that occur in a fork-join in a choice in other partitions can therefore be relaxed

when using four phase.

5.2.4 Partitioning Constraints

Using the partitioning method presented in this section in the scope of the re�ned control graphs

produced by the high level synthesis procedure of ACK requires that some constraints are met

67

in order for the complete circuit after synthesis to work correctly after partitioning.

1. For the two phase protocol: No input signal occuring in a fork-join may be used within a

choice in any other partition or fork-join.

2. It is a requirement that a partition is not introduced within the boundaries of a re�ned

handshake sequence corresponding to a high level action from the behavioral Petri net

graph.

3. The interaction between the partitioned machines is guaranteed to work correctly if and

only if they also operate under fundamental mode constraints.

The reason for the �rst requirement comes from the ISMs requiring that all signals

pertaining to a choice must be included in the graph. Assume a signal i is allowed to occur in a

fork-join thread FJa1 as well as in a choice in some other partition. Assume we have an input

signal s that occur in the other thread FJa2 of the mentioned fork-join is shared with some

other partition. The ISM graph for s must then contain all occurrences of all choice signals

in the original control graph. This includes signal i. Since we also must keep the signal of

interest, s, the removing of all threads in a fork-join except that which contain s will result in

the removal of i in FJa1. Since the ISM will still have i in its input set, an unspeci�ed input

change will take place for i when FJa is executed. This requirement can be relaxed by allowing

the ISMs that have this problem to be sensitive to selected outputs (i1; : : : ; ik) of the ISM of

the signal which's fork-join thread was removed, instead of using the original input signal (i).

This procedure however, will not be described here.

There are three reasons for the second requirement. First, allowing one partition to

initiate a handshake sequence and another to complete it would increase the complexity of

fundamental mode analysis. It might also require insertion of extra delays on signal wires

since handing control over to a partition might take longer than for the acknowledge signal

to the initiated handshake to arrive to that partition. This would slow down overall circuit

performance. In the case of four phase re�nement, allowing partitioning of a handshake sequence

would also mean that the signal values will not be returned to zero within the partitions sharing

the handshake sequence. If the signals pertaining to such a handshake sequence would be

allowed to be shared in this manner they have to be treated as two phase signals in the separate

partitioned graphs, thus not exploiting the possible advantages of using four phase signaling

protocol the designer might have had in mind.

The reason for the third requirement is inherent from the way burst mode circuits op-

erate and will be further discussed in section 7. With a circuit operating under fundamental

mode constraints we mean that after absorbing a complete input burst, the circuit must attain

quiecense before the next input burst is allowed to arrive at its inputs.

68

5.3 Results and Conclusions

We have conducted comparisons between centralized and partitioned controllers on a large

number of examples, some of which are shown in Table 5.1. Apart from making it possible to

synthesize larger designs, partitioning can also decrease synthesis time by several orders of mag-

nitude. Partitioning also often signi�cantly decreases the number of literals in the synthesized

design and often increases the overall controller performance compared to that of a centralized

implementation.

In Table 5.1 we show the partitioning results for a CD Player Error Corrector from [32],

a Barcode Reader from the High Level Synthesis Design benchmarks [52] adapted to asyn-

chronous operation, an iterative implementation of the Greatest Common Divisor algorithm,

a Factorial computation unit, and a synchronization Loop example. For the CD Player Error

Corrector and the Barcode Reader the synthesis of the centralized controllers did not complete

due to the complexity of the synthesis task. The results for these are marked with n:a:

In the table the Number of BM transitions column is a measure of controller complexity

and shows the number of burst mode transitions in the speci�cation of the controller. I/O size

shows the size of the input and output set of the controller, Synthesis time shows the time in

seconds for burst mode synthesis and Number of literals stands for the number of literals in the

implementation of the controller. In the Controller column Centralized means the centralized

contoller, Part x means partition number x and ISM x means Input Translator State Machine

number x.

For the examples where the centralized controllers �nished synthesis, a layout was gener-

ated from a two level standard gate implementation and the performance between the central-

ized and partitioned controllers was measured. The comparison showed that despite the extra

delay introduced by adding ISMs and XORs to solve input and output signal sharing there was

actually an average performance increase for the total circuit after partitioning of between 10

to 20%. This is due to the reduced complexity of the partitioned controllers compared to the

centralized controller. Note that this comparison only exploited performance advantages due to

temporal locality. Partitioning also gives us the possibility to take advantage of spatial locality,

which as feature sizes get smaller and wire delays become signi�cant, is an important factor for

high performance designs.

In this section, we have presented a method to deal with the partitioning of incom-

pletely speci�ed asynchronous controllers that share signals. This work speci�cally provides

a partitioning method in the context of asynchronous high level synthesis methods that tar-

get state machine controllers, although the basic ideas can be extended to other asynchronous

partitioning problems. To make the partitioning approach easier to understand, a number of

69

Controller Number of BM I/O Synthesis Number of
transitions size time literals

CD Player Error Corr.

Centralized 1824 68 n.a. n.a.

Part 1 110 18 800 94

Part 2 32 29 220 96

Part 3 28 25 140 122

ISM 1-3 81 13 230 63

ISM 4 16 6 90 14

ISM 5 7 14 80 92

Barcode Reader

Centralized 960 49 n.a. n.a.

Part 1 26 14 34 14

Part 2 40 8 25 3

Part 3 72 19 500 13

Part 4 26 23 53 43

ISM 1-2 56 8 22 14

ISM 3 64 9 28 53

GCD

Centralized 126 25 33420 207

Part 1 22 15 30 33

Part 2 72 18 340 12

ISM 1-2 48 7 25 14

Factorial

Centralized 44 20 620 88

Part 1 12 13 24 6

Part 2 28 15 36 9

ISM 1-2 16 5 20 14

Sync. Loop

Centralized 32 5 38 199

Part 1 14 5 20 58

Part 2 12 6 16 3

Table 5.1: Results for partitioning

simpli�cations has been made such as not allowing threads in a fork-join to share signal wires

and that a signal corresponding to a choice occuring within a fork-join may not occur in a

choice in any other partition. For this reason the algorithms for generating handover between

partitions and for generating the ISMs has also been kept simple. We have shown that all

the simplifying assumptions made in this section can be relaxed and more e�cient algorithms

have also been implemented. These solutions, however, are not presented here since they would

complicate the exposition.

70

Chapter 6

Burst Mode State Machine

Generation

At this point, we have re�ned and partitioned state machine controllers in the form of Petri

net graphs. In this section we will consider a method to translate these graphs to burst mode

representations. We will �rst describe the concept of burst mode machines, or graphs, in

subsection 6.1. We will then consider the translation of two phase Petri nets in subsection 6.2.

In subsection 6.3 we will present the di�erences in the method used for translation of four phase

Petri nets.

6.1 Burst Mode Machines

A burst mode machine is a Mealy style state machine in which every transition is labeled with

pairs I=O where I is a non-empty set of polarized signals1 signal transitions called the input

burst and O is a possibly empty output burst. After reset, a burst mode machine must be

quiescent and not generate any outputs until a complete input burst has been consumed. After

each time an input burst has been received and a possible output burst has been generated, the

machine must attain quiescens before a new input burst is allowed to occur.

A burst mode machine is a Mealy style description of a �nite state machine. It consists

of a set of states (circles) and directed arcs (arrows) connecting them. The arcs are annotated

with a pair I=O where I is a non-empty set of input signals called an input burst and O is

a possible empty set of output signals called an output burst. A burst represents a collection

of signal changes on the wires of the corresponding circuit implementation. The signals are

annotated with + and � signs to indicate whether the signal is supposed to make a rising or

1Annotated with + or - sign to distinguish rising and falling transitions.

71

falling transition. A more precise de�nition of a burst mode machine can be found in [49].

An example of a burst mode speci�cation is illustrated in �gure 6.1. If not speci�ed

otherwise, all inputs, outputs and state variables are initially set to zero. The state machine

initially starts in state 0. The arc leading to state 1 is annotated with an input burst a+ and

an output burst x+. The machine will stay in state 0 until a high going transition on wire a has

occurred. After absorbing the input change the machine will generate a high-going transition

on output wire x and move to state 1. State 1 is a choice state with two outgoing arcs with

bursts b + =x � y+ and a � =z+ leading to states 2 and 3 respectively. The next state now

depends on which input burst the choice is resolved through. Note that the input bursts of

the choice are mutually exclusive, that is, they cannot both occur together. If the next signal

change we see is a rising transition on wire b then we generate the output burst x � y+ and

move to state 2, while if it is a falling transition on wire a we generate a rising transition on

output signal z and move to state 3. If in state 2, we wait for the input burst a � b�. Note

that these transitions can occur in arbitrary order with arbitrary delay in between. When both

a and b have gone low we set output y low and move to the initial state 0. If in state 3, we

wait for input event a+ and generate output event z� and move to state 1 again. Note that a

burst mode machine containing no empty output bursts describes a delay insensitive behavior

with fundamental mode restriction. (Places in the burst mode graphs will later be omitted for

�gures that otherwise would be too large to show.)

a+/x+

a+/z-a-/z+

b+/x-y+

a-b-/y-
0

1

2

3

Figure 6.1: Example of burst mode speci�cation

Beside the restriction of non-empty input bursts, there are a number of other restric-

tions that a burst mode machine must comply with in order for the synthesis procedure and

implementation to work correctly. A burst mode circuit must comply with the requirement of

quiescens. This means that after reset, a burst mode machine must be stable and not generate

any outputs until a complete input burst has been consumed. After each time an input burst

has been received and a possible output burst has been generated, the machine must attain

quiescens again before a new input burst is allowed to occur. Since the synthesis procedure only

72

takes the speci�ed signal transitions into consideration when generating the Boolean functions

for the state machine, unspeci�ed input changes are not allowed to occur or else the circuit

will malfunction. The unique entry point requirement makes sure that one and the same state

cannot be entered by more than one unique set of values of the signals. This means that all

entry points from every predecessor state must be identical. This is not really a limitation

since every burst mode machine can be translated into an equivalent speci�cation complying

with this restriction by duplicating states. A burst mode machine must also comply with the

maximal set property which means that for any two arcs going out of the same state (a choice)

none of their input bursts may be a proper subset of the other's input burst. Otherwise the

speci�cation would be ambiguos since the controller cannot possibly know if any more signal

changes will arrive after a full subset burst has already occurred.

6.2 Conversion of Two Phase Petri Nets

The Petri net controllers are abstract representations of the �nal implemented controller be-

havior since they make no assumptions about initial signal values or polarities of each signal

transition. However, in order to synthesize Boolean functions representing the controller logic

at the gate level, burst mode machines must have explicit knowledge of initial signal conditions

and the polarities of the di�erent signal transitions. The translation process for generating

burst mode controllers must therefore deal with assigning speci�c values to the signals of the

controller.

After the re�nement and partitioning of our behavioral Petri net, the resulting single

threaded controllers are a subset of I-Nets. The di�erence is that I-Nets allow concurrent

threads, while our controllers only have signal concurrency in the form of bursts, a requirement

of the burst mode machines. That is, in any one control graph only one transition can �re

at a time. A transition however can contain several input or output signals (a burst). This

is a restriction from the de�nition of burst mode controllers which cannot handle concurrent

threads. Compliance with this restriction is ensured by the partitioning procedure in our high

level synthesis method where all concurrent threads are divided into separate control graphs.

For an I-Net with only input and output burst concurrency corresponding to a deterministic

and delay insensitive machine obeying the quiescens restriction, we can obtain a burst mode

machine with the exact same behavior provided that the fundamental mode timing constraint

is met by the environment.

The translation method proceeds by traversing the Petri net graph in a depth �rst search

(DFS) manner while collecting signal bursts and building the burst mode graph. The method

is described by the algorithm in �gure 6.2.

73

type place = record

out trans : array [1..#OT] of trans; // reachable transitions
num : integer; // each place in the graph has a unique number

end

type trans = record

out place : place; // reachable place
signals : string; // string of signal names representing a burst
signal type : finput,outputg // are the signals in or outputs?

end

var state vec : array [1..#I/O] of bit; // state vector for I/O signals
var burst, in burst, out burst : string; // burst signal names
var bm state : integer; // global burst mode next state

begin

GPN = parse(input �le);
root place = GPN .root place;
state vec = 000...000;
table store(root place.num, state vec);
bm state = 0;
recurr(root place);

Procedure recurr(place)
var local bm state;
var local state vec;
begin

local bm state = bm state;
local state vec = state vec;
foreach trans 2 place.out trans[1,: : :,n]

out burst = "";
in burst = trans.signals;
curr place = trans.out place;
while (curr place.out trans[1].signal type == output)

out burst = out burst [curr place.out trans[1].signals;
curr place = curr place.out trans[1].out place;

end

burst = polarize(in burst, out burst);
state vec = calc new statevec(local state vec, burst);
if (table lookup(curr place.num, state vec, var old bm state))

GBM = add burst(GBM, local bm state, old bm state, burst);
else

bm state = bm state + 1;
table store(curr place.num, state vec, bm state);
GBM = add burst(GBM, local bm state, bm state, burst);
recurr(curr place);

end

end

end

end

Figure 6.2: Algorithm for Petri net to burstmode conversion.

74

This algorithm is handed a Petri net from the high level re�nement and partitioning step

described earlier. This graph is then traversed recursively using the procedure recurr. We keep

track of the state of each input and output signal by generating a state vector in which each

position is �lled with a certain signals current state (logic high or low). We traverse the graph

by collecting input and output signals on the out-transitions of the places into corresponding

input and output bursts. For each out-transition from a place we do the following: First the

input signals occuring on the currently selected out-transition of the current place is collected

and placed in the input burst which is now complete. We then traverse the graph following the

current out-transition. The output burst is then generated by collecting output signals until a

place with an out-transition labeled with input signals is reached. For each such place (that

has an out-transition labeled with input signals) the current state vector is updated by altering

the value of the signals that has been collected in the input and output burst. If this state

vector does not already exist for the current place, it is stored in a hash-table together with

information about the current place and the current burst mode state. The burst mode graph is

then updated with the new burst mode transition. If a state vector for a certain place already

exists the next state of the burst mode transition is set to the burst mode state previously

stored in the hash-table. Otherwise a new next state is created for the burst mode graph. We

keep track of the state vector and burst mode state of the current place by making local copies

of these during the recursion. That way we will have the correct burst mode state and state

vector when the recursion return to a previously visited place. Figure 6.3 illustrates a simple

example of a Petri net and its corresponding burst mode graph. The algorithm traverses the

Petri net graph in the number order given for its places and the burst mode graph is created

in the number order given for its states. The input signals in the Petri net are annotated with

?? and the output signals with !!. A burst in the burst mode graph is described by an input

burst followed by a slash followed by an output burst e.g. a+b+/x-y-. The slash is omitted

when only an input burst is present. As can be seen in �gure 6.3(b) the burst mode controller

gets quite complex even when there is only one choice present in the corresponding Petri net

graph. The handshake based Petri net graph can therefore o�er advantages in specifying state

machines because of its abstract, simple and compact representation.

The algorithm presented above can be optimized by only storing and checking the state

vector for a more restricted subset of places. State vector information only needs to be stored for

places that has out-transitions labeled with input signals and ful�lls one of the following criteria.

The current place

� has more than one out-transition (choice place).

� has more than one in-transition.

75

a??

c??a?? b??

x!! y!!

x!!

0

1

3

4

c?? d??

2

(a) Handshake based Petri-net
graph using two phase protocol. (b) Corresponding burst mode graph.

0

1

2

3

4 5

6

7

8

9

10

11

a+

a-b+/x+y+

c+d+

a+b-/x-y-

c-d-

c-/x-

a+

a-b-/x+y-

c+d-

a+b+/x-y+

c-d+

c-/x-

c+/x+

a-

c+/x+

a-

Figure 6.3: Example of two phase burst mode translation

� has a preceding place, followed only by places labeled with output signals on their out-

transition, with output signals on its out-transition and that has multiple in-transitions.

This optimization reduces the run-time quite signi�cantly for large graphs although

it does not remove the exponential worst case complexity. The implemented algorithm has

also been improved to handle directed don't cares and non-monotonic level signals o�ered by

extended burst mode machines.

Although the algorithm presented has an exponential worst case complexity in the num-

ber of out-transitions emenating from choice places in the Petri net graph we have successfully

generated very large burst mode graphs in matter of seconds as can be seen in table 6.1. Since

the largest burst mode graph we so far have been able to synthesize all the way to a netlist of

gates using the 3D synthesis method [74], (without using partitioning) is the GCD circuit, the

Petri net to burst mode conversion does not set the limit to what circuits can be generated by

the ACK synthesis system.

76

Controller Number of I/O Conversion Number of Number of
BM states size time (sec) PN places choice places

Extended Barcode 10752 49 30 50 8

Barcode Reader II 1216 49 3 45 5

CD Player Error Corr. II 609 68 2 46 4

GCD II 88 25 < 1 20 2

Factorial II 68 20 < 1 23 1

Table 6.1: Results for burst mode generation.

6.3 Conversion of Four Phase Petri Nets

For the four phase protocol we use the same algorithm to derive burst mode machines from the

re�ned Petri net graphs. Since all signals in a handshake are reset to zero before the handshake

is started we will never get the problem of covering all possible combinations of signal polarities

which causes the state explosion for the two phase case when choices are present. The conversion

time will therefore be linear to the number of places in the Petri net graph.

However, the four phase protocol has a performance problem in that it uses twice as many

transitions for a handshake as the two phase protocol. Since all computations and storage of

data have been performed on the rising edge of the handshake signals, the extra transitions

required to reset the signals to zero again will not result in any work being done. Since valuable

time is lost while resetting the wires we will use a method that tries to hide the passive phase of

the handshake (falling transitions) in the active phase of the next handshake (rising transitions).

The use of burst mode machines allow us to do this easily by simply merging the bursts of these

handshakes. The procedure is called reshu�ing and proceeds as follows.

For any current node (except the start node which has no predecessor), we check the

predecessor nodes and the successor nodes. If the output burst of the predecessor node contains

a transition on any of the signals in the output burst of the current node or if any of the successor

nodes contain any signal in their input bursts that is also contained in the input burst of the

current node, no reshu�ing is done. Similarly, no reshu�ing for signals passing control between

partitions or synchronization signals between concurrently executing processes may be done.

This is because reshu�ing of such signals could result in the assertion (high) of a signal that

has not yet been deasserted (low) which would result in deadlock. Otherwise, the current input

burst is merged into all successor node's input bursts and the current output burst is merged

into all predecessor node's output bursts. The current place is now empty and can be removed.

An example of reshu�ing using the algorithm is given in �gure 6.4. The application of

the algorithm on a factorial example is shown in �gure 6.5 where the re�nement step is shown

followed by burst-mode reduction and reshu�ing of the burst mode graphs. Note that most

77

states in the �gures have been omitted to save space.

... / fr+

fa+ / fr− xl+

fa− xld+ / xl−

xld− / ...

... / fr+

fa+ / fr− xl+

fa− xld+ / xl−

xld− / ...

... / fr+

fa+ / fr−

fa− / xl+

xld+ / xl−

xld− / ...

/

Figure 6.4: Example of reshu�ing

The reshu�ing method used in ACK ensures that the order of high level action execution

is maintained. Other methods, such as late or collective return to zero (where the order in which

the handshakes are returned to zero is not guaranteed to be maintained) can sometimes give

better results. We are currently studying the problem of more e�cient reshu�ing for future

versions of ACK.

6.4 Conclusions

This section has presented a method for generating correct burst mode machines from a Petri

net speci�cation with event signal notation. A problem with this method is the limitation to

the size of graphs that can be translated due to state explosion when using two phase Petri

nets. A method to improve the performance of four phase burst mode machines via reshu�ing

was also presented.

From the burst mode graphs that have been created using the method presented in this

section the next step is to generate Boolean functions for the controllers they describe. This is

done using existing burst mode synthesis tools [74, 49] and will be discussed in the next section.

78

Factorial - four phase

(c) Burst Mode Controller

start+ /

/

/

/

/

/

/

again.req+

again.ack+

again.req-

again.ack- a.Load+ a.SetMux0+

a.LoadDone+ a.Load- a.SetMux0-

a.LoadDone-

n.Load+ n.SetMux0+

n.LoadDone+ n.Load- n.SetMux0-

n.LoadDone-

PAB.Req+

PAB.True+ PAB.Req-

PAB.True-

/

/

again.req+

FAB0.Req+

FAB0.Ack+ FAB0.Req-

FAB0.Ack-

PAB.False+ PAB.Req-

PAB.False-

/

/

/

/ a.Load+ a.SetMux1+

a.LoadDone+ a.Load- a.SetMux1-

a.LoadDone- FAB1.Req+

FAB1.Ack+ FAB1.Req-

FAB1.Ack- n.Load+ n.SetMux1+

n.LoadDone+ n.Load- n.SetMux1-

n.LoadDone-

/

/

/

/

/

/ PAB.Req+

/

/

result.req+

result.ack+ result.req-

result.ack-

(d) Shuffled Burst Mode Controller

start+ /

/

/

/

/

again.req+

again.ack+

again.req-

again.ack- a.Load+ a.SetMux0+

a.LoadDone+ a.Load- a.SetMux0-

n.Load+ n.SetMux0+

n.LoadDone+ n.Load- n.SetMux0-

n.LoadDone-

PAB.Req+

FAB0.Req+PAB.False+ PAB.Req-

PAB.False-

/

/

a.LoadDone-
PAB.True+

PAB.Req-

again.req+

PAB.True-

a.LoadDone-

FAB0.Ack+

FAB0.Ack- a.LoadDone+

a.LoadDone- FAB1.Ack+

FAB1.Ack- n.LoadDone+

n.LoadDone-

FAB0.Req- a.Load+ a.SetMux1+

a.Load- a.SetMux1- FAB1.Req+

FAB1.Req- n.Load+ n.SetMux1+

n.Load- n.SetMux1- PAB.Req+

/

/

/

PAB.True+
PAB.Req- n.LoadDone-

FAB0.Req+PAB.False+
PAB.Req-

result.req+

result.ack+ result.req-

result.ack-

result.req+

/

(b) Refined Petri Net Controller

start??

again.req!!
again.ack??

again.req!!
again.ack??
a.Load!! a.SetMux0!!
a.LoadDone??
a.Load!! a.SetMux0!!
a.LoadDone??

PAB.Req!!

n.Load!! n.SetMux0!!
n.LoadDone??
n.Load!! n.SetMux0!!
n.LoadDone??

FAB0.Req!!
FAB0.Ack??
FAB0.Req!!
FAB0.Ack??
a.Load!! a.SetMux1!!
a.LoadDone??
a.Load!! a.SetMux1!!
a.LoadDone??
FAB1.Req!!
FAB1.Ack??
FAB1.Req!!
FAB1.Ack??
n.Load!! n.SetMux1!!
n.LoadDone??
n.Load!! n.SetMux1!!
n.LoadDone??

PAB.False??
PAB.Req!!
PAB.False??

PAB.True??
PAB.Req!!
PAB.True??
result.req!!
result.ack??
result.req!!
result.ack??

again?n

a = 1

(n == 0)

result!a

start??

(n != 0)

a = a * n

n = n - 1

(a) Behavioral Petri Net

Figure 6.5: Factorial: (a) Original behavioral speci�cation, (b) re�ned four-phase handshake

based Petri net, (c) burst mode graph, (d) reshu�ed burst mode graph

79

Chapter 7

Burst Mode State Machine

Synthesis

At this point we have generated a collection of asynchronous �nite state machines in the form

of burst mode controllers that now need to be synthesized to Boolean function representations.

This section will describe synthesis of such state machines and discuss two di�erent styles of

controller implementation that can both be used in ACK.

7.1 Fundamental Mode Asynchronous Finite State Machines

An asynchronous �nite state machine (AFSM) is a controller having speci�cation, implemen-

tation and functionality much like that of a synchronous state machine. The speci�cation of a

controller is often described as a Mealy state machine with an interface consisting of a set of

primary inputs and outputs. The state of the controller is represented by a set of internal state

signals that are fed back to the input side of the controller. The Boolean functions representing

the behavior of the output and state signals are implemented as a block of combinational logic.

So far the asynchronous and synchronous styles are very similar. However, there are some

notable features that separate them.

The main di�erence between the two styles is that the input and output signals of an

asynchronous state machine must change in a monotonic fashion. In a synchronous imple-

mentation, neither input or output signals need to change monotonically since the worst case

requirements ensure that the logic has settled and the inputs and outputs stabilized before the

next clock tick lets them propagate through the registers. Since asynchronous systems rely on

event signaling, input and output signals of the state machines must change monotonically for

the handshake communication to work reliably. This puts restrictions on the combinational

80

logic that implements the state machine.

An important di�erence is the way output signals respond to state and input signal

changes. Unlike the synchronous style, asynchronous state machines have no registers that

need to wait for the next global clock tick before propagating the output signals to the rest of

the system. Asynchronous state machines therefore often have the advantage of average case

delay compared to the worst case delay of synchronous state machines.

Another di�erence is the handling of state variables. In a synchronous state machine the

state signals are always stored in a register before being fed back to the inputs of the machine.

In Hu�man asynchronous state machines however, the signals are fed back directly. Such direct

feedback requires some special handling of the state signals.

7.1.1 Speci�cation and Synthesis Methodology

The computation in a state machine is based on its state. From the current state and inputs

to the machine it generates signals representing the outputs and its next state. The states are

then fed back as inputs to the machine, moving it to the new state. This way of moving from

state to state makes it possible to describe the speci�cation of a state machine as a ow table.

The synthesis approach is similar to that of synchronous state machines. State mini-

mization is �rst performed to reduce the size of the ow table by merging compatible states.

This is followed by a state assignment step that assigns binary values to the symbolic states.

Boolean functions for the output and state signals are then generated from the ow table. The

last step is to generate combinational logic for the Boolean functions. Some special require-

ments during this step are necessary to ensure that the output signals of the combinational logic

behave in a monotonic fashion. This step is called hazard free logic minimization. The concept

of hazards will be explained in subsection 7.3. In the meantime it is su�cient to view hazards

as the possibility of glitches occurring at the outputs of a combinational logic block. After the

concepts of hazard free gate networks and other neccessary de�nitions have been presented the

complete synthesis method will be presented in more detail in sections 7.4, 7.5, 7.6.

There is a major attraction with using �nite state machines compared to other method-

ologies for asynchronous controller implementation. The state machine synthesis method can

perform global optimizations which would be di�cult or impossible to do with local transfor-

mations as done in most other synthesis methodologies that use syntax based decomposition

into gate level implementations. State machine synthesis therefore often results in very e�cient

gate level implementations. The draw-back of this method is the complexity of state machine

synthesis in general. Algorithms for exact solutions have exponential complexity which makes

it impossible to synthesize large controllers. Methods for partitioning such large controller

speci�cations (as presented in section 5) without losing too much of the global optimization

81

possibilities during synthesis are therefore necessary.

7.1.2 Input Constraints

There is a large number of asynchronous state machine methods. These methods can be hier-

archically categorized based on their constraints on input changes [71].

SIC - single input change allows only one input to change at a time. After an input

change has occurred a minimal time interval d must pass before any new input change is

allowed.

MIC - multiple input changes allow a set of input signals to change during a time interval

dc. These signals are treated as if they were occurring simultaneously. A minimal time interval

dn must pass before a new set of input signals are allowed to change.

UIC - unrestricted input changes allow any signal to change at any time as long as no

signal changes more than once in a time interval of d.

An asynchronous controller in its simplest form is called a Hu�man machine. A Hu�man

machine in its simplest form allows only SIC mode operation. A common restriction is also

to require the environment to wait until the circuit has stabilized before a new input change

is allowed. This is called fundamental mode restriction and also applies to the fed back state

variables. Unfortunately, the requirement that only one input at a time may occur after which

the machine has to stabilize introduces severe restrictions on concurrency and makes this style

impractical for real designs.

The MIC style has not been successfully used in real designs either. The reason is that

a number of complications, both for input and state variable changes, arise when MICs are

allowed. The types of complications that can occur are function and logic hazards for input

changes and critical races when several state variables change simultaneously. These hazards

will be described in subsection 7.3. Solutions to solve these problems have been presented [71]

but the method makes use of inertial delays which have questionable reliability and slow down

circuit operation. The general solution has therefore been to adopt the SIC mode of operation.

A special form of input change called data driven mode was �rst introduced by Davis

et al. [14]. This style is an extension to the MIC mode of operation since it does not have

the restriction that inputs must occur within a limited time interval. Instead a set of inputs is

speci�ed as a burst and the signals may change in any order with arbitrary delay in between.

After a full burst has been received outputs and next state signals are generated. This method

require fundamental mode operation. In [49] a constrained and formalized version of Davis

data driven mode called burst mode (BM) was introduced. This style uses speci�cations in the

form of Mealy style �nite state machines and imposes no timing restrictions on multiple input

82

changes. This style was later extended with non-monotonic level input signals and directed

don't care signals in [74] called extended burst mode (XBM). A more thorough description of

this type of state machine has been given in section 6. Since its introduction this has been the

most successfully used style of asynchronous state machine synthesis and has shown to generate

e�cient solutions to a large set of real designs.

A method has also been presented to allow UIC mode operation [71]. However, as the

MIC style, this method never saw wide use due to its use of inertial delays. It is also unclear

how real life designs can be e�ciently represented as a system of "ordered chaos".

7.2 Two Implementation Methods for AFSMs

There are two main styles for implementing asynchronous �nite state machines, the self syn-

chronized style and the Hu�man only style. The self synchronized style uses a locally generated

clock to store output and state signals while the Hu�man only style does not. The self syn-

chronized style will be discussed next followed by the Hu�man only style.

7.2.1 The Self Synchronizing Style

A method using a locally clocked approach for hazard free synthesis of burst mode machines was

developed in [49]. This approach and others [27, 68, 1, 13, 57] make use of a method called self-

synchronization. This method use Hu�man machines along with a locally generated aperiodic

clock acting on internal latches. The clock in many of the earlier methods is used to propagate

the outputs just as for synchronous machines which results in worst case performance. Still

there is an advantage of this method compared to the synchronous style since the worst case

constraint is local to each controller, meaning that controllers of di�erent complexities still can

execute at di�erent speeds. Although this is a restricted way of average case delay it can still

o�er an advantage over synchronous controllers. The clock signal generation in these methods

have been based on XOR-trees or combinational logic using inertial delays to remove glitches.

These methods have resulted in implementations having rather poor performance due to the

worst case design and added delays.

The method presented in [49] deals with these performance problems by only using the

clock for state changes. The outputs freely ow through the internal latches that are always

transparent except during a state change. This method also uses a new method for making

hazard free (glitch free) minimization [50] of the combinational logic. This method thereby

exploits the average case delay properties of the individual controllers as well as reduces the

latching delay compared to other methods.

83

It is important to notice the di�erence between the self-synchronized and synchronous

approach. The clock in a self-synchronized controller is generated locally to each controller

and is sometimes used to eliminate hazards on the outputs of the combinational logic. Unlike

synchronous design a clock tick is generated only when it is needed, when a new input burst

arrives. The clock is therefore aperiodic, meaning it does not have a �xed cycle time.

Combinational

Logic

Clock
Local

P
h

as
e-

1
L

at
ch

esInput

State

Output

P
h

as
e-

2
L

at
ch

es

Figure 7.1: Locally clocked controller structure

The general structure of the locally clocked method used in [49] is illustrated in Fig-

ure 7.1. It consists of combinational logic for the clock, output and state signal generation,

storage elements in the form of latches, and a set of primary inputs and outputs. The phase-1

latches are dynamic while the phase-2 latches are static. The reason for having dynamic latches

is that signals can propagate through very quickly compared to a static latch. The clock in this

method can be seen as having two phases and is generated by hazard-free combinational logic.

As long as no state change is needed the clock will remain low. Any output change of the com-

binational logic (CL) can therefore propagate freely through the phase-1 latches. This requires

CL to be free of hazards for the input signal changes. When a state change is needed the new

output and state signals are �rst generated. When they have propagated through the phase-1

latches, a clock tick is generated �rst opening the phase-2 latches and then closing the phase-1

latches. As long as the phase-1 latches remain closed they will not propagate any glitches on

the output or state signals. Therefore, CL does not need to be hazard free for the state signal

changes resulting in less complex logic. When CL has stabilized from the state change, the

Cclk logic lowers the clock signal, �rst closing the phase-2 latches and then opening the phase-1

latches. The advantage of this selective clocking method is that it tends to require less complex

logic for the clock generation and that many transitions will not have the clock-cycle overhead.

An example taken from [49] is illustrated in �gure 7.2. The burst mode speci�cation

of the controller is shown in �gure 7.2(a), and the resulting implementation after synthesis is

84

A

B

CD

E

a+ b+ / x+ y+

c+ / x−

c− / x+ y−

b− / x− y+

a− / y−

(a) Burst Mode Specification (b) Hazard Free Implementation

a
b
c’

a
b

c
a

a’

c

a

x

y

q

b’

Figure 7.2: Example of locally clocked controller implementation

viewed in �gure 7.2(b). A step-by-step analysis of the �rst two transitions, from state A to B

and then from state B to C, is shown in Figure 7.3.

The symbolic states A and B have been merged into a single state, encoded q=0, while

states C, D and E have been merged into encoded state q=1. This means that as we go from

state B to C, a change in state is necessary. The primary input signals for this machine are a, b

and c. The primary outputs are x and y. The state signal is q. Initially the circuit is quiescent

and the clock, input, output, and state signals are low. This means that the phase-1 latches

are transparent (open) and the phase-2 latch is disabled (closed). When events on both signals

a and b have occurred (they may arrive at arbitrary times) the hazard free combinational logic

will generate events on outputs x and y making them go high. The outputs can propagate freely

through the phase-1 latches thereby making the output changes very fast. Once the outputs

have been generated we require that the circuit have time to stabilize (attain quiescens) before

the environment responds with a new set of input changes. When an event occurs on input

c, an event is generated on output x making it go low. The machine must now change state,

state signal q must go from low to high. State signal q is represented by input signal a, which

went high in the previous transition. To propagate the new value of the state signal the circuit

must generate a clock tick. A high going transition on the clock is generated, opening the

phase-2 latch and then closing the phase-1 latch. The new value of q is now fed back to the

combinational logic for the clock as well as outputs. The output logic is now allowed to glitch

since the phase-1 latches are closed, which means we do not need hazard free logic for state

changes. After the output logic has attained quiescens a low going transition is generated by the

clock, �rst closing the phase-2 latch and then opening the phase-1 latches. The state changing

85

a
b
c’

a
b

c
a

a’

c

a

x

y

q

a

b

c

clk

(a) A −> B transition (Phase−1)

b’

a
b
c’

a
b

c
a

a’

c

a

x

y

q

a

b

c

clk

(b) B −> C transition (Phase−1, initial)

b’

a
b
c’

a
b

c
a

a’

c

a

x

y

q

a

b

c

clk

(c) B −> C transition (Phase−2)

b’

a
b
c’

a
b

c
a

a’

c

a

x

y

q

a

b

c

clk

(d) B −> C transition (Phase−1, final)

b’

Figure 7.3: Example of locally clocked controller implementation

cycle is now complete and the circuit has settled into state C (q = 1) waiting for an event on

input c.

As the reader may have noticed, there are timing constraints associated with the gener-

ation of the clock signal. If the rising (falling) edge of the clock signal reaches the latches too

early, the output or state signals may not have had time to change before they are latched. The

same is also true for the combinational logic's response to the state feedback. If the logic is

hazardous for change of the state signals it must have time to settle before the falling (rising)

edge of the clock reaches the latches. Otherwise glitches on the outputs may propagate through

the phase-1 latches. This one-sided timing constraint on the clock can be met by inserting

delays on the clock signal wires. The logic must also have time to settle before any change of

the state signals are allowed to feedback. This is also a one-sided constraint that can be met

by inserting delays on the feedback wires.

86

7.2.2 The Hu�man Machine Style

A method called 3D for hazard free synthesis of burst mode machines was developed in [74].

This method uses the Hu�man only machine approach and also extends the burst mode style to

include non-monotonic level input signals and directed don't care signals and is called extended

burst mode.

Methods for implementing Hu�man only machines for SIC and MIC have been pre-

sented [71] using inertial delays and [24, 37] that make use of delays, large ow tables, careful

timing requirements and specialized state codes. All these methods slow down circuit operation.

The 3D method deals with these performance problems by generating hazard free com-

binational logic instead of introducing delays to ensure correct circuit behavior. Since it has

no local clock and does not make use of latches, there is a potential reduction in area. Since

the delay through the dynamic latches can be avoided there is also a potential performance

gain compared to the locally clocked method. However, the way state changes are handled may

incur more complex logic for the state variables. Also, for state changes it may require to go

through two feedback loops to complete a state change and thereby increase the fundamental

mode delay.

Combinational

Logic State

OutputInput

Figure 7.4: 3D controller structure

The general structure of the Hu�man only machine method used in [74] is illustrated

in Figure 7.4. It consists of combinational logic for the output and state signal generation, a

set of primary inputs and outputs, and delays on the feedback paths. Since both outputs and

state variables may be used as state feedbacks the combinational logic in this method can be

seen as working in three phases. During the �rst phase the combinational logic is excited by

a set of input changes and generates a set of output changes. In the second phase the logic

is excited by the fed back outputs which together with the earlier input changes generates a

set of state signal changes. Since the logic must attain quiescens between each of these phases,

the total fundamental mode delay - the time from the last changing input until the logic has

87

stabilized after phase three, may become signi�cant. In practise however, the environment is

often su�ciently slow to accommodate this problem. If not, extra delays have to be added in

the environment feedback paths.

The 3D implementation of the example from subsection 7.2.1 is shown in �gure 7.5.

Notice that extra logic has been added to implement a function for the state variable. Still, a

large area saving is made since we do not have to generate logic for the local clock and we have

no latches. The absence of latches will give us a slight performance gain in this example. A

step-by-step analysis of the �rst two transitions, from state A to B and then from state B to

C, is shown in Figure 7.5.

x

y

q

a

b

c

a
b
c’

a
b

c
a

c

b’

a

(b) B −> C transition

x

y

q

a

b

c

a
b
c’

a
b

c
a

c

b’

a

(a) A −> B transition

Figure 7.5: Example of 3D controller implementation

As for the self-synchronized implementation, the states A and B have been merged into

a single state q=0 while states C, D and E have been merged into state q=1. This means that

as we go from state B to C, a change in state is necessary. The primary input signals for this

machine are a, b and c. The primary outputs are x and y. The state signal is q. Initially

the circuit is quiescent and the input, output, and state signals are low. When events on

both signals a and b have occurred, the hazard free combinational logic will generate events on

outputs x and y making them go high. Once the outputs have been generated we require that

the circuit have time to stabilize before a new input change arrives. When an event occurs on

input c, an event is generated on output x making it go low. The machine will now also change

state, and state signal q subsequently goes from low to high. For the circuit to comply with the

fundamental mode assumption it must now have time to stabilize before the transition on the

fed back state signal is allowed to reach the inputs. This can be ensured by adding delays on the

feedback path. Once the state signal arrives at the inputs the circuit will respond by entering

a new state. The logic for the state variable and for the outputs must be hazard free even for

state changes since we have no latches that �lter out glitches. This requires that a critical race

free state encoding is used during synthesis. The state changing cycle is now complete and the

88

circuit has settled into state C (q=1) waiting for an event on input c. Notice that this example

does not su�er from the double state change mentioned earlier since no outputs are used for

state feedback.

As mentioned in the example, to ensure a correct circuit behavior there is a one-sided

timing constraint that requires the feedback paths of the output and state signals to be suf-

�ciently slow for the combinational logic to stabilize before the signal changes arrive at the

inputs.

7.3 Hazards

The notion of hazards is a central problem in asynchronous design. It is a fundamental re-

quirement for asynchronous communication that signals change monotonically. Many imple-

mentation styles make use of explicit delays and careful timing constraints to ensure hazard

free outputs, while others introduce constraints during state minimization, state assignment

and logic minimization.

Since adding delays to ensure correct behavior slows down the circuit, a large body

of work has been done in hazard free synthesis of such circuits. Many solutions for hazard

free synthesis have been presented in the past [42, 8, 9, 23]. However, [42] only solves the

problem under single input changes, [9] uses sequential storage elements and [8, 23] assumes

fully speci�ed functions and tries to eliminate hazards even for unspeci�ed transitions resulting

in suboptimal solutions.

Work in [50] presents a new method for hazard free minimization that, for problems

where a solution can be found, eliminates all hazards. This method only eliminates hazards

for speci�ed transitions using exact algorithms, making the solution optimal. Note that since

this method targets an implementation that is restricted to two level AND/OR logic not all

problems have a solution.

In the discussions in previous sections it has been su�cient to view a hazard as a glitch

on an output from a combinational logic block. These glitches can be caused by several di�erent

reasons which we will now take a closer look at. The concepts of three hazard considerations

present in both the Hu�man only and self synchronized implementation styles will be discussed.

Extra hazard considerations necessary for implementing extended burst mode speci�cations will

not be addressed here but can be found in [74]. Note that all de�nitions give here are based on

a two level sum of products implementation.

89

7.3.1 Terminology and De�nitions

A logic function f is de�ned as a mapping from f0; 1gn 7! f0; 1; �g where \�" represents a don't

care value in the function.

Each element in f0; 1gn of F is called a minterm.

The ON-set of a function f is the set of minterms for which f = 1. The OFF-set is the

set of minterms for which f = 0 and the DC-set for which f = \�00.

A variable, vi, has two corresponding literals, an uncomplemented literal vi and a com-

plemented literal vi.

A product term is a Boolean product of literals that contains a minterm in the ON-set if

all literals in the product evaluates to 1.

A cube is a set of minterms that can be described by a product term.

A sum of products consists of a set of products Ps. A minterm m is included in a sum

of products if some product p contains it and p 2 Ps.

A product A contains a product B if the cube for B is a subset of the cube for A. The

intersection of two products A and B is the set of minterms contained in the intersection of the

corresponding cubes.

A transition cube T [A;B], also written [A;B], contains all possible minterms that can

be reached during a transition from start state A to end state B.

A transition from state A to B for function f is a static transition if f(A) = f(B) and

a dynamic transition if f(A) 6= f(B).

For a static transition the transition cube T [A;B] contains only minterms from either

the ON or the OFF-set but not both.

If for a dynamic transition the start state A of transition cube T [A;B] contains an ON-

set minterm then the end state B must contain an OFF-set minterm. If start state A contains

an OFF-set minterm then B must contain an ON-set minterm.

A cover for a function f is the sum of products containing all minterms of the ON-set,

none of the OFF-set and possibly some of the DC-set.

A conict is said to occur when a minterm is assigned two values by the ow table. A

conict is resolved by placing the di�erent values in separate state layers. A transition between

state layers occur when a state variable changes value.

An implicant of a function is a product term containing no minterm in the OFF-set. A

prime implicant is an implicant contained in no other implicant. An essential prime implicant

90

contains a minterm not contained in any other prime implicant.

7.3.2 Essential Hazards

The notion of essential hazards is linked to the state feedback of a controller. This type of

hazard can only occur for controllers that are implemented as sequential machines. If the

controller is purely combinational, which means we have no feedback, essential hazards cannot

occur. The assumption made for asynchronous sequential state machine controllers is that the

combinational logic is quiescent before any new changes of input or state feedback signals arrive.

A feed forward path is the path an input signal must take in order to generate a change

on an output or state signal. If the di�erence in delay between the minimum and maximum

feed forward paths is large compared to the feedback delay a critical race may occur. The race

can be seen as the fed back state signal, which is generated by the minimum feed forward path,

"catching up" with the input signal in the maximum feed forward path. Figure 7.6 illustrates

this risk for input signal a and state signal s. All input, output and state signals are initially

high. In this case, when a goes low, the logic has not attained quiescens before the state signal

change is fed back, resulting in a glitch on output x. As a result of this, the logic may generate

a glitch on outputs or get stuck in the wrong state.

x

a

sa
c

b
c

Figure 7.6: Example of Essential Hazard

The problem of essential hazards can be avoided by inserting su�ciently large delays on

the feedback paths.

7.3.3 Function Hazards

A combinational function has a function hazard if the output changes value more than once

during a speci�ed multiple input change, that is, the output does not change monotonically.

There are two types of function hazards, static function hazard can occur when we do a static

transition, and dynamic function hazard that can occur when we do a dynamic transition.

De�nition. A static function hazard is present in a Boolean function f for the static

transition A! C if and only if there exists some intermediate input state B 2 [A;C] such that

91

f(A) 6= f(B).

An example of a static function hazard is illustrated in the Karnaugh map of Fig-

ure 7.7(a). When we go from state A to state C we may briey pass through state B (dotted

arrow) which has a di�erent value than that of stateA. We may therefore get a static 1! 0! 1

hazard (glitch) at the output of the logic implementing the function.

a b

c

00 01 11 10

0

1

(a) Static 1 -> 0 -> 1
 function hazard

A PA

B PC

PA

PC

b
c’
a
c

x

a b

c

00 01 11 10

0

1

A

B

PA PC

(a) Dynamic 1 -> 0 -> 1 -> 0
 function hazard

x
PA

a’
c’

PC
a
b

x x

C C D

Figure 7.7: Example of Function Hazards

De�nition. A dynamic function hazard is present in a Boolean function f for the

dynamic transition A ! D if and only if there exist a pair of intermediate input states B

and C where (A 6= B, C 6= D) such that B 2 [A;D] and C 2 [B;D] and f(A) 6= f(B) and

f(C) 6= f(D).

An example of a dynamic function hazard is illustrated in the Karnaugh map of Fig-

ure 7.7(b). When we go from state A to state D we may pass through states B and C (dotted

arrow). B has a value di�erent from A (we go from 1! 0) and C has a di�erent value from B

(we go from 0! 1) and D has a di�erent value from C (we go from 1! 0). We may therefore

get a dynamic 1 ! 0 ! 1 ! 0 hazard (glitch) at the output of the logic implementing the

function.

In [9] it has been proved that there is no way of avoiding a function hazard on the output

of a combinational logic block if the inputs are allowed to arrive at arbitrary times. Function

hazards must therefore be avoided before the logic synthesis step can take place. This can be

achieved by introducing a state feedback that takes the machine to a new state layer where the

function can be implemented without a function hazard.

92

7.3.4 Logic Hazards

After the steps of state assignment and state minimization have been performed on the speci�-

cation it is time to synthesize the owtable to a Boolean function representation. At this stage

we have already removed function hazards from the speci�cation by placing conicting function

values in di�erent state layers. What remains is to translate the ow table into an optimal

hazard free two level sum of products function.

Hazard free logic minimization deals with this problem. This method makes use of a

number of constraints to ensure that the resulting logic is free of logic hazards. A logic hazard is

a property of the logic implementation in contrast to a function hazard which is a property of the

speci�cation. As for function hazards there are two types of logic hazards, static logic hazards

and dynamic logic hazards, which can occur for static and dynamic transitions respectively.

By using a two level sum of product (SOP) form for the Boolean functions to be synthesized

we get a gate network structure having a strict hazard behavior which makes hazard free logic

minimization easier. The synthesis methods presented in this section use the function region

approach to generate a Boolean function representation using the ON-set minterms in the

Karnaugh maps specifying the burst mode graph. The hazard analysis done in this subsection

requires that no product term contain both a signal and its complement, otherwise additional

hazards are possible [71].

De�nition. A static logic hazard is present in the network implementing a Boolean

function f , free of function hazards, for the static transition A ! B if and only if during the

input change from A to B a momentary pulse may be present on the output.

An example of a static logic hazard is illustrated in the Karnaugh map of Figure 7.8(a).

When we go from state A to state B we will go from the product term PA to the product

term PB. The cover of both these product terms are represented by AND-gates. If the AND

gate for PB is slow then the AND-gate for PA goes low before the AND gate for PB goes high,

causing the output of the OR-gate to glitch. For a static logic hazard free two level AND/OR

implementation, the whole transition cube T [A;B] must be fully contained in a product term

(AND-gate). The necessity to cover all static transitions to get a logic hazard free function may

result in redundant product terms, meaning some minterms may be covered by several product

terms. We will not consider static 0! 0 hazards here since it is trivially realized, and has been

shown in [71], that a SOP implementation covering the ON-set cannot have any such hazards.

De�nition. A dynamic logic hazard is present in the network implementing a Boolean

function f , free of function hazards, for the dynamic transition A! B if and only if during the

input change from A to B a momentary 0 and a momentary 1 may be present on the output.

An example of a dynamic logic hazard is illustrated in the Karnaugh map of Figure 7.8(b).

When we go from state A to state B we may go via the product term PA (dotted arrow). If

93

a b

c

00 01 11 10

0

1

(a) Static 1 -> 0 -> 1
 logic hazard

APA

B PB

PA

PB

a’
c’
b
c

x

a b

c

00 01 11 10

0

1

A

B
PI

PA PB

(a) Dynamic 1 -> 0 -> 1 -> 0
 logic hazard

PB

PA

b
c’
a’
b x

PI
a’
c

x x

Figure 7.8: Example of Logic Hazards

the AND-gate for the product term PI intersecting the transition cube T[A,B] is slow then

the AND-gate for PA may �rst go low causing the output of the OR-gate to go low. The

slow AND-gate for PI now momentarily goes high and then low again, causing the OR-gate to

generate a glitch at the output. The output generated in this case will go 1! 0! 1! 0 due

to the dynamic logic hazard caused by PI . For a dynamic logic hazard free two level AND/OR

implementation, no product term may intersect the transition cube T [A;B] for f(A) = 1 and

f(B) = 0 without also containing the start state A. Similarly no product term may intersect

the transition cube T [A;B] for f(A) = 0 and f(B) = 1 without also containing the end state

B. We will not consider dynamic hazards for SIC transitions here since it is trivially realized,

and has been shown in [71], that such cannot occur for a two level SOP implementation.

7.4 Hazard Free AFSM Synthesis to Two Level Logic

Now that we have discussed all the hazards that can occur in a two level AND/OR circuit

implementation we can present a general synthesis method following the steps outlined in sec-

tion 7.1.1. The methods presented here use exact algorithms that have exponential complexity.

More time-e�cient heuristic methods that generate near-optimal solutions [74, 69] exists but

will not be presented here. Although the methods are presented in the context of burst mode

synthesis they are general in nature and are easy to apply to other asynchronous speci�cation

styles targeting Hu�man style fundamental mode state machines.

94

7.4.1 Conditions for Hazard Free Burst Mode Transitions

To ensure that a sum-of-products implementation corresponding to a set of speci�ed burst mode

transitions comply with the hazard free behavior requirement of asynchronous circuits, there

are certain conditions that must be ful�lled. The conditions presented here have their origin in

the de�nitions of function and logic hazards previously discussed in section 7.3 and are taken

from [51, 69, 50]. The following are de�nitions of a transition cube and its subcubes.

De�nition 1. Let A and B be two minterms. The transition cube [A;B] has start point

A and end point B and contains all minterms that can be reached during a transition from A

to B.

De�nition 2. A subcube [A;B) of a transition cube [A;B] contains all reachable

minterms of [A;B] except B. Likewise subcube (A;B] contains all minterms except A.

As discussed previously, a sum-of-products implementation not free of function hazards

does not have a hazard free solution under the unbounded gate delay model. The following

de�nition ensures that a burst mode transition is free of such function hazards.

De�nition 3. A burst-mode input transition from input state A to B, for a combina-

tional function f , is an input transition where for every input state C 2 [A;B), f(C) = f(A).

Although a burst mode speci�cation is free of function hazards, a transition from input

state A to B may still have a logic hazard due to delays in the actual gate level realization. The

following lemmas describe necessary and su�cient conditions to ensure that the sum-of-products

implementation of a function, f , has no logic hazards for the given transition.

Lemma 1. If f has a 0! 0 transition in cube [A;B], then the implementation is free

of logic hazards for the input change from A to B.

Lemma 2. If f has a 0! 1 transition in cube [A;B], then the implementation is free

of logic hazards for the input change from A to B.

Lemma 3. If f has a 1! 1 transition in cube [A;B], then the implementation is free of

logic hazards for the input change from A to B if and only if [A;B] is contained in some cube

c of cover C.

Lemma 4. If f has a 1! 0 transition in cube [A;B], then the implementation is free of

logic hazards for the input change from A to B if and only if no cube c in the cover C intersects

[A;B] unless c also contains A.

Lemma 5. If f has a 1! 0 transition in cube [A;B] which is hazard free in the given

implementation, then, for every input state X 2 [A;B] where f(X) = 1, the transition subcube

[A;X] is contained in some cube c of cover C.

95

Lemma 3 makes sure that during a 1! 1 transition from input state A to B some cube

c of cover C holds its value constant at 1 throughout the transition. Lemma 4 ensures that no

product may glitch during a 1 ! 0 transition from input state A to B. Lemma 5 states that

during a 1 ! 0 transition from input state A to B every 1 ! 1 sub transition must be free of

logic hazards. The cube [A;B] and maximal subcube [A;X] in Lemmas 3 and 5 respectively

are called required cubes and the transition cube [A;B] in Lemma 4 is called a privileged cube.

The following de�nitions state this more formally.

De�nition 4. Given a function f , and a set, T , of speci�ed input transitions of f free

of function hazards, every cube [A;B] 2 T corresponding to a 1 ! 1 transition, and every

maximal subcube [A;X] � [A;B] where f is 1 and [A;B] 2 T is a 1! 0 transition, is called a

required cube.

De�nition 5. Given a function f , and a set, T , of speci�ed input transitions of f free

of function hazards, every cube [A;B] 2 T corresponding to a 1 ! 0 transition is called a

privileged cube.

A hazard free cover, F , of function f , is a cover of f whose two level sum-of-products

implementation is hazard free for a given set, T , of speci�ed input transitions where f is de�ned

for each such transition. For a cover to be hazard free, each required cube has to be contained

in some cube of cover C. Also, Lemma 4 sets a constraint as to which cubes may be included

in the cover. To ensure that a cover is hazard free, a product is not allowed to glitch during a

1! 0 transition. Therefore no required cube may illegally intersect a privileged cube. This is

stated more formaly in the following de�nition and theorem.

De�nition 6. A required cube is said to illegally intersect a privileged cube [A;B] of

a dynamic 1 ! 0 transition if it contains any minterm in [A;B] without also containing the

minterm A.

Theorem 1. A sum-of-products F is a hazard free cover for function f for the set, T ,

of speci�ed input transitions if and only if:

(a) No cube of F intersects the OFF-set of f ;

(b) Each required cube of f is contained in some cube of F ; and

(c) No cube of F intersects any privileged cube illegally.

The covering conditions outlined in Theorem 1 may not be satis�able by an arbitrary

Boolean function and a set of transitions. In addition, when all transitions are taken into

consideration, the requirement that the function to be implemented is free of function hazards

may not be met. To be able to realize a given burst mode speci�cation in two level AND/OR

logic it is therefore sometimes necessary to introduce internal states so that conicting function

values with the same input state as well as illegally intersecting required cubes can be placed

in separate internal state layers where they do not conict. For the �nal implementation then,

96

when the next transition will take us to a input state that is already de�ned to have another

value, we generate a change in some internal state variables and move to another state layer

where the correct value is de�ned for that input state. The same is done when the required

cubes of a transition would introduce illegal intersections with some privileged cube.

The following sections will present methods that deal with introducing internal states

to avoid such conicts and how logic functions are generated for the speci�ed outputs and the

added internal state variables.

7.4.2 Primitive Flow Table Generation

As previously mentioned, the �rst step in the synthesis is to generate a primitive ow table

from the burst mode speci�cation. This is done by assigning each state in the burst mode

machine to a unique row having a unique, stable entry point in the primitive ow table. Each

entry in the ow table describes both an input state and an internal state which together form

a total state of the machine. A ow table can thus be represented by letting each column in the

table represent a unique state of the input signals and letting each row represent an internal

symbolic state of the machine. This table then represents the functions of the outputs and

symbolic next states. Symbolic states are used since the number of internal state variables

and their �nal encoding is not known during ow table construction and minimization. Each

state reachable by some speci�ed input transition must have speci�ed output and symbolic next

state values. More formally, each input state I and internal state S in the ow table de�nes

an output function �(I; S) = O and a next state function �(I; S) = N , where O is a binary

vector de�ning the current values of the outputs and N de�nes the symbolic next state in total

state (I; S). Unreachable entries are annotated with don't cares for outputs and symbolic next

states. Figure 7.10(a,b) shows a burst mode machine and its corresponding primitive ow table.

A primitive ow table such as described above does not have any function hazards. This

is because of the requirement of a burst mode speci�cation to hold the current output and

symbolic next state values until a complete input burst has been absorbed (we reach B in the

transition cube [A;B]). Since each state in the burst mode machine is mapped to a unique row

in the ow table, all transitions emenating from that state will have the same total state as start

point and will thus also start with the same output and symbolic next state values. Taking this

and the maximal set property (see section 6.1) of burst mode machines into account, it directly

follows that no two transitions can overlap without having the same output and symbolic next

state values for the total states in which they are overlapping.

It is also always possible to generate a hazard free SOP cover for each output o and

state variable s from such a primitive ow table. The reason is that for a function f a sum-of-

products F can always be found such that no cube of F intersect the OFF-set of f and each

97

required cube of f is contained in some cube of F and no cube of F intersects any privileged

cube illegally. The two �rst requirements are trivially ful�lled and the third is ful�lled by the

way the primitive ow table is generated. A cover can always be generated in which no cube

of F illegally intersects any privileged cube since (as mentioned above) all transitions, [A;B],

in a row of the primitive ow table has the same total start state, A, and thus ensures that the

required cubes covering these transitions will all contain the start point A. This condition is

su�cient to determine that a cover where no cube illegally intersects a privileged cube can be

generated.

7.4.3 Symbolic State Minimization

As mentioned in the previous subsection there always exists a hazard free solution if rows in

the primitive ow table are not allowed to be merged. However, since there is a correlation

between the number of internal states of a ow table and the complexity of the �nal logic

implementation we will now try to minimize the number of states in the primitive ow table.

This is done by merging compatible rows in the ow table. During merging, all outputs and

symbolic next states are considered at the same time when deciding if two rows are compatible

or not.

Classic Compatibility Constraints for State Merger

In classical state minimization [71] a compatibility relation de�nes when two states can be

merged. The relation is de�ned in two steps as follows. Output compatibility is the initial

compatibility relation. Two states, S1 and S2, are output incompatible if, for some input state I ,

outputs �(I; S1) and �(I; S2) are both de�ned, and not equal. Two states are output compatible

if they are not output incompatible. The next state compatibility is the �nal compatibility

relation and is de�ned recursively. Two states S1 and S2, are next state incompatible if, for

some input state I , next states �(I; S1) and �(I; S2) are both de�ned, and are incompatible.

Two states are next state compatible if they are not next state incompatible. Take the example

of two output compatible states, S1 and S2, that have two di�erent next states, S3 and S4 for a

given input state I . For S1 and S2 to be next state compatible, S3 and S4 must be both output

as well as next state compatible. For instance, if S3 and S4 both have the same next state S5

for input state I (and are next state compatible for all other input states), then we can merge

states S3 and S4 into state S34 which would then result in S1 and S2 having the same next state

for I . States S1 and S2 can then also be merged into a single state S12. To conclude, two states

S1 and S2 are incompatible if they are (i) output incompatible or (ii) next state incompatible.

Two states are compatible if they are not incompatible.

98

Hazard Free Compatibility Constraints for State Merger

Apart from ensuring that the two rows are compatible, the method must also ensure that no

logic hazards are introduced by the merger, i.e. we are still guaranteed to �nd a hazard free

sum-of-products cover for all outputs and encoded state variables.

As discussed earlier, input transitions in the ow table will eventually be covered by a

set of required cubes. If the ow table is viewed as a Karnaugh map (which it really is - the only

real di�erence being the use of symbolic states), such a cube will be horisontal and con�ned

to a single row of the map. Much in the same way, the transitions between internal states

will cause vertical transitions in the Karnaugh map. Since the outputs and next state values

must hold their values during the state change, such a state transition introduces either a static

0! 0 or a 1! 1 transition cube for each output and state variable. If it is a 1! 1 transition,

a required cube must be introduced for this transition. Such a cube then is vertical in the

Karnaugh map and is con�ned to a single column in the map. Note that such vertical required

cubes cannot cause illegal intersections with privileged cubes in a primitive (unminimized) ow

table. For a horisontal 1 ! 0 transition the vertical cube will contain the start point of the

privileged cube (the state transition leads to a unique stable entry point which is also the start

point of all transitions of that state row) and thus no illegal intersection is introduced. During

state minimization however, two rows must not only be output and next state compatible to be

merged, the resulting merged state must also be checked to make certain that no logic hazards

has been introduced by the merger.

When the merging of two states is considered, the requirement of output and next state

compatibility will ensure that no function hazards will be introduced. The next state compati-

bility constraint also ensures that the merger will not result in an ambiguous ow table. This

however, is not enough to guarantee that the outputs and next state functions can be imple-

mented in hazard free logic. We therefore need to check that no illegal intersections (which will

cause dynamic hazards in the �nal implementation) for either outputs or state variables are

introduced by the merger. This task is complicated by the fact that the state variable encoding

is not yet known. We therefore have to assume that, after state assignment, in the worst case

each input transition cube [A;B] in the Karnaugh map describing the function of an encoded

state variable could be a 1 ! 0 transition. This is the worst case because only such 1 ! 0

transition cubes can be illegally intersected by other cubes which, if permitted, would cause a

hazardous cover. Under this assumption each pair of transitions in the two rows must comply

with the dhf-compatibility constraints de�ned as follows.

Two rows, R1 and R2, are dhf-compatible if and only if for each pair of transitions [A1; B1]

and [A2; B2] belonging to R1 and R2 respectively, at least one of the following restrictions are

ful�lled.

99

(a) [A1; B1] and [A2; B2] do not intersect

(b) A1 = A2

(c) B1 = B2 and [A1; B1) and [A2; B2) do not intersect

(d) B1 2 [A2; B2) and B2 2 [A1; B1)

(e) B1 2 [A2; B2) and A2 2 [A1; B1] and A1 =2 [A2; B2]

(f) B2 2 [A1; B1) and A1 2 [A2; B2] and A2 =2 [A1; B1]

The safe intersections where state merger is allowed are shown in �gure 7.9(a,b,c,d).

Note that for an encoded state variable s in an internal state row, every minterm in an input

transition cube [A;B] will hold the value of s stable with the only possible exception if end point

B has an emenating vertical transition (a state change). Because of this the merger ensures

that the state variable minterm values in two overlapping transition cubes which's vertical end

point transitions have been eliminated, or nulli�ed, will be the same (�gure 7.9(a)). That is

why we can merge states resulting in overlapping transition cubes without having to worry

about the values in the merged transition cubes being the same after state variable encoding.

This also holds true for situations where for two transition cubes [A;B] and [C;D], only end

point B is nulli�ed if [A;B] also contains C (�gure 7.9(b)). Figure 7.9(e) shows an example of

an intersection that after state encoding might not be safe. If in the �nal state encoding one

of the state variables makes a 1 ! 0 transition for the given input transition [a; b], then some

required cube for transition [c; d] will illegally intersect the privileged transition cube [a; b] and

thus introduce a dynamic hazard.

The procedure of merging state rows then becomes the following. Two states, S1 and

S2, are initially compatible if they, for all input states, I , are (i) output compatible, and (ii)

dhf-compatible. Given this new initial compatibility relation, the �nal compatibility relation

can then be de�ned as before. Two states, S1 and S2, are compatible if they, for all input

states, I , are (i) initially compatible, and (ii) next state compatible.

Take the example in �gure 7.10. At a �rst glance internal states A and D might seem

compatible since they are output as well as next state compatible. Note however, that such a

merger would violate the constraints given in �gure 7.9. States A and D are not dhf-compatible.

The state transition from internal state B to merged internal state AD in input state ab = 01

would introduce a required cube for output x. This required cube would then illegally intersect

privileged cube [a0b0; ab] in state AD. If such a merger was allowed, this would introduce a

dynamic hazard in the logic implementation of output x. Now let's consider internal states C

and D. These states are initially compatible, i.e. they are output as well as dhf-compatible.

For input state ab = 00 however, they have di�erent next states E and A respectively. Since

neither E and A or E and D are compatible (i.e. cannot be merged), C and D are not next

state compatible.

100

a b cd

a) Correct merger since the unstable
points c and b are "nullified" by the
merging of states F and G. Note that
the merger also will result in [a,b] and
[c,d] having the same Boolean value.

I1 I2 I3 I4 I5

F

G

G

F

a b

cd

b

d

a c

c) Correct state merger since the state
variable must have same start value in
a and c if merged and since end points
b and d are separated.

I1 I2 I3 I4 I5

F

G

H

J

a b

cd

a bc d

b) Correct merger since the state variable
will have the same value for [a,b] as for
[c,d) if F and G are merged.

I1 I2 I3 I4 I5

F

G F

H

a b

c d

a

b

c
d

e) While this merger is safe for [a,b] being
a 1 -> 1transition, it is not safe should the
state variable be encoded to a 1 -> 0 tran-
sition for [a,b].

I1 I2 I3 I4 I5

F

G

H

J

a b

c d

a c
b d

d) Correct if and only if both unstable
end points have compatible next states
H and J.

I1 I2 I3 I4 I5

F

G J

H

a b

cd

= transition cube

= start minterm (state)
= end minterm (state)

state transition ending
in stable state.=

= state transition starting
in unstable state.

I1 I2 I3 I4 I5
a bF H = flow table

= symbolic internal state
= symbolic next state
= input state

F
H
Ij
a = start state; b = end state

= input transition

possible hazard

Figure 7.9: Safe state mergers for symbolic state variables.

Finding a Minimum Number of States

Since internal state rows can be merged in di�erent con�gurations and since there is a correlation

between the logic complexity of the implementation and the number of internal states, we need

a method that decides which con�guration will give the least number of internal states. We will

briey present such a method that is based on a method for reduction of incompletely speci�ed

Boolean matrices [42, 54, 70]. This method gives an exact solution to the problem of �nding

the minimal number of symbolic states for an incompletely speci�ed Boolean matrix and is

exponential in algorithmic complexity.

The method presented here is quite simple and straight forward. First we want to

determine all possible combinations of internal state rows that are compatible with each other.

We then want to �nd a minimal set of these combinations that together will cover each internal

state.

The method for �nding all possible combinations of internal state rows starts with form-

ing the set of all compatible pairs of internal state rows in the primitive ow table that exist.

101

(a) Burst Mode Machine

a+b+/x-y+

b-/x+a-/x+y-

b- a-/y-

b+/x-y+

a+/y-

a-/x+ b-/x+y+

A

B

CD

E

F

G

(A)

(B, C)

(C, E)

(D, G)

(E, F)

(B, D)

(C, F) (C, G)

(c) Pairwise compatible states (d) Maximal compatibles

(A)

(B, C)

(C, E, F)

(D, G)

(B, D)

(C, G)

1.

2.

4.

6.

3.

5.

(e) Petrick’s method

1*(2 + 3)*(2 + 4 + 5)*(3 + 6)*4*4*(5 + 6)

Generate product of sums expression of maximal com-
patibles containing each of the internal states A to G:

Choose 1345 as minimal solution. Maximal compatibles
4 and 5 both contain state C, erasing C from 4 gives
merged states:

J = (A), K = (B, D), L = (C, G), M = (E, F)

Solutions: 1345 + 1246 + 1346 + ...

Convert to sum of products for solution:

(b) Corresponding Primitive Flow Table

next state, x y a b
00 01 11 10

A, 10 A, 10 B, 01 A, 10

B, 01 C, 11

C, 11E, 10

A

B

C

D

E

F

G

D, 10

D, 10A, 10

E, 10 F, 01

F, 01 G, 00

G, 00D, 10 C, 11

-

- -

- -

--

--

-

next state, x y a b
00 01 11 10

J

K

L

M

J, 10 J, 10 K, 01 J, 10

K, 01 L, 11

L, 11L, 00

K, 10J, 10

M, 10

M, 10 M, 01 L, 00

K, 10

-

(f) Resulting minimized flow table

Figure 7.10: Hazard free symbolic state minimization applied to Burst mode example.

102

We then expand each such pair with each possible combination of other internal state rows the

pair is compatible with until no more rows can be added to it. These expanded combinations

are called maximal compatibles. We then want to �nd a minimal set of such maximal compat-

ibles that covers each internal state. This is done using Petrick's method [54]. The problem

is then formulated as a product of sums expression where each sum represents all maximal

intersectables that contains a certain internal state row in the ow table. This expression is

then multiplied out to form a sum of products representation. The product containing the

least number of maximal compatibles is then the optimal solution in terms of number of sym-

bolic states that are needed in the minimized ow table. Since in this chosen set of maximal

compatibles, these may be redundant with respect to eachother, meaning that several maximal

compatibles can contain the same state, we then remove each such state from all but one of

the maximal compatibles in the chosen set. The state minimization process for a simple burst

mode machine is illustrated in �gure 7.10.

Using this simple method we have now generated a minimized ow table with minimal

number of symbolic states that is guaranteed to have a hazard free implementation. A ow

table may of course be minimized with other goals in mind than just �nding the minimal

number of symbolic states. An example of another goal can be to minimize the ow table with

least number of state changes in mind. This can be to an advantage in certain situations since

each state change increase the fundamental mode delay for the transition that caused the state

change. Minimizing state changes can also simplify the solution from the state assignment step.

7.5 State assignment

After we have generated a minimized ow table it is time to determine how many state variables

are needed and their encoding. The main di�erence from synchronous state encoding is that the

requirements of hazard free logic combined with the unbounded gate delay assumption requires

a critical race free state variable encoding. Since the fed back state variables can arrive at the

inputs at arbitrary times (after the output logic has stabilized), the machine may stabilize in an

incorrect intermediate state instead of the speci�ed next state in which case the circuit behavior

is not predictable. There are several methods to ensure critical race free state encoding. Among

them are the one-hot, one-shot, Liu or Tracey methods [70, 71].

Apart from ensuring that a state assignment is critical race free, it is also of importance

to generate a direct transition from an unstable state to a stable next state since this reduces

the fundamental mode delay, i.e. the time it takes for the circuit to stabilize between input

bursts. Because of this it is desirable to incorporate a minimum transition time state assignment

method where state variables change only once and do so concurrently. Our problem then

becomes, given a minimized ow-table, generate a minimum transition time critical race free

103

state assignment with minimum number of state variables. In this section we will summarize

such a method originally presented in [70]. Further details and proofs are presented in [70].

7.5.1 Conditions for Critical Races

A ow table, as speci�ed earlier, that describes the behavior of a state machine is naturally

divided into a set of columns representing all possible input states fI1,: : :,Igg and a set of rows

representing all possible internal states fS1,: : :,Shg, as seen in �gure 7.11(a). In this �gure a

number indicates the next state and a ring identi�es a stable state. Note that outputs have been

omitted. In the same way the input signals control the horizontal transitions between pairs

of input signal states, written [Ia,Ib], fed back state variables control the vertical transitions

between pairs of internal states [Sc,Sd]. As the internal states of a ow table are represented

by symbolic names our goal now is to generate a minimum number of state variables, replacing

the symbolic names, that will o�er minimum transition time and then assign Boolean values

to these state variables. We will now formulate some de�nitions on minimum transition time

state assignment.

De�nition 1: When the binary code of the next internal state di�ers from the code of

the present internal state in two or more bit positions, the circuit is said to be racing from the

present internal state to the next internal state.

De�nition 2: If a race condition exist and unequal transmission delays may cause the

circuit to reach a stable state other than the one intended, the race is called critical. All other

races are non-critical.

De�nition 3: A direct transition from internal state Si to Sj written [Si,Sj], is a transi-

tion where all internal state variables that are to undergo a change in value are simultaneously

excited.

De�nition 4: A direct transition [Si,Sj] races critically with the direct transition [Sk,Sl]

if unequal transmission delays may cause these two transitions to share a common internal state.

De�nition 5: In a minimum transition time internal state assignment, all transitions

are direct.

Our problem then is to �nd a solution that for a given set of encoded state variables

ensures that for all speci�ed state transitions, all races are non-critical. It follows from de�nition

2 and 4 that two state transitions or a state transition and a stable state in the same column

may not intersect eachother unless they share the same end state. We do not have to consider

intersection of state transitions belonging to di�erent columns since a unique input signal state

already distinguish them.

104

7.5.2 Constraints for Critical Race Free Encoding

To ensure that an internal state transition does not intersect other internal state transitions

under the same input signal state (column), in the �nal solution, at least one state variable

must, for that internal state transition, be uniquely encoded with respect to all other internal

state transitions or stable states present under that same input signal state. To guarantee a

solution in all situations we therefore need, for each internal state transition, one state variable

yi encoded such that it separates that transition from all other transitions that can occur during

the same input signal state. Since a state variable can take on two values, a logical 0 or 1, we

can use it to separate two internal state transitions by assigning the variable to be 0 for one

of the transitions and a 1 for the other. In this way we allocate one state variable yi for every

two internal state transitions or state transition and stable state in each column until all pairs

of transitions (unless they share the same end state) or transition and stable state have been

treated. This methods �ts right into the theory of partitions which is now de�ned.

De�nition 6: A partition � on a set S is a collection of subsets of S such that their

pairwise intersection is the null set. The disjoint subsets are called the blocks of �. If the set

union of these subsets is S, the partition is completely speci�ed, otherwise it is incompletely

speci�ed. Elements of S that do not appear in � are called unspeci�ed or optional elements

with respect to that partition.

De�nition 7: A ow table with the characteristic that each unstable state leads directly

to a stable state is called a normal ow table.

Thus for two state transitions [Sa,Sb], [Sc,Sd] or transition [Sa,Sb] and stable state Se

in the same column of the ow table we create a partition �ifSa,Sb ; Sc,Sdg or �ifSa,Sb ; Seg

where Sa,Sb and Sc,Sd or Sa,Sb and Se are the blocks of the partition (separated by ';'). A state

variable yi is then implicitly allocated for the partition. This variable will then be assigned an

arbitrary 1 or 0 for the �rst block of the partition and the negated value for the second block.

This way we have separated these two transitions by the two possible values of state variable

yi. We do this for all possible pairs of internal state transitions or state transition and stable

state in the column as seen in �gure 7.11(b). We can now formulate the necessary condition

for a critical race free state assignment:

Theorem 1: A row assignment allotting one y-state per row can be used for direct

transition realization of normal ow tables without critical races if and only if for every transition

[Si,Sj]

1. if [Sk ,Sl] is another transition in the same column, then at least one y-variable partitions

the pair fSi,Sjg and fSk ,Slg into separate blocks; and

2. if Sk is a stable state in the same column then at least one y-variable partitions the pair

105

fSi,Sjg and the state Sk into separate blocks; and

3. for i 6= j, Si and Sj are in separate blocks of at least one y-variable partition.

7.5.3 Row Compatibility Constraints

We can now create a Boolean matrix where each partition �i represents a row and each internal

state Sj represents a column. For each partition �i (row) we then assign an arbitrary 1 or 0 to

each of the blocks in that partition. If we let each row induce a state variable yi we now have

a solution for the state assignment problem. This solution however, may not yield a minimum

number of state variables. Indeed, some of the allocated state variables may be redundant, i.e.

they are the same for two or more rows in the Boolean matrix. We will remove such redundancies

by a procedure similar to encoding of incompletely speci�ed Boolean matrices [19].

De�nition 8: Two rows of a Boolean matrix, Ri and Rj , have an intersection of Ri and

Rj, written Ri �Rj , i� Ri and Rj agree wherever both Ri and Rj are speci�ed. The intersection

is de�ned as a row which agrees with both Ri and Rj wherever either is speci�ed and contains

optional entries everywhere else.

De�nition 9: Row Ri is said to include row Rj if and only if Rj agrees with Ri wherever

Ri is speci�ed.

De�nition 10: Row Ri is said to cover row Rj if and only if Rj includes Ri or its

complement Ri.

7.5.4 Finding a Minimum Number of State Variables

The method of encoding a Boolean matrix is based on merging intersectable rows in the matrix.

This is done by �rst generating a list of all pairwise intersectable rows as shown in �gure 7.11(d).

These pairs are then expanded to maximal intersectables as seen in �gure 7.11(e). A maximal

intersectable is an intersectable to which no more rows can be added. The next step is to

select a minimum number of maximal intersectables such that each row of the Boolean matrix

is covered by one intersectable. This is done by formulating the problem as a product of sums

where a factor is a sum of all maximal intersectable containing a certain row in the Boolean

matrix (Petrick's method [54]). In �gure 7.11(f) the �rst factor consists of the sum of the

maximal intersectables A and B since these both contain row 1 in the Boolean matrix and thus

either of these maximal intersectables can be used to cover row 1. The same is done for all rows

in the matrix giving us a product of sum expression for all possible combinations of maximal

intersections that cover all rows in the matrix. This product of sum expression is then converted

into a sum of products form. In this form, the term containing the fewest literals describes a

least number of maximal intersectables that cover all rows of the original Boolean matrix. In

106

the example in �gure 7.11(f) this term is BCD which then requires three state variables for a

critical race free state assignment. The minimized Boolean matrix with the �nal state variable

encoding can be seen in �gure 7.11(g).

To conclude this section: To ensure a critical race free circuit the state assignment

method in this example requires three state variables with the encoding given in �gure 7.11(g)

for each corresponding symbolic state. This information is then passed back to the ow table

where the symbolic state rows are replaced by the state variables and their encoding. Note that

the intermediate internal state rows must also be inserted in the ow table.

We now apply this state assignment method to our simple burst mode example originally

speci�ed in �gure 7.10. Figure 7.12(a) shows the minimized ow table from �gure 7.10(f). For

sake of clarity outputs have been removed and stable states have been circled. From the

minimized ow table we generate partitions and assign them arbitrary values in the Boolean

matrix (�gure 7.10(c). Pairwise intersectables are then generated and maximal compatibles are

constructed from them. Finding a minimal solution in this case is trivial since there are only

two maximal compatibles, P and Q, both which must be present to cover all internal states.

The resulting state variables, z0 and z1, and their �nal encoding are illustrated in �gure 7.12(f).

7.6 Hazard Free Two Level Logic Minimization

Now that we have the number of state variables and their �nal encoding we can generate a

primitive cover for each of the outputs and state variables. Such a primitive cover however,

contains separate cubes for each of the required cubes. This is a non-optimal cover since in

many cases it is possible to expand required cubes which will then require less number of literals

to implement. Cubes can often be further expanded by taking the don't care set into account.

By expansion it is also often possible to �nd cubes that each covers more than one required

cube which will then require less number of product terms to implement the cover. As a result,

expanding cubes of the primitive cover saves area as well as reduces the delay through the

circuit and is an important phase in logic synthesis.

The method for hazard free minimization presented here is based on the Quine-McCluskey

algorithm for solving the two-level logic minimization problem with proper restrictions added to

ensure no logic hazards are introduced by the covering procedure. This method is explained in

more detail in [50]. A heuristic near optimal method is presented in [69]. The Quine-McCluskey

algorithm has three basic steps:

1. Generate the prime implicants of a function.

2. Construct a prime implicant table.

107

A (1,2)

B (1,7,10)

C (2,5’,6)

D (3,4,8,9)

E (3,5)

F (4,5)

G (6,7)

H (8,10’)

J (9,10)

(e) Create maximal intersectables

(A + B)(A + C)(D + E)(D + F)(C + E + F)(C + G)
(B + G)(D + H)(D + J)(B + H + J)

BCD + ABDFG + ADFGH + ADFGJ + ACDGH
 + ACDGJ + ABDEG + ADEGH + ADEGJ
 + BCEFHJ + ADFGHJ

(f) Use Petrick’s method to get a
 minimal solution (BCD).

(a) Original flow table

a

b

c

d

e

f

I

1

1

2

-

1

2

I

4

5

4

6

6

5

I

7

8

8

7

8

-

I

10

11

10

11

12

12

1 2 3 4

(d) Create pairwise intersectables

(1,2) (1,7) (1,10)

(2,5’) (2,6)

(3,4) (3,5) (3,8) (3,9)

(4,5) (4,8) (4,9)

(5’,6)

(6,7)

(7,10)

(8,9) (8,10’)

(9,10)

(g) Minimized Boolean matrix with
 final state variable encoding.

a

0

0

0

b

0

1

1

c

1

1

0

d

0

0

1

e

1

0

1

f

1

1

1

B (1,7,10)

C (2,5’,6)

D (3,4,8,9)

y

y

y

1

2

3

:

:

:

(b) Generate partitions

= {a,b ; c,f}

= {a,e ; c,f}

= {a,c ; d,e}

= {a,c ; b,f}

= {b,f ; d,e}

1

2

3

4

5

I
1

I
2

= {a,d ; b,c}

= {a,d ; c,e}

= {a,c ; b,d}

= {a,c ; e,f}

= {b,d ; e,f}

6

7

8

9

10

I
3

I
4

(c) Create Boolean matrix

1

2

3

4

5

6

7

8

9

10

ab

ae

ac

ac

bf

ad

ad

ac

ac

bd

cf

cf

de

bf

de

bc

ce

bd

ef

ef

a

0

0

0

0

-

0

0

0

0

-

b

0

-

-

1

0

1

-

1

-

0

c

1

1

0

0

-

1

1

0

0

-

d

-

-

1

-

1

0

0

1

-

0

e

-

0

1

-

1

-

1

-

1

1

f

1

1

-

1

0

-

-

-

1

1

States

1 10
...

Figure 7.11: Example of minimum transition time state assignment

108

a b
00 01 11 10

J

K

L

M

J J K J

K LKJ

M K L L

M M L -

(a) Minimized flow table showing
 only internal state transitions.

(b) Partitions

= {J,K ; L,M}

= {J ; K,L}

= {M ; K,L}

= {J,K ; L,M}

= {J ; K,L}

1

2

3

4

5

ab = 00:

ab = 01:

ab = 11:

ab = 10:

1

2

3

4

5

1:

2:

3:

4:

5:

J

0

0

-

0

0

K

0

1

1

0

1

L

1

1

1

1

1

M

1

-

0

1

-

States

(c) Boolean matrix

(d) Pairwise intersectables

(1,4)

(2,3)

(3,5)

(2,5)

(e) Maximal intersectables

(1,4)

(2,3,5)

P:

Q:

J

0

0

K

0

1

L

1

1

M

1

0

P

Q

(1,4)

(2,3,5)

:

:

z

z

0

1

(f) Minimized Boolean matrix with
 final state variable encoding.

Figure 7.12: Critical race free state assignment applied to Burst mode example.

3. Generate a minimum cover of this table.

An implicant is a cube that does not contain any minterm in the o�-set of a function f .

Theorem 1 (a) and (c) in section 7.4.1 restricts which implicants can be used in the cover without

introducing hazards. Only implicants which do not intersect any required cube illegally may be

present in a cover of the function. Such implicants are called dynamic hazard free implicants,

or dhf-implicants. A dhf-prime implicant is a dhf-implicant which is not contained by any other

dhf-implicant of f , and which is not entirely contained in the don't care set. An essential

dhf-prime implicant is a dhf-prime implicant which contains a required cube contained in no

other dhf-prime implicant. Theorem 1 (b) states that each required cube must be contained in

some cube of the �nal cover. The two level hazard free minimization problem then is, to �nd a

minimum cost cover of a function using only dhf-prime implicants where every required cube is

covered. The steps in this minimization problem are presented below.

Step 0. Make Sets: The privileged cubes, the on-set formed by the required cubes,

and the o�-set of the speci�ed transitions have already been identi�ed during the primitive ow

table construction. They are passed along to the logic minimization step as the sets priv-set,

req-set, and o�-set respectively.

Step 1. Generate DHF-Prime Implicants: The next step in the logic minimization

then is to generate the set of dhf-prime implicants for the function f . This is done by �rst

generating the prime implicants of f from the req-set and o�-set using existing techniques

presented in [59, 60]. From this set of prime implicants we want to form a set of dhf-prime

implicants. Prime implicants that illegally intersects any privileged cubes must therefore �rst be

109

identi�ed. Since such a prime implicant may contain a required cube not covered by any other

prime implicant, it cannot simply be removed from the set. Instead such a prime implicant

is iteratively reduced into cubes that do not intersect any privileged cube. Resulting reduced

cubes that are contained in other cubes are removed from the set. As an optimization, dhf-prime

implicants that do not contain any required cube can also be removed from the set.

Step 2. Generate DHF-Prime Implicant Table: A dhf-prime implicant table is

now constructed from the given set of required cubes and dhf-prime implicants. The rows of this

table are labeled with the required cubes that must be covered by some dhf-prime implicant.

The columns are labeled with the dhf-prime implicants. This table then sets up the problem of

two level hazard free logic minimization as a unate covering problem.

Step 3. Generate a Minimum Cover: The dhf-prime implicant table can now be

solved in three steps using simple standard methods. Essential dhf-prime implicants are �rst

extracted using standard techniques. The ow table is then iteratively reduced by removing rows

and columns using row-dominance and column-dominance operations [17]. These operations

may lead to further possibilities of secondary removal of essential dhf-prime implicants. These

operations are iterated until there is no further change. If the table is still not empty after the

iterations have �nished, a cyclic covering problem remains. Each row in the table now lists dhf-

prime implicants that can be used to cover a required cube. The problem of �nding the cover

requiring the least number of such dhf-prime implicants can be solved using Petrick's method.

For each column, the dhf-prime implicants that can be used in a cover is then expressed as

a sum. The covering problem for the table can then be formulated as a Boolean product of

all these sums. This expression is then multiplied out to a sum of products expression and a

product containing the least number of dhf-prime implicants can then be selected as a minimal

solution. Other criteria can also be used such as selecting the solution giving a minimum number

of literals.

Note that while reduction of prime implicants in step 1 removes the illegal intersections

with privileged cubes, it may at the same time remove prime implicants that are needed to

completely cover required cubes. In such cases no hazard free solution exists for the given

function. In the case of burst mode synthesis however, we have already made sure that such

cases cannot occur by the constraints on state merger during state minimization of the primitive

ow table.

Logic minimization applied to our simple burst mode example originally speci�ed in

�gure 7.10 is illustrated in �gure 7.13. Note that the symbolic next state names have been

replaced by the encoded state variables z0 and z1 and vertical state transitions have been

replaced by arrows showing the transitions to the next states. From this Karnaugh map we

then generate dhf-prime implicants. In this example it was not necessary to reduce any prime

implicant in order to generate dhf-prime implicants. We then construct a dhf-prime implicant

110

table in which each dhf-prime implicant that can cover a required cube is marked with an \X".

Essential dhf-prime implicants are then identi�ed and used to generate a minimum hazard free

cover for the output or state variable in question. The minimum hazard free cover then is a

Boolean expression formed as a two level sum of products that is directly implementable as a

network of logic AND and OR gates.

7.7 AFSM Synthesis in ACK

The burst mode controllers created by the method of burst mode generation presented in

section 6 must now be synthesized to Boolean functions for subsequent implementation as a

network of logic gates.

7.7.1 Hazard Free Synthesis

ACK makes use of the 3D method [74] to synthesize hazard free Boolean functions from the

burst mode speci�cations. There are several reasons for chosing this tool. First of all, since

the output and state signals do not have to pass through any latches, this method o�ers a

possible advantage in reduced propagation delay. Second, this method requires only standard

gates (AND,OR,INV) found in virtually any library. Not having to bother with sequential

components such as latches also makes technology mapping and realization easier since no

consideration for setup and hold times or timing estimation of the clock signal delay to latch

correct values is needed. Third, this method o�ers synthesis using both the function region and

excitation region approach [13] as well as the extended form of burst mode machine speci�cation.

Although only the functional region approach and ordinary burst mode machines are currently

supported in the high level synthesis methodology of ACK, these additional features are easy

to implement and could have advantages in certain situations. The only disadvantage of the

3D method is the possibly larger fundamental mode delay the three cycle model that is used

for state changes introduces compared to a minimum (single) transition time state assignment

method as presented in section 7.5. On the other hand, this fundamental mode delay can be

hidden in the execution time of the datapath resources which are often slow enough to allow

the control logic to attain quiescens before new input changes arrive.

7.7.2 Technology Mapping

After we have synthesized our burst mode controllers we have a collection of Boolean functions

that now need to be mapped to a network of gates.

A part of the technology mapping procedure is to �nd the best solution for a given

111

Essential dhf-prime implicants:

z0 = ab’z1 + az0 + b’z0 + z0z1’

Minimum hazard free cover:

ab’z1, az0, b’z0, z0z1’

a b

00

01

11

10

00 01 11 10

z z
0 1

x
1 1 0 1

1

1

1 0 0 -

1

10

01

1

a b

00

01

11

10

00 01 11 10

z z
0 1

0 0 1 0

0 1

0

0 0

0

0

0

1

1

1

-

y

a b

00

01

11

10

00 01 11 10

z z
0 1

0 0 0 0

0 0 0

0

1

11

111

1

-

z
0

ab’z1

az0z1

b’z0z1

a’b’z0

abz0

a’z0z1’

bz0z1’

ab’z1 az0 b’z0 z0z1’
req-cubes

dhf-PI’s

X

X

X

X

X

X

X

a b

00

01

11

10

00 01 11 10

z z
0 1

0 0 1 0

0 1 1

1

1

11

100

0

-

z
1

abz0’

az0’z1

bz0’z1

ab’z1

a’bz1

az0z1

bz0z1

ab bz1 az1 az0
req-cubes

dhf-PI’s

X

X

X

X

abz0

X

X

X

X

XX

req-cubes
dhf-PI’s

a’z0’z1’

b’z0’z1’

a’b’z0’

a’z0’z1

ab’z1

a’bz1

b’z0z1

a’b’z0

b’ a’z0’ a’z1

X

X

XX

X

X

X

X

XX
Essential dhf-prime implicants:

x = b’ + a’z0’ + a’z1

Minimum hazard free cover:

b’, a’z0’, a’z1

abz0’

az0’z1

ab’z1

abz0’ az0’z1 ab’z1 ab’z0
req-cubes

dhf-PI’s
a’bz0z1’

a’bz0z1’

X

X

X

X

Essential dhf-prime implicants:

y = abz0’ + az0’z1 + ab’z1 + a’bz0z1’

Minimum hazard free cover:

abz0’, az0’z1, ab’z1, a’bz0z1’

Essential dhf-prime implicants:

z1 = ab + bz1 + az1

Minimum hazard free cover:

ab, bz1, az1

Figure 7.13: Hazard free two level logic minimization applied to Burst mode example.

112

area/performance requirement. Since complex burst mode state machines often give high fan-in

gates which besides not being supported by all libraries are also very slow, we need a method to

decompose these into smaller and faster gates. The targeting of a two level sum of products form

together with the bounded delay model used gives us the possibility of decomposing such gates

by means of algebraic transformations, something that is not possible for many unbounded

delay models. It has been shown in [71] that many algebraic transformations including the

associative, distributive and DeMorgans law do not introduce any new hazards in such circuits.

An important part of the technology mapping process then is to �nd the combination of gate

sizes that gives the best area/performance tradeo� from a given library of gates.

A method in [5] also allows decomposition based on average case delay. This method

is based on assigning probability values to branches in the burst mode speci�cation. The gate

decomposition is then based on with what frequency di�erent actions are executed. Depending

on the probability distribution a performance gain of between 10-20% can be achieved using

this method.

Apart from mapping to a two level sum of products implementation there are many

other styles of implementation that can be targeted [33, 36, 63]. Some of these, and especially

a method to target custom complex gates will be discussed in the next section.

7.8 Conclusions

This section has presented the concept of asynchronous �nite state machine synthesis. Two

methods used to generate hazard free implementations from burst mode speci�cations have

been briey presented. The important requirement of hazard free minimization and de�nition

of hazards has also been given. An overview of the technique of representing a burst mode

machine as a primitive ow table and the minimizations that can be done to that table has

been presented. A method for state assignment of the symbolic states used in the ow table

has also been presented. Finally a method for two level hazard free logic minimization has been

described. A short discussion of the synthesis method used in ACK and of technology mapping

has also been given.

113

Chapter 8

Synthesis and Technology Mapping

to Complex Gates

Although targeting two-level simple gates can give e�cient implementations the ability to gen-

erate customized complex gate based circuits is an important feature for performance critical

applications.

This section addresses the problem of realizing hazard-free single-output Boolean func-

tions through a network of customized complex CMOS gates for asynchronous controllers. A

customized CMOS gate network can be either a single CMOS gate or a multilevel network

of CMOS gates, where each CMOS gate is tailored to give the most e�cient implementation

for a given speci�cation. It is shown that hazard-free requirements for such networks are less

restrictive than for simple gate (AND/OR, MUX, AOI, etc.) networks. Analysis and e�cient

synthesis methods to generate such networks under a multiple-input change assumption (MIC)

will be presented.

Customized CMOS gate implementations have been successfully used to design a large

number of burst-mode asynchronous controllers [14, 65]. However, previous methods do not

present systematic models and synthesis algorithms to take advantage of the particular haz-

ard properties of these circuits. There are several reasons for considering customized CMOS

complex-gate based circuits. As VLSI feature size decreases and wire delays become signi�-

cant, customized CMOS complex-gates can provide more e�cient controller implementations

compared to standard-cell place and route tools. Also, the recent availability of better layout

synthesis techniques that can automatically generate layouts for arbitrary transistor networks

makes customized complex-gate based controllers a more viable alternative. Finally, we provide

methods to derive complex-gate networks which relax some of the synthesis constraints needed

for hazard-free simple-gate implementations.

114

8.1 Related Work

Currently, there are two main approaches to deriving hazard-free logic gate networks for asyn-

chronous circuits. The �rst is a function region approach. In this method, one tries to �nd a

hazard-free network for a single output Boolean function by taking into account the on-set and

the o�-set of the function, with respect to a speci�ed set of multiple-input changes. The second

approach deals with �nding the excitation regions of the function. In this method, the regions

of the Boolean space where the output is enabled to change are identi�ed as \set" and \reset"

functions. These functions are implemented and are used to control the switching of a state

holding element such as a C-element or RS latch.

Various techniques for hazard-free logic minimization have been proposed for the func-

tion region approach. An exact hazard-free two-level logic minimization algorithm, based on

a modi�ed Quine-McCluskey method, is given in [50]. Hazard non-increasing transformations

and algorithms for multilevel optimization of gate-level logic have been given in [35, 71]. A

BDD-based method [36] which targets multilevel multiplexor-based networks has been devel-

oped. Technology-mapping techniques to perform hazard-non-increasing mapping of two level

AND/OR networks into complex gate networks from a standard cell library have been given

in [63]. Other technology mapping techniques have implemented Boolean functions as single

gate hazard-free CMOS complex gate circuits [14, 65]. However, no systematic procedure to

derive such CMOS gates has been outlined, which includes precise hazard-free requirements for

these gates.

For the class of methods that use the excitation regions, single CMOS complex-gate

circuits, called generalized C-elements [38], have been used as target implementations. These

techniques usually rely on the use of state holding elements on the output of the gate.

The contribution of this section is to address the problem of deriving hazard-free cus-

tomized CMOS realizations for asynchronous controllers under multiple-input changes, using

the function region approach. This problem is encountered during the synthesis of burst-mode

circuits [49, 74] and is a general problem in asynchronous synthesis. In particular, we present a

style of CMOS gate design, called SOP/SOP form, that reduces the constraints in hazard-free

synthesis of single CMOS complex gates. Second, we present a generalization of this technique

to multilevel networks. This technique allows e�cient solutions to a large class of asynchronous

speci�cations. These techniques allow designers the exibility to perform hazard-free mapping

tailored to customized complex-gates, instead of being con�ned to a standard library.

In section 8.2, we will introduce some basic terminology. section 8.3 describes a technique

to derive single CMOS complex gates. We will present techniques that address multilevel

synthesis of such complex gate circuits in section 8.4. Results will be provided in section 8.5.

115

8.2 Terminology

We will provide de�nitions relating to pass transistor and CMOS logic gates we will use. We

will then briey describe some terminology on hazards.

8.2.1 Pass Transistor Networks

A model for pass transistor logic has been developed in [53, 56, 61, 63]. We will describe and

extend the model presented in these works for single CMOS gates.

De�nition 1. A pass transistor is a MOS transistor operated as a switch, where the

transistor drain (source) is connected to the signal to be passed along, the transistor gate is

connected to the control input, and the output signal is taken from the transistor source (drain).

At this point, we do not distinguish between a single N-type or P-type MOS transistor

and a pass "gate" composed of complementary pair of transistors connected by complementary

control variables.

De�nition 2. A pass network is an interconnection of pass transistors which realizes

a particular switching function f(X), where X = fx1; x2; : : : ; xng is the set of inputs to the

function.

De�nition 3. A branch of a pass network implementing the switching function f(X) is

a series connection of pass transistors where the drain or source of the transistor at one end of

the series is connected to an input source selected from the set f0; 1; xi; x
0

ig

De�nition 4. A pass variable is an input to a branch of the pass network. A pass

variable may be chosen from the set f0; 1; xi; x
0

ig.

De�nition 5. A control variable is an input to the gate of a transistor in the pass

network. When the control variable has a value equivalent to a logic "1", the pass gate conducts.

De�nition 6. A pass implicant is a Boolean switching function which denotes the

function of a branch of a pass network, and includes information about both the pass variable

and the switching function. A pass implicant is denoted Ci[Pi], where Ci is a product term

composed of control variables which control the pass transistors in that branch, and Pi is the

pass variable which will get passed to the output if the product term is true.

This is similar to an implicant in Boolean algebra, except that instead of passing a

constant "1" if the implicant is true, the value of the pass variable is passed if the implicant is

true.

De�nition 7. A pass function, Fp : B
n ! f0; 1; Zg is a sum of pass implicants.

De�nition 8. A CMOS gate consists of a P transistor pass network with only one pass

116

variable "1" and an N transistor pass network with only one pass variable "0". The outputs of

the two networks are connected together to form the output of the CMOS gate. For a CMOS

gate which is to implement a function F , the P pass network implements the pass function F

and the N pass network implements the pass function F .

Hazards and Delay Model

As discussed in section 7.3 there are two basic classes of combinational hazards: function and

logic hazards. Function hazards are a property of the logic function, whereas logic hazards are

purely a property of the implementation. Within the class of logic hazards, there are single-

input change (SIC) hazards and multiple-input-change (MIC) hazards. Additionally, each class

of hazards (function and logic) includes both static and dynamic hazards. In this section we

will consider MIC logic hazards, i.e., we will assume that the given Boolean function is free of

function hazards.

For the resulting complex gate implementations using the method presented in this

section to be hazard free it is a requirement that only CMOS gates as de�ned in de�nition 8 are

used. If not, i.e. the output of a CMOS gate is used as a pass variable in a transistor network,

additional hazards are possible. For the remainder of this section it is therefore assumed that

the output of a CMOS gate is only used as a control variable in other CMOS gates.

The delay model assumed in this work is that of unbounded gate and wire delays, as in

previous approaches [8, 50, 36, 35]. This is a conservative model, which assumes that inputs

in a MIC can arrive at any time and in any order, and that gates and wires have unknown

delay. However, our model is limited by one timing constraint: on the time period for which

the capacitance on a CMOS gate output holds its charge when there is no conducting path to

power or ground rails through the p or n transistor networks (only leakage occurs). This time

period is assumed to be much larger than the duration of any static hazard. This requirement

is quite reasonable, since the time is related to the maximum di�erence in arrival of a variable

and its complement to di�erent stacks in the gate.

8.3 Hazard-free Single CMOS gates

8.3.1 Hazards in Dual Realizations

CMOS complex gate networks can be implemented in many di�erent ways. The standard

technique to implement the functions F and F is to obtain a sum of products for one pass

network (p or n) and the dual of this network then becomes the complementary product of sums

network. A dual of a function, f , implementing a pass network, can be obtained by applying De

117

Morgan's law to f . Since De Morgan's law has been proven to be hazard preserving, eventual

hazards in the function will also be preserved by the transformation. Because of this hazard

preserving property however, we are also assured that no new hazards are introduced by the

transformation.

For example, assume that function f has a static 1 ! 1 transition [A;B]. A hazard

during such a transition can only manifest if the cover, C, implementing f does not contain

a cube completely covering [A;B]. This means that no single product term holds the current

value throughout the transition. As mentioned in section 7.3, switching from one product term

to another during a transition may result in a glitch. In a sum-of-products transistor network (p

or n) however, this glitch would manifest as a brief moment when none of the transistor stacks

are conducting. The dual of such a function then, would preserve the hazard of transition

[A;B]. Since the dual function f is a negated product-of-sums of f , none of the transistor

stacks implementing the dual are supposed to conduct during transition [A;B]. The preserved

hazard however, will, in the dual implementation, manifest as a brief moment where one of the

transistor stacks may briey conduct. Let's assume that the ON-set of f is implemented as

a sum-of-products network of p-transistors and the OFF-set as the dual, f , implemented as a

product-of-sums network of n-transistors. For static 1 ! 1 transition [A;B] then, the static

hazard will result in that the p-transistor network might not conduct for a brief moment. At

the same time however, the n-transistor network might conduct for a brief moment. This would

result in a 1! 0! 1 glitch on the output of the CMOS gate.

In this section we will present a more interesting realization in terms of hazard behavior,

where both F and F are implemented as sum-of-products networks, referred to as an SOP/SOP

form of complex gates. An example SOP/SOP complex gate implementation is shown in �g-

ure 8.1. Function F is implemented using p-transistor stacks, and function F is implemented

using n-transistor stacks.

8.3.2 SOP/SOP Realization

We will �rst examine the hazard behavior of the SOP/SOP form of realization for CMOS

complex gates. In order to do this, we will examine both SIC and MIC static and dynamic

transitions on a case-by-case basis.

Case 1: Static Transitions. For static transitions a SOP/SOP complex gate circuit

is hazard-free at the output. Both SIC and MIC static hazards occur when a given static

transition causes a change from one cube of the cover to another, causing a brief period when

the transistor network is not conducting. Consider F and F to be on-set and o�-set covers

respectively implemented as p and n transistor networks in a complex gate. It has been shown

118

in [71] that a sum-of-products implementation of the on-set F does not have any 0! 0 hazards.1

Similarly, F does not have any 1 ! 1 hazards. This means that in a sum of products form, a

static transition over function F is always outside the cover of F and vice versa. As a result,

for a SOP/SOP form of complex gates, even if the transistor network of F has a static hazard

(that is, a brief moment when no p stack is conducting), the transistor network of F remains

o� (that is, no n stack will conduct during the transition). Therefore, the output capacitance of

a SOP/SOP complex gate holds its current charge for the duration of a static hazard (we have

no conducting path to either power or ground), and the hazard is not seen at the output.

As an example, consider the Karnaugh map and complex-gate implementation in �g-

ure 8.1. Transition t1, from abc : 011 ! 010, is a static 1 ! 1 transition. Transition t2,

from abc : 100 ! 101, is a static 0 ! 0 transition. For a SOP/SOP complex gate, the on-set

implements the p-transistor pass network, using cubes A = bc0 and B = a0c, and the o�-set im-

plements the n-transistor network, using cubes C = b0c0 and D = ac. For a SOP/POS complex

gate the on-set implements the p-transistor pass network, using cubes A = bc0 and B = a0c,

and the dual (b0+c)(a+c0) then implements the n-transistor network. A simple-gate AND/OR

network would be implemented using the on-set cubes A and B. The hazard behaviors of these

gates then become the following.

The simple-gate AND/OR implementation is free of hazards for transition t2 but not for

t1. During transition t1, the AND-gate for B goes low and the AND-gate for A goes high. If

the AND-gate for A is slower than the AND-gate for B, the OR-gate output will generate a

1 ! 0 ! 1 hazard. For the SOP/POS complex gate implementation, transition t2 is hazard-

free. During transition t1 however, the n-transistor network may briey conduct causing a

1 ! 0 ! 1 hazard at the output. The single SOP/SOP complex-gate network however, is

hazard-free for both transition t1 and t2. Although, for transition t1, the p-transistor stacks for

A and B can briey be o� at the same time (when c goes low), no n-transistor stack will conduct

during the transition. As a result, the output will hold its current charge. The same holds true

for transition t2, the n-transistor network may briey stop conducting, but no p-transistor stack

will conduct during the transition. The output is therefore free of hazards for both of these

transitions. Subsequently, there is no need to eliminate static hazards during synthesis of F

and F when targeting SOP/SOP form of complex gates.

Case 2: Dynamic Transitions. For the case of SIC transitions, it has been shown

in [71] that a dynamic SIC hazard cannot occur (assuming no product contains both a variable

and its complement). Since F and F are in two-level AND/OR form, no hazards will occur in

the complex-gate output in this case. For the case of MIC transitions, though, we will have to

make the p and n pass networks hazard-free for dynamic transitions. Otherwise, even in the

1Note that, throughout this section, we assume that no product contains both a variable and its complement,

otherwise additional hazards are possible [71].

119

x

b’ a

VDD

VSS

b’

c

a

c’

c’ c

Hazard free SOP/SOP complex gate

B

A

a’
c

b
c’

x

Hazardous simple gate implementation

Karnaugh map

ON-set cube

OFF-set cube

00 01 11 10

0

1

x ab

c

B

A

t1

t2
C

D

x

b’ c

VDD

VSS

b’

c

a

c’

a c’

Hazardous SOP/POS complex gate

Figure 8.1: K-map and static hazard-free SOP/SOP complex gate

SOP/SOP form, both the p network and the n network may have dynamic hazards, creating a

hazard at the output of the complex gate.

8.3.3 Algorithm For SOP/SOP Realizations

Our hazard-free algorithm for SOP/SOP complex-gate realizations is similar to an existing

algorithm for hazard-free two-level simple-gate networks [50] presented in section 7.6. The key

di�erence is that our new algorithm uses fewer constraints: we can ignore hazards due to static

transitions in the SOP/SOP realization.

The steps after the generation of sets are common to both the complex-gate algorithm

and two-level algorithm, and are summarized below. Since both p and n-transistor networks

implements the ON-set and OFF-set of the given Boolean function, f , as sum-of-products

networks, the procedure below is �rst applied to f . The function is then inverted to f (the

ON-set of f then is the OFF-set of f) and applied to the procedure. This yields hazard free

sum-of-products transistor networks for both ON and OFF-set of f .

In the logic synthesis procedure we �rst derive the req-set, priv-set and o�-set for the

given function. We then derive the dhf-prime implicants based on the req- and o�-sets as well

120

as the privileged cubes. A unate covering problem is then formulated: the problem is to cover

all the required cubes by a minimum set of dhf-prime implicants. If all of the required cubes

cannot be covered by the dhf implicants, a solution does not exist.

The only di�erence in the synthesis approach for SOP/SOP complex gates is during

construction of the req-set in the Make-set step. In our modi�ed algorithm Complex-Make-

sets, we follow the same steps as Make-sets, but with one key di�erence: we do not generate

required cubes for 1 ! 1 static transitions. The reason is that, for complex-gate realizations,

there are no static 1 ! 1 hazard-free requirements. Instead, to insure that the on-set of the

function is still covered, we simply add the on-set minterms (not cubes) into the required set

which are not already present in the required set. In summary, the required set generated by

Complex-Make-sets consists of (i) all the required cubes associated with dynamic transitions,

and (ii) the on-set minterms that are not already covered by other required cubes.

Note that the unate covering problem in our complex-gate algorithm is less restrictive:

required cubes for static 1! 1 transitions need not be covered. In fact, there are problems which

have no 2-level hazard-free solution, but where a complex-gate solution exists. For instance,

the example used in [50] to demonstrate the absence of a solution for hazard-free AND/OR

implementation, has a solution in the SOP/SOP form of complex-gate implementation.

Figure 8.2 illustrates a small example where output x of the given burst mode machine

is implemented both using a two level implementation using simple AND/OR gates and using

the SOP/SOP customized complex gate method. As can be seen in �gure 8.2(c) and (d) the

standard gate AND/OR implementation needs 64 transistors while the complex gate solution

only needs 12 transistors to implement the same function. Besides requiring less area, this also

reduces the delay through the circuit.

8.4 Multi-level Implementations

8.4.1 Background and Overview

Several approaches have been used for multilevel hazard-free logic synthesis. In [8], a tech-

nique was presented to derive single-output multilevel AND/OR gate implementations. The

algorithm assumes a fully-speci�ed function and attempts to eliminate hazards even for unspec-

i�ed transitions, leading to ine�cient implementations.

A method using BDDs that target multilevel multiplexer based circuits is presented

in [36]. The multiplexers in this method are assumed to be hazard-free.

A method to eliminate dynamic hazards from signal transition graph speci�cations by

iterative factoring has been presented in [45]. Factoring does not eliminate static hazards.

121

a

b’

c

a’

b

c’

b

c a

c’ a’

b’
x

Transistors = 12

(c) Custom single complex gate.

a

b

a’

b’

b’
c’

b
c

a

c

x

a

c
a’
b
c
a
b
c’

z0

Transistors = 64

(d) Standard AND/OR gate implementation.

a+c+/x-y-

b+/x+

c-/y+

b-/y-

a-/y+

a-/x-y-

c+/x+y+

b-/y-

c-/y+

(a) Burst mode specification

(b) Karnaugh map for output x.

x
00 01 11 10

0

1

a

b c

ON-set cube OFF-set cube

Figure 8.2: Example of single hazard-free SOP/SOP complex gate implementation

Work in [63] targets multilevel hazard-free circuits, starting from a hazard-free two-level

circuit. In this method a hazard-free two-level function is decomposed into base functions using

De Morgan's theorem and associative laws and then partitioned into cones which are mapped to

library elements based on associated hazards. This work could be extended to use customized

complex gates instead. However, since it is based on an already existing AND/OR function,

it cannot take advantage of the static hazard robust behavior of the SOP/SOP form and thus

cannot give solutions to a larger class of problems.

We will therefore present a new technique which is an extension of work in [8], but

which deals with the special hazard requirements of SOP/SOP complex-gates. The procedure

is presented in two steps. First, we will give a model for the multilevel complex gates we target.

We will then outline our decomposition algorithm.

8.4.2 CMOS Multilevel Networks

The procedure outlined in the rest of this section, assumes that each CMOS gate is implemented

in the SOP/SOP form discussed in the last section. A multilevel network of CMOS complex

gates is de�ned as a single output network of multiple levels of complex gates, where the control

variable for each transistor of the p and n pass networks is either an input literal or the output

of another CMOS complex gate.

Consider the goal of implementing a Boolean function under a given set of MIC transi-

tions as a single complex gate. Consider the p pass network to be implemented (the arguments

for the n network are symmetric). We attempt to derive the SOP form (series/parallel) network

122

 SOP/SOP
complex gate

 SOP/SOP
complex gate

 SOP/SOP
complex gate

Figure 8.3: Multilevel SOP/SOP complex gates

with only input literals as control variables to the transistors. If such a solution cannot be found,

we attempt to �nd a solution where some of the transistors have control variables which are the

output of separately implemented complex gates in the SOP/SOP form. This procedure yields

alternating levels of AND and OR gates starting from the output and recursively derives im-

plementations for smaller functions until input literals are reached, as can be seen in �gure 8.3.

For synthesis of such multilevel circuits, one must keep in mind that the target complex gates

do not require static hazard covers; therefore, we still take advantage of the static hazard-free

nature of the SOP/SOP form. We will use this model to derive our complex gates taking the

p pass network and n pass network separately. Note, though, that hazards now may occur due

to the interaction of separate complex-gates in the network. These issues are addressed below.

We will illustrate the method with the example shown in �gure 8.4. Consider the problem

of generating a hazard-free single output function for the output x of a burst mode state machine

represented by the Karnaugh map in �gure 8.4(a). In this case, x is a simple combinational

function, which must be implemented without logic hazards. Speci�ed input transitions are

given in the �gure. The required cubes for dynamic transition t1 are bc0 (A) and a0b, and the

required cubes for dynamic transition t2 are a0c (B) and a0b.

This covering problem has no hazard-free two-level solution. Each required cube must

be covered by some dhf-prime implicant. Required cube A is covered only by itself (bc0), which

illegally intersects dynamic transition t2. Similarly, required cube B is covered only by itself

(a0c), which illegally intersects dynamic transition t1. Therefore, no dhf-prime exists to cover

A and B.

Burst-mode sequential synthesis tools [49, 74] avoid this problem at an earlier point

in synthesis: during state minimization. By using careful constraints on state merger, these

methods produce Boolean functions for which a hazard-free solution exists. That is, a feedback

variable would be added, making the circuit sequential rather than combinational.

123

ON-set cube

OFF-set cube

00 01 11 10

0

1

x ab

c

A

B

t1

t2

(a) Karnaugh map for output x

00 01 11 10

0

1

x ab

c

(b) Reduced problem to derive POS

x

b+c

a’+c’

a’

b’

c’

a

b

c

b

a’

VDD

VSS

(c) Complex gate implementation

of transistors: 18

a’
b

a
b’
a’
c

zzz00

x

b’
c

b
c’

b
a
b
c

a’
c

(d) Circuit for x derived by 3D

of transistors: 58

Figure 8.4: Multilevel SOP/SOP complex gate example

Since no hazard-free two level solution exists we now attempt to derive multilevel com-

binational logic for the output x. First we derive all required cubes and dynamic hazard-free

prime implicants (DHFPI). The DHFPIs are a0b and ab0 for the on-set. All other implicants

have illegal intersections. The two required cubes that cannot be covered in the on-set are bc0

(A) and a0c (B). The DHFPIs for the o�-set are a0b0c0 and abc. The cubes for both the on and

o�-set that can be covered are now respectively implemented as the p and n transistor networks

of a SOP/SOP complex gate.

Since no cover of required on-set cubes A and B could be found by considering the on-set

we will now examine if it can be covered by taking the dual of a cover of the o�-set. We will

therefore try to derive a product of sums implementation of the union of the uncovered cubes

in the on-set. The reduced problem for this is shown in �gure 8.4(b). A hazard-free SOP cover

of the o�-set is ac+ b0c0. By taking the dual of this cover we can generate a hazard-free cover

of the on-set which then becomes (a0 + c0)(b+ c).

This POS cover is connected to the SOP/SOP complex gate by a series p stack of

transistors as can be seen in �gure 8.4(c). Since DHFPI a0b is already covered by this hazard-free

cover we can remove it from the �nal cover for x. (b+c) and (a0+c0) can then be implemented

124

using simple OR gates. Note that the static hazard for transition abc:101 ! 001 does not

manifest in the SOP/SOP multilevel implementation. Also, no state variable is needed.

Figure 8.4(d) shows the result as generated by the 3D [74] synthesis tool, which uses

hfmin [50] to produce a hazard-free two-level AND/OR gate implementation. A state variable

has been added to eliminate the hazard problem in this case.

An algorithm for deriving multilevel complex gates is given in �gure 8.5. The top level

algorithm is Derive CMOS Multi, which calls the recursive procedure Derive Multi and then

derives complex gate implementations from the cover returned by Derive Multi. The function

Derive Multi is �rst discussed. Initially it is assumed that one attempts a two-level sum of

products solution. Since we are dealing with alternating levels of sum of products and product

of sums implementations, our algorithm works slightly di�erently for each of the levels. We

derive the sum of products and the product of sums alternately. Therefore the algorithm �rst

starts with trying to �nd a sum of product solution. In the absence of static hazards, such

a solution may not exist when a required cube(s) for one dynamic transition is a (are) stray

cube(s) for another. We will refer to such cubes as conicting cubes. Sets of conicting cubes

are formed. For example if required cubes A and B are conicting and similary B and C, the

set (A;B;C) is considered the maximal set of conicting required cubes. For each maximal set

of conicting required cubes, it attempts a product of sums solution, and then again recursively

for the remaining cubes attempts a sum of products and so on. Since we have an algorithm

targeted to �nd the minimal sum of products implementation, we also convert the problem of

�nding the product of sums for a function F to the problem of �nding the sum of products

for F and then using De Morgan's law (which has been shown to be hazard-preserving [71]) to

obtain F . The inputs to the algorithm are: the level (indicating whether it is a sum of products

or product of sums problem), the set of input transitions, the on-set of the function for which

a hazard-free implementation is to be derived.

8.4.3 Algorithm

We will now describe all the steps outlined in the algorithm. Step 1 is to derive the req, o� and

priv sets as described in the last section using algorithm Complex-make-sets if one is targeting

the sum of products (say for the �rst level or any odd numbered level) otherwise, the algorithm

Make-sets is used since we need to consider static hazards for product-of-sums (even levels).

Dhf prime implicants are then derived in Step 2. We will call the set of dhf prime implicants

as DHFPI. In Step 3, the covering problem is attempted. The required cubes that remain

not covered by the DHFPIs are noted, we will call this set rsetu . Note that the only required

cubes that remain not covered by the DHFPIs are due to conicting dynamic hazard transitions

during a sum of products minimization problem, i.e., a required cube of one transition becomes

125

a stray cube of one or more other dynamic transitions and vice versa. In the case of a product

of sums implementations, the remaining required cubes could also be due to a static hazard

requirement as well as due to conicting dynamic transitions.

Derive Multi(Level, Set T of input Transitions, On-set)
Step 1. if Level = odd

Complex-make-sets(T, On-set)
else

Make-sets (T, On-set)
Step 2. Derive DHFPI set, req cubes rset
Step 3. Cover = MinCover(DHFPI; rset)

if Cover return Cover

Step 4. For (rsetu = req cubes not covered by DHFPI)
rsetiu = set of conicting cubes in rsetu
Foreach rsetiu
on-set (oniu) = [minterms in rsetiu
if (oniu already attempted) goto 6
if Level = odd
if (ciu = Derive Multi(Level+1, T , o�-set(oniu)))

Cover = Cover [ApplyDeMorgan(ciu)
else goto 6
else

if (ciu = Derive Multi(Level+1, T , o�-set(oniu)))
Cover = Cover [ciu

else goto 6
Step 5. If any DHFPIj 2 DHFPI is covered by a oniu

DHFPI = DHFPI � DHFPIj;
Cover = Cover [MinCover(DHFPI; rset � rsetu);
return Cover;

Step 6. No solution. return NIL
end

Derive CMOS Multi(Set T of input Transitions, On-set)
if (Cover = Derive Multi(1, T, On-set))
Partition each AND/OR level starting from output.
Implement partitions as complex gates.

else

return NIL
end

end

Figure 8.5: Algorithm

In Step 4 we �nd the set of all cubes from rsetu that conict. The goal then is to derive

an implementation for this on-set which is hazard-free for the original set of input transitions.

If we are trying to solve a problem for the �rst level (AND/OR), it is clear that a sum-of-

products implementation of a conicting set of cubes A, B and C will not solve such a problem.

Instead a hazard-free product of sums implementation of this on-set is attempted. Note that

in the algorithm the method to derive the dual implementation is a recursive call. In order to

126

derive a products of sum implementation for an on-set G, the recursive call attempts to derive

a sum of products implementation for the o�-set G and then uses DeMorgan's law on G to

obtain the product of sums implementation. A sum of products problem can be minimized

ignoring static transitions since every sum of products function is implemented within a single

SOP/SOP CMOS gate. A product of sums problem however, must take static transitions into

account since otherwise hazards can result by the interaction of the complex gates. Therefore

the product of sums problem (even levels) will use Make-sets in step 1, whereas the sum of

products will use Complex-Make-sets in step 1. In Step 5, all DHFPIs at that level that are

covered by the new cubes derived are removed. Step 6 indicates cases where there are no

multilevel solutions of this form.

The function Derive CMOS Multi is the top level function that derives the cover (if

there is one) using Derive Multi and then partitions each AND/OR level starting from the

output into a complex gate.

8.5 Results

To determine the bene�ts of the SOP/SOP form of complex gates, we have synthesized many

controllers where logic hazards were present using this technique. For these examples, our

method obtained a hazard-free combinational logic solution whereas the 3D tool [74] which uses

hfmin [50] often had to add one or more state variables just in order to prevent logic hazards.

For the comparison the Cadence schematic entry system and the LAS [10] layout syntheziser

was used to generate layouts. The average critical path delays where then measured under same

input slopes and output load.

Results for cases where occuring logic hazards could be resolved using only single SOP/SOP

complex gates is shown in the Single part of Table 8.1. Results for cases where occuring logic

hazards require a multilevel solution for the SOP/SOP complex gate form are given in the

Multilevel part of Table 8.1. The area required for a hazard-free cover is shown in the area

columns and the number of state variables that had to be added to get a solution in the two-

level standard gate implementation is shown in the statevar column. The average delay from

input event to output response under same input slopes and output load is shown in the delay

columns.

In our experiments, the area required to get a two-level solution widely exceeds that of

our SOP/SOP complex gate implementation. Due to fewer transistors and the ability to size

the transistors very accurately to comply with the size of the output load, we are able to get

performance gains of over 50% in many cases. The circuits produced by our method being

combinational also have an advantage compared to the circuits produced by the 3D method

127

with regards to fundamental mode delay.

Name Std.Gate Complex Gate Std.Gate Complex Gate Std.Gate
statevar area area delay delay

Single

comp tr 1 136 513 0.35 0.64

tri st 1 148 636 0.19 0.81

store st 1 223 609 0.43 0.72

dual si 0 96 152 0.20 0.30

for lp 1 213 332 0.38 0.53

sim mod 1 102 278 0.24 0.58

Multilevel

bus tr 2 271 1107 0.30 0.55

run dp 1 360 1218 0.38 1.35

si stack 1 177 312 0.20 0.32

sm stat 2 187 1181 0.31 0.74

sm dyn 2 222 1109 0.23 0.59

l cov 2 173 824 0.21 0.58

comp dp 2 395 1162 0.39 0.70

Table 8.1: Single and Multilevel Complex-gate Versus Standard Gate

8.6 Conclusions

In this section, we have presented a technique to synthesize a network of customized CMOS

complex gates. We have presented a summary of properties and synthesis algorithms for a style

of single customized CMOS gate and multilevel CMOS gate networks. The work was motivated

by the fact that customized CMOS complex gates could provide exibility of design, perfor-

mance improvement and solutions to larger classes of problems in hazard-free asynchronous

controller synthesis. During the analysis, we have also shown that a class of combinational

functions which may not have a solution in the two-level AND/OR implementation form can

have a solution in our CMOS gate method. Also, the multilevel method provided combinational

logic solutions to cases where the two-level method could provide a solution only by adding state

variables.

Our experiments has shown that using the SOP/SOP form of complex gates clearly have

advantages when there are logic hazards present. Due to the reduced hazard constraints during

synthesis, signi�cant performance and area gains can be obtained.

Remaining problems that need to be solved are decomposition of the complex gate net-

work into smaller elements and methods for transistor sizing under performance and area con-

straints. Decomposing complex gates is an important problem performance wise since high

transistor stacks slow down the circuit. Automated transistor sizing of the whole transistor

128

network is important for area and performance tradeo�s. We are currently looking into these

problems.

129

Chapter 9

Conclusions

This thesis has presented the fundamental concepts of asynchronous design. A high level syn-

thesis framework called ACK incorporating some of these concepts has been presented.

9.1 Summary

The fundamental di�erences in the asynchronous and synchronous conceptual frameworks have

been discussed. Advantages and disadvantages of the asynchronous and synchronous synthesis

methodologies have been presented. We have presented several limitations of the synchronous

concept that motivates use of the asynchronous design alternative. The most common of the

many di�erent asynchronous design styles using alternating circuit and environment delay mod-

els along with their communication styles have been presented to give the reader a basic un-

derstanding of the asynchronous concept.

A synthesis framework has been presented. This framework use a behavioral language

Verilog�+ for high level speci�cation of asynchronous designs. The Verilog�+ description

is then translated into a powerful state based language, supporting important constructs for

asynchronous design, called HOP which can also be used for design speci�cation. The high level

synthesis part of the framework was then described. By means of re�nement and allocation

the behavioral language is translated into a state machine controller using event signaling and

datapath resources are allocated. The controller then goes through a partitioning procedure to

resolve concurrency issues. Partitioning also allows synthesis of large controllers. The procedure

presented solves the problem of dividing an incompletely speci�ed machine into partitions that

are allowed to share signals. A technique to convert the abstract event based state machines to

burst mode machine with explicit knowledge of signal polarities is then presented. The concept

of asynchronous state machine synthesis and di�erent models is then explained. Using one of

the methods presented, the burst mode machines are then synthesized to a Boolean function

130

representation. A new way of technology mapping those functions to multilevel custom complex

gate networks that reduce some of the synthesis constraints is then presented.

9.2 Future Work

Many of the approaches used by the synthesis framework presented in this thesis make use

of simple methods and algorithms. However, this �rst version of the synthesis framework

is dedicated to present the basic methodology for a new conceptual synthesis methodology.

Optimizations of these methods are possible but have been left for future work. Some of the

possible extensions to this work are presented next.

Design Modeling A graphical based approach of the structural as well as module speci�ca-

tion would simplify the design process as well as help the designer to more clearly see constructs

suitable for partitioning or optimization. It would also remove the limitations of the naming

convention when deciding which resources and wires are shared.

Language Extensions Moving towards algorithmic descriptions of the design behavior which

is independent of the underlying synthesis methodology would open up the possibility of using

the same speci�cation language for synchronous as well as asynchronous design.

Re�nement The re�nement process used is somewhat naive in that it is only based on the

syntactic structure of individual statement constructs. A method taking advantage of high

level synthesis optimizations such as those presented in [17] would be desirable. Experience has

also shown that careful ow analysis of the re�ned controller can result in optimizations at the

handshaking level.

Allocation Support for user de�ned area/performance tradeo� should be added. This will

require the ability to share resources within the same module. Methods for this are standard

and can be found in [2, 7].

Partitioning Heuristics or methods for exact solutions to partitioning should be developed.

Algorithms for partitioning under certain criteria such as minimal wire sharing between parti-

tions, or resource sharing are of interest. Minimal resource sharing would mean each controller

can be placed and routed in a very near vicinity of its corresponding datapath. More e�cient

control structures for signal sharing are also possible and currently under development.

131

Burst Mode Synthesis Finite state machine synthesis in general has exponential worst

case complexity. Although heuristics are already partly used, more good heuristics need to be

developed. At least a polynomial solution should exist and the decision to use it or not be left

to the designer. A near optimal solution is better than no solution at all.

Complex Gate Implementation The method for custom complex gate implementation

should be extended with a decomposition method for average case performance based on the

method presented in [5]. A method for user de�ned area/performance tradeo� based on tran-

sistor sizing should also be incorporated.

Completion Detection Using matching delays for completion detection requires careful

timing to ensure a correct circuit behavior. This step should be automated by using a timing

analysis tool. Other completion detection methods such as current sensing should also be

evaluated and, if shown to be e�cient, incorporated into the synthesis methodology.

132

Bibliography

[1] Aghdasi F. Synthesis of Asynchronous Sequential Machines for VLSI Applications. In Proceedings

of the 1991 International Conference on Concurrent Engineering and Electronic Design Automation

(CEEDA), March 1991, pp. 55-59.

[2] Akella, V. An Integrated Framework for the Automatic Synthesis of E�cient Self-Timed Circuits

from Behavioral Speci�cations. PhD thesis, Dept. of Computer Science, University of Utah, Salt

Lake City, UT 84112, 1992.

[3] Akella V, Gopalakrishnan G. SHILPA: A High-Level Synthesis System for Self-Timed Circuits.

In Proceedings of the International Conference on Computer Aided Design (ICCAD), 1992, pp. 587-

591.

[4] Beerel P. A, Meng T. H. Automatic Gate-level Synthesis of Speed-independent Circuits. In

Proceedings of the International Conference on Computer Aided Design (ICCAD), 1992, pp. 581-

586.

[5] Beerel P. A, Yun K. Y, Chou W. Optimizing Average-case Delay in Technology Mapping

of Burst-mode Circuits. In Proceedings of the International Conference on Asynchronous Design,

1996, pp. 244-260.

[6] Berkel v. K, Bink A. Single-track Handshake Signaling with Application to Micropipelines and

Handshake Circuits. In Proceedings of the International Conference on Asynchronous Design, 1996,

pp. 122-133.

[7] Brunvand, E. Translating Concurrent Communicating Programs into Asynchronous Circuits. PhD

thesis, Carnegie Mellon University, 1991.

[8] Bredeson J. G. Synthesis of Multiple-input Change Hazard-free Combinational Switching Circuits

Without Feedback. In International Journal of Electronics (GB), Vol. 39, No. 6, December 1975,

pp. 615-624.

[9] Bredeson J. G, Hulina P. T. Elimination of Static and Dynamic Hazards for Multiple Input

Changes in Combinational Switching Circuits. In Information and Control, Vol. 20, No. 2, March

1972, pp. 114-224.

[10] Custom Layout/Virtuoso LAS User's Manual. Cadence Design Systems Inc., 1992.

[11] Chandrakasan A. P, Brodersen R. W. Minimizing Power Consumption in Digital CMOS

Circuits. In Proceedings of the IEEE, Vol. 83, No. 4, April 1995, pp. 498-523.

133

[12] Chu T. A. Synthesis of Self-timed VLSI Circuits fromGraph Theoretic Speci�cations. PhD Thesis,

Department of EECS, Massachusetts Institute of Technology, September 1987.

[13] Chuang H. Y, Das S. Synthesis of Multiple-input Change Asynchronous Machines Using Con-

trolled Excitation and Flip-ops. In IEEE Transactions on Computers, Vol. 22, No. 12, December

1973, pp. 1103 1109.

[14] Davis, A., Coates, B., and Stevens, K. The Post O�ce Experience: Designing a Large

Asynchronous Chip. In Proceedings of the 26th Annual Hawaiian International Conference on

System Sciences, Volume 1 (Jan. 1993), T. Mudge, V. Milutinovic, and L. Hunter, Eds., pp. 409{

418.

[15] Dean, M. E. STRiP: A Self-timed RISC Processor Architecture. Ph.D. Thesis, Stanford University,

1992.

[16] Dean, M. E., Dill, D. L., Horowitz, M. Self-timed Logic Using Current-sensing Completion

Detection (CSCD). In Proceedings of the International Conference on Computer Design (ICCD),

IEEE Computer Society Press, October 1991, pp. 187-191.

[17] De Micheli G. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994

[18] Dill D. L. Trace Theory for Automatic Hierarchical Veri�cation of Speed-independent Cirucits.

MIT Press, An ACM Distinguished Dissertation, 1989.

[19] Dolotta T. A, McCluskey E. J. Jr. Encoding of incompletely speci�ed Boolean matrices. In

Proceedings of Western Joint Computer Conference, Vol. 18, pp. 231-238, 1960.

[20] Ebergen, J. C. A Formal Approach to Designing Delay-insensitive Circuits. Distributed Comput-

ing, Vol. 5, No. 3, 1991, pp. 107-119.

[21] Ebergen J. C. Translating Programs into Delay-insensitive Ciruicts. Centrum for Wiskunde en

Informatica, CWI Tract 56, Amsterdam, 1989.

[22] Fang T. P, Molnar C. E. Synthesis of Reliable Speed-Independent Circuit Modules: II. Circuit

and Delay Conditions to Ensure Operation Free of Problems from Races and Hazards. Computer

Systems Laboratory, Washington University Tech. Memorandum 298, 1983.

[23] Frackoviak J. Metoden der Analyse und Synthese von Hasardarmen Schaltnetzen mit Minimalen

Kosten I. In Elektronische Informationsverarbeitung und Kybernetik, Vol. 10, No. 2/3, 1974, pp.

149-187.

[24] Friedman A. D, Menon P.R. Synthesis of Asynchronous Sequential Circuits With Multiple-input

Changes In IEEE Transactions on Computers, Vol. 17, No. 6, June 1968, pp. 559-566.

[25] Furber S. B, Day P, Garside J. D, Paver N. C, Woods J. V. AMULET1: A Micropipelined

ARM. In Proceedings of CompCon'94, IEEE Computer Society Press, CompCon'94, San Francisco,

March 1994

[26] Gopalakrishnan G. C, Kudva P. N, Brunvand E. L. Peephole Optimization of Asyn-

chronous Macromodule Networks. In Proceedings of the International Conference on Computer

Design (ICCD), 1994, pp. 442-446.

134

[27] Hayes, A. B. Stored state asynchronous sequential circuits. In IEEE Transactions on Computers,

Vol. 30, No. 8, August 1981, pp.596-600.

[28] Hedberg A, Jacobson H. M, Einarsson M, Jennings G. Imposing a Uni�ed Design Method-

ology on Independent Rapid Prototyping Tools. In Proceedings of the Sixth IEEE International

Workshop on Rapid Systems Prototyping (RSP95), June 1995, pp. 217-222.

[29] Hoare C. A. R. Communicating Sequential Processes. Prentice Hall International, UK Ltd.,

Englewood Cli�s, New Jersey, 1985.

[30] Huffman D. A. The Synthesis of Sequential Switching Circuits. J. Franklin Institute, March/April

1954.

[31] Jennings G, Jennings E. A Discrete Syntax for Level-Sensitive Latched Circuits Having n Clocks

andm Phases. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 15, No. 1, January 1996, pp. 111-126.

[32] Kessels, J., van Berkel, K., Burgess, R., Roncken, M., and Schalij, F. An error decoder

for the compact disc player as an example of VLSI programming. Tech. rep., Philips Research

Laboratories, Eindhoven, The Netherlands, 1993.

[33] Kudva P. N, Jacobson H. M, Gopalakrishnan G. C. Synthesis of Hazard-free Customized

CMOS Complex-Gate Networks Under Multiple-Input Changes. In Proceedings of the 33rd Design

Automation Conference (DAC), 1996, pp. 77-82.

[34] Kudva P. N, Gopalakrishnan G. C, Jacobson H. M. A Technique for Synthesizing Dis-

tributed Burst-mode Circuits. In Proceedings of the 33rd Design Automation Conference (DAC),

1996, pp. 67-70.

[35] Kung D. Hazard-non-increasing Gate Level Optimization Algorithms. In Proceedings of the Inter-

national Conference on Computer Aided Design (ICCAD), 1992.

[36] Lin B, Devadas S. Synthesis of Hazard-free Multi-level Implementations Under Multiple-input

Changes From Binary Decision Diagrams. In Proceedings of the International Conference on Com-

puter Aided Design (ICCAD), 1994.

[37] Mago G. Realization Methods for Asynchronous Sequential Circuits. In IEEE Transactions on

Computers, Vol. 20, No. 3, March 1971, pp. 290-297.

[38] Martin, A. J. Programming in VLSI: From communicating processes to delay-insensitive circuits.

In UT Year of Programming Institute on Concurrent Programming (1989), e. C.A.R. Hoare, Ed.

MA: Addison-Wesley, 1989, pp. 1-64.

[39] Martin, A. J. The limitation to delay-insensitivity in asynchronous circuits. In W.J. Dally, editor,

Advanced Research in VLSI: Proceedings of the Sixth MIT Conference, MIT Press, Cambridge, MA,

1990, pp. 263-278.

[40] Martin, A. J., Burns, S. M., Lee, T. K., Borkovic, D., Hazewindus, P. J. The design

of an asynchronous microprocessor. In 1989 Caltech Conference on Very Large Scale Integration,

1989.

135

[41] Martin A. J. A Synthesis Method for Self-timed VLSI Circuits In Proceedings of the International

Conference on Computer Design (ICCD), October 1987, pp. 224-229.

[42] McCluskey E. J. Introduction to the Theory of Switching Circuits. McGraw-Hill, New York,

NY, 1965.

[43] Mead, C. A., and Conway, L. A. Introduction to VLSI Systems. Addison-Wesley, 1980. ISBN

0-201-04358-0

[44] Molnar C. E, Fang T. P, Rosenberger F. U. Synthesis of Delay-Insensitive Modules. In

Proceedings of the 1985 Chappel Hill Conference on Advanced Research in VLSI, 1985, pp. 67-86.

[45] Moon C. W, Brayton R. K. Elimination of Dynamic Hazards By Factoring. In Proceedings of

the 30th Design Automation Conference (DAC), 1993, pp. 7-13.

[46] Murata, T. Petri Nets: Properties, Analysis and Applications. In Proceedings of the IEEE, Vol.

77, No. 4, 1989, pp. 541-580.

[47] Myers C. J, Meng T. H. Synthesis of Timed Asynchronous Circuits. In IEEE Transactions on

VLSI Systems, Vol. 1, No. 2, June 1993, pp. 106-119.

[48] Nielsen L.S, Niessen C, Spars� J, Berkel van K. Low-Power Operation Using Self-Timed

Circuits and Adaptive Scaling of the Supply Voltage. In IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 2, No. 4, December 1994, pp. 391-397.

[49] Nowick, S. M. Automatic synthesis of burst-mode asynchronous controllers. Tech. rep., Ph.D

Thesis, Computer Systems Laboratory, Stanford University, 1993.

[50] Nowick, S. M, and Dill, D. L. Exact two-level minimization of hazard-free logic with multiple-

input changes. IEEE Transactions on Computer-Aided Design, Vol. 14, No. 8, August 1995, pp.

986-997.

[51] Nowick, S. M, Coates B. UCLOCK: Automated Design of High-Performance Unclocked State

Machines. In Proceedings of the International Conference on Computer Design (ICCD), 1994, pp.

434-441.

[52] Panda P. R, Dutt N. 1995 High Level Synthesis Design Repository. Tech. Report 95-04, Uni-

versity of California, Irvine, February 1995.

[53] Pedron C, Stauffer A. Analysis and Synthesis of Combinatinal Pass Transistor Circuits. In

IEEE Transactions on CAD/CAS, Vol. 6, No. 5, 1988, pp. 727-750.

[54] Petrick S. R. A direct determination of the irredundant forms of a Boolean function from the set

of prime implicants. Air Force Cambridge research Center, Cambridge, Mass., Tech. Rep. AFCRC-

TR-56-110, 1956.

[55] Puri R, Gu J. A Modular Partitioning Approach for Asynchronous Circuit Synthesis. In Proceed-

ings of the ACM/IEEE Design Automation Conference, 1994, pp. 63-69.

[56] Radhakrishnan D, Whitaker S, Maki G. FormalDesign Procedures for Pass Transistor Switch-

ing Circuits. In IEEE Journal of Solid State Circuits, Vol. 20, No. 2, 1985, pp. 531-536.

[57] Rey C. A, Vaucher J. Self-synchronized Asynchronous Sequential Machines. In IEEE Transaction

on Computers, Vol. 23, No. 12, December 1974, pp. 1306-1311.

136

[58] Rosenberger F. U, Molnar C. E, Chaney T. J, Fang T. P. Q-Modules: Internally Clocked

Delay-Insensitive Modules. In IEEE Transactions on Computers, Vol. 37, No. 9, 1988, pp. 1005-1018.

[59] Rudell R. Logic Synthesis for VLSI Design. Ph.D. dissertation, Department of Electrical Eng.

and Computer Sci., University of California, Berkeley, 1989.

[60] Rudell R, Sangiovanni-Vincentelli A. Multiple-valued Minimization for PLA Optimization.

IEEE Trans. Computer-Aided Design, Vol. 6, No. 5, pp. 727-750, Sept. 1987.

[61] Sasi S, Radhakrishnan D. Hazards in CMOS Circuits. In International Journal on Electronics,

Vol. 68, No. 6, 1990, pp. 976-990

[62] Spars� J, Staunstrup J. Delay-insensitive multi-ring structures. In INTEGRATION, the VLSI

journal, 15, 1993, pp.313-340.

[63] Siegel P. S. Automatic Technology Mapping for Asynchronous Designs. Tech. Report, PhD

Thesis, Computer Systems Laboratory, Stanford University, March 1995.

[64] Sproull R. F, Sutherland I. E. Asynchronous Systems. Sutherland, Sproull and Associates,

Palo Alto, 1986, Vol. I: Introduction, Vol. II: Logical E�ort and Asynchronous Modules, Vol. III:

Case Studies.

[65] Stevens K. Tech. Report, PhD Thesis, Computer Systems Department, University of Calgary,

1994.

[66] Sutherland, I. Micropipelines. Communications of the ACM , Vol. 32, No. 6, June 1989, The

1988 ACM Turing Award Lecture.

[67] Sutherland I. E, Molnar C. E, Sproull R. F, Mudge J. C. The Trimosbus. CalTech

Conference on VLSI, January, 1979.

[68] Tapia M. A. Synthesis of Asynchronous Sequential Systems Using Boolean Caculus. In 14th

Asilomar Conference on Circuits, Systems and Computers, November 1980, pp. 205-209.

[69] Theobald M, Nowick S. M, Wu T. Espresso-HF: A Heuristic Hazard-Free Minimizer for Two-

Level Logic. In Proceedings of the 33rd Design Automation Conference, 1996, pp. 71-76.

[70] Tracey J. H. Internal State Assignment for Asynchronous Sequential Machines. IEEE Transac-

tions on Electronic Computers, EC-15(4), August 1966.

[71] Unger, S. H. Asynchronous Sequential Switching Circuits. Wiley-Interscience, 1969. ISBN 0-

89874-565-9

[72] VIS Group, the. VIS: A system for Veri�cation and Synthesis. In Proceedings of the Conference

on Computer Aided Veri�cation, New Brunswick, NJ, July 1996.

[73] Williams T. E. Performance of Iterative Computation in Self-Timed Rings. In Journal of VLSI

Signal Processing, 7, 1994, pp. 17-31.

[74] Yun, K. Y. Synthesis of asynchronous controllers for heterogeneous systems. PhD thesis, Stanford

University, Aug. 1994.

137

