Introduction to Digital Circuits

Module: SE1EB5 Computer and Internet Technologies
Lecturer: James Grimbleby
URL: http://www.elec.rdg.ac.uk/jbg.html
email: j.b.grimbleby@reading.ac.uk
Number of Lectures: 10
Recommended text book:
Alan Clements:
The Principles of Computer Hardware (3rd edition)
Oxford University Press 1999
ISBN 019856453-8

Introduction to Digital Circuits

Price: £25 (approx)

Engine Management System

Syllabus

Analogue vs digital; binary codes; error-detecting and error-correcting codes; Hamming distance

Boolean algebra; operations NOT, AND, OR; truth tables; Boolean identities and theorems; Boolean functions; Logic gates; combinational logic systems; analysis of combinational systems; duality

Karnaugh maps; Boolean simplification using K-maps; sum-of-products and product-of-sums forms; incompletelyspecified Boolean functions; implementation using logic gates

Syllabus

Universal logic gates; simple implementation method; formal method for NAND implementation; formal method for NOR implementation

Hazards in combinational logic systems; static and dynamic hazards; origin of static hazards in 2-level NAND systems; origin of dynamic hazards; design of hazard-free NAND and NOR systems

Other types of logic gate: EXOR gates; MSI combinational functions: 7 -segment, decoders and encoders, multiplexers; programmable logic

Syllabus

Sequential logic systems; RS Flip-flops; D-latch; edgetriggered flip-flops; edge-triggered D-type flip-flop

Asynchronous counters; synchronous counters; shift registers; design of synchronous counters using edgetriggered D-type flip-flops

Edge-triggered JK flip-flops; asynchronous counters, shift registers

Types of logic gate: TTL + variants, CMOS, ECL; comparisons of gate types; decoupling.

Analogue vs Digital

Analogue signals represent physical quantities by a simple proportional relationship

The precision of analogue signals is limited by noise/drift relative to the maximum signal and by non-linearity

Digital signals use numbers to represent physical quantities

There is in principle no limit to the precision of digital signals

Digital systems use binary numbers, rather than decimal, to define digital values

Binary Codes

Digital electronics uses binary values: 0 or 1
These are represented in digital circuits by voltages or currents, for example:

$$
\begin{array}{ll}
\text { Logic 0: } & 0 \mathrm{~V} \rightarrow 0.8 \mathrm{~V} \\
\text { Logic 1: } & 2.0 \mathrm{~V} \rightarrow 5.0 \mathrm{~V}
\end{array}
$$

Binary digits are called bits

Bits are normally processed in groups: a group of binary digits is called a binary word, or more simply, a word

Binary Codes

Digital words can be transmitted / processed in serial or parallel form:

5-bit word - serial data 11010:

5-bit word - parallel data 11010:

Binary Codes

Words represent information by the use of binary codes
Examples of binary codes:
Natural binary code Signed binary code
Floating-point codes
Gray code
Alpha-numeric codes
Extra bits can be added to any of these codes to make them error-detecting or error-correcting

Natural Binary Code

An n-bit word:

$$
d_{n-1}, \ldots d_{2}, d_{1}, d_{0}
$$

where d_{r} are the individual bits (value 0 or 1), represents the positive integer value:

$$
2^{n-1} d_{n-1}+\ldots+2^{2} d_{2}+2^{1} d_{1}+2^{0} d_{0}
$$

So the 6-bit natural binary word 010110 represents the integer value:

$$
\begin{aligned}
& 2^{5} .0+2^{4} .1+2^{3} .0+2^{2} .1+2^{1} .1+2^{0} .0 \\
& =16+4+2=22
\end{aligned}
$$

Natural Binary Code

Natural binary is the most efficient code in the sense that is uses the minimum number of bits

It is easy to perform arithmetic operations on natural binary code

8-bit natural binary code represents: $0 \rightarrow 255$
16-bit natural binary code represents: $0 \rightarrow 65535$

32-bit natural binary code represents: $0 \rightarrow 4295 \mathrm{M}$

In general an n-bit natural binary code represents: $0 \rightarrow\left(2^{n}-1\right)$

4-Bit Natural Binary Code

| Decimal |
:---		Natural		
binary	$	$	0	0000
:---:	:---:			
1	0001			
2	0010			
3	0011			
4	0100			
5	0101			
6	0110			
7	0111			

Natural
Decimal binary

8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Signed Binary Code

In many applications it is necessary to represent negative as well as positive numbers

For example: audio signals, bank account

The most common (and most satisfactory) representation for signed integers is 2 s -complement binary

The operations required to add or subtract 2s-complement numbers are identical to those for natural binary

2s-Complement Binary Code

To obtain the 2 s-complement representation of a negative number:

1. Obtain natural binary representation of its magnitude
2. Complement $(0 \rightarrow 1,1 \rightarrow 0)$
3. Add 1

Example: -5

Natural binary	$\frac{000101}{111010}$	5
Complement	$\frac{1}{111011}$	-5

2s-Complement Binary Code

The sign of a 2 s-complement number is determined by the most-significant (left-most) bit

8-bit signed binary code represents: $-128 \rightarrow+127$
16-bit signed binary code represents: $-32768 \rightarrow+32767$

32-bit signed binary code represents: $-2147 \mathrm{M} \rightarrow+2147 \mathrm{M}$
n-bit signed binary code represents: $-2^{n-1} \rightarrow+\left(2^{n-1}-1\right)$

Hamming Distance

The Hamming distance between two code words is the number of bits that must change to convert one code word into the other

```
10110011
Hamming distance \(=2\)
```

10011011

The minimum distance of a code is the minimum Hamming distance between any pair of words belonging to the code

An n-distance code is a code sequence where the Hamming distance between consecutive code words is n

Gray Code

Digital position transducer coded using natural binary:

Position $=1001($ binary $)=8+1($ decimal $)=9$
J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 18

Gray Code

This should work in principle, but fails in practice because the bits do not change simultaneously:

	8	0	0	1	1	1
4	1	0	0	0	0	
	2	1	1	1	1	0
Indicated position:	1	1	1	1	0	0
		7	3	11	10	8

Thus spurious positions of 3,11 , and 10 are generated between 7 and 8

This problem is overcome by using Gray code

4-Bit Gray Code

Decimal
Gray code
0 0000 1 0001 2 0011 3 0010 4 0110 5 0111 6 0101 7 0100

\(\left.$$
\begin{array}{l}\text { Decimal }\end{array}
$$ \begin{array}{c}Gray

code\end{array}\right]\)| 8 | 1100 |
| :---: | :---: |
| 9 | 1101 |
| 10 | 1111 |
| 11 | 1110 |
| 12 | 1010 |
| 13 | 1011 |
| 14 | 1001 |
| 15 | 1000 |

Gray Code

Digital position transducer coded using Gray code (unitdistant):

Alpha-Numeric Codes

ASCII (American Standard Code for Information Interchange) is a 7 -bit code representing alpha-numeric characters

The code includes control characters, punctuation, symbols, digits, letters:

0000000: nul	0001101: cr
0011011: esc	0101011: +
0110000: 0	0111001: 9
1000001: A	1011010: Z
1100001: a	1111010: z
1111111: del	

Error-Detecting Codes

An extra bit added to each binary word allows single errors to be detected (but not corrected)

This bit is called the parity bit and is chosen to make the total number of 1s even (even parity) or odd (odd parity)

A single error will lead to the number of 1 s changing from odd to even, or from even to odd; the change in parity then indicates an error

Parity codes are redundant, and have a minimum Hamming distance of 2

Error-Detecting Codes

Error-detecting codes have a minimum Hamming distance of 2:

Natural Binary Code / Even Parity 羉 Uneadiding

Decimal
Even Parity
0 00000 1 10001 2 10010 3 00011 4 10100 5 00101 6 00110 7 10111

$\left.\begin{array}{l}\text { Decimal } \\ \begin{array}{|c|c|}\hline & \text { Even } \\ \text { Parity }\end{array} \\ \hline 8 \\ \hline 9 \\ \hline 11000 \\ \hline 10\end{array}\right) 01001$

Natural Binary Code / Odd Parity

Decimal

	Odd Parity
0	10000
1	00001
2	00010
3	10011
4	00100
5	10101
6	10110
7	00111

Decimal

8	Odd Parity
9	01000
10	11001
11	01011
12	11100
13	01101
14	01110
15	11111

Error-Correcting Codes

Error-detecting codes are of little value in 1-way communications systems (cannot be corrected)

If a single bit error occurs in a code with a minimum distance of 3 or greater then the error can be both detected and corrected

This is because the single error generates a new word which is distance 1 from the original word; it is still distance 2 from any other code word

Sometimes called "forward error correction"

Error-Correcting Codes

Error-correcting code with minimum Hamming distance of 3 :

Valid codeword
Valid codeword

Error-Correcting Codes

Error-correcting code with minimum Hamming distance of 5:

Error-Correcting Codes

Decimal	E-C code
0 000000 1 011001 2 110010 3 101011	

Decimal E-C code

4	101100
5	110101
6	011110
7	000111

Right-most 3 bits are natural binary, left-most 3 bits are error-correction

Example: 110110 is not a valid codeword
Nearest valid codeword is 110010 (decimal 2)

Error-Correcting Codes

This deliberately-damaged CD can be read without errors

Boolean Algebra

Boolean algebra is an algebra of 2-state variables
Boolean variables can have the values 0 or 1

Boolean Algebra is used to describe digital systems where the binary signals have 2 values

There are three fundamental operations in Boolean algebra: NOT, AND, OR

These are defined by the use of truth tables

Boolean Algebra

NOT A or \bar{A} or A^{\prime}

A	\bar{A}
0	1
1	0

A AND B or $A . B$

A	B	$A . B$
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Algebra

A OR B or $A+B$

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

There are other Boolean operators such as \oplus (exclusive OR) and \Rightarrow (implies), but these can be written in terms of the operators NOT, AND, OR:

$$
A \oplus B \equiv A \cdot \bar{B}+\bar{A} \cdot B
$$

Boolean Algebra

The operations of AND and OR obey the usual laws of algebra:

Associative laws:

$$
\begin{aligned}
A \cdot(B \cdot C) & \equiv(A \cdot B) \cdot C \\
A+(B+C) & \equiv(A+B)+C
\end{aligned}
$$

Commutative laws:

$$
\begin{aligned}
A . B & \equiv B . A \\
A+B & \equiv B+A
\end{aligned}
$$

Distributive laws:

$$
\begin{gathered}
A \cdot(B+C) \equiv A \cdot B+A \cdot C \\
A+(B \cdot C) \equiv(A+B) \cdot(A+C)
\end{gathered}
$$

Proof: $A .(B+C) \equiv A . B+A . C$

A	B	C	$B+C$	$A .(B+C)$	$A . B$	$A . C$	$A . B+A . C$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

$A .(B+C)=A . B+A . C$ for all combinations of the variables:
thus $A .(B+C) \equiv A . B+A . C$
J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 36

Boolean Identities

A number of other identities follow from the definitions of NOT, AND, OR:

$$
\begin{array}{rlrl}
A+0 & \equiv A & A \cdot 0 & \equiv 0 \\
A+1 & \equiv 1 & A \cdot 1 & \equiv A \\
A+A & \equiv A & A \cdot A & \equiv A \\
A+\bar{A} & \equiv 1 & A \cdot \bar{A} \equiv 0
\end{array}
$$

Theorems of DeMorgan:

$$
\begin{aligned}
& \overline{A \cdot B} \equiv \bar{A}+\bar{B} \\
& \overline{A+B} \equiv \bar{A} \cdot \bar{B}
\end{aligned}
$$

Proof of DeMorgan's Theorems

A	B	$A . B$	$\overline{A . B}$	\bar{A}	\bar{B}	$\bar{A}+\bar{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

A	B	$A+B$	$\overline{A+B}$	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

J. B. Grimbleby School of Systems Engineering: Electronic Engineering

Boolean Functions

There is no unique form for a Boolean algebraic expression. Consider the function:

$$
F=\bar{A} \cdot(B+C+\bar{B} \cdot \bar{C})+A \cdot B \cdot \overline{(C+D)}
$$

By "multiplying out" the brackets and using DeMorgan's Theorems:

$$
F=\bar{A} \cdot B+\bar{A} \cdot C+\bar{A} \cdot \bar{B} \cdot \bar{C}+A \cdot B \cdot \bar{C} \cdot \bar{D}
$$

This is the sum-of-products standard form. An alternative standard form is the product-of-sums:

$$
F=(\bar{A}+B) \cdot(\bar{A}+\bar{B}+\bar{D}) \cdot(\bar{A}+\bar{B}+\bar{C})
$$

Algebraic Manipulation of Boolean Functions

Some simplification can be achieved by multiplying out brackets and using Boolean identities (including DeMorgan's theorems):

$$
\begin{aligned}
F & =A+C \cdot D+A \cdot B+\overline{(\overline{(C \cdot D)}+A)} \\
& =A+C \cdot D+A \cdot B+\overline{(\overline{(C+\bar{D}+A)}} \\
& =A+C \cdot D+A \cdot B+C \cdot D \cdot \bar{A} \\
& =A \cdot(1+B)+C \cdot D \cdot(1+\bar{A}) \\
& =A \cdot 1+C \cdot D \cdot 1 \\
& =A+C \cdot D
\end{aligned}
$$

This is the simplest sum-of-products form for F

Algebraic Manipulation of Boolean Functions

This process does not guarantee to produce the simplest sum-of-products form

Consider the function:

$$
F=X . Y+\bar{X} . Z+Y . Z
$$

There is no obvious way of simplifying this function algebraically. Nevertheless, the simplest form of the function is:

$$
F=X . Y+\bar{X} . Z
$$

Graphical methods for obtaining the simplest form will be discussed later

Switch Logic

$$
F=A \cdot B \cdot(C+D)
$$

Logic Gates

Binary signals are processed in electronic digital systems by logic gates:

Logic Gates

J. B. Grimbleby

Logic Gates

Logic Signals

Binary values are normally represented by voltages. For example in HCT logic:
Outputs: Inputs:

Noise immunity: \quad Logic $0=0.25 \mathrm{~V}$
Logic $1=0.4 \mathrm{~V}$

Combinational Logic Systems

Systems of logic gates where there is no feedback are called combinational logic systems

Combinational logic systems have the property that the output or outputs depend only on the present state of the inputs

Combinational systems can therefore be specified by a Boolean expression.

Logic systems with feedback have the property of memory and cannot be specified by a single Boolean expression.

Combinational Logic Systems

This combinational system implements the Boolean function:

$$
F=\bar{A} \cdot(B+C+\bar{B} \cdot \bar{C})+A \cdot B \cdot \overline{(C+D)}
$$

Duality

A Boolean equation remains valid when converted to its dual by changing all variables and constants to their inverses, and replacing AND by OR, and OR by AND

For example if: $\quad F=\bar{A} \cdot(B+C+\bar{B} \cdot \bar{C})+A \cdot B \cdot \overline{(C+D)}$
or:

$$
F=\{\bar{A} \cdot(B+C+\{\bar{B} \cdot \bar{C}\})\}+\{A \cdot B \cdot \overline{(C+D)}\}
$$

then:

$$
\bar{F}=\{A+(\bar{B} \cdot \bar{C} \cdot\{B+C\})\} \cdot\{\bar{A}+\bar{B}+\overline{(\bar{C} \cdot \bar{D})}\}
$$

or:

$$
\bar{F}=\{A+\bar{B} \cdot \bar{C} \cdot\{B+C\}\} \cdot\{\bar{A}+\bar{B}+\bar{C} \cdot \bar{D}\}
$$

Karnaugh Maps

Karnaugh maps (or K-maps) are graphical representations of Boolean functions and are used to simplify Boolean expressions

A K-map has one square for each combination of values of the variables

1-variable K-Map:

$$
F=\bar{A}
$$

Karnaugh Maps

2-variable K-map:

$$
F=\bar{A}+B
$$

	$B=0$	
		$B=1$
$A=0$	1	1
	0	1

3-variable K-map:

$$
F=C \cdot(A+\bar{B})
$$

$$
A=0\left\{\begin{array}{l}
\quad \begin{array}{l}
\\
B=0 \\
B=1 \\
B=0
\end{array} \\
A=1
\end{array}\right.
$$

Karnaugh Maps

4-variable K-map:

$$
F=A+B \cdot C \cdot D
$$

Note that adjacent columns and adjacent rows are unitdistant

Karnaugh Maps

A complication of 3- and 4-variable maps is that they must be regarded as being wrapped around on themselves:

1	1	0	0
0	0	0	0
0	0	0	0
1	1	0	0

$F=\bar{B} \cdot \bar{C}$

0	0	0	0
1	0	0	1
0	0	0	0
0	0	0	0

$F=\bar{A} \cdot B \cdot \bar{D}$

1	0	0	1
0	0	0	0
0	0	0	0
1	0	0	1

$F=\bar{B} \cdot \bar{D}$

Boolean Simplification

The preferred method for simplifying Boolean expressions in 4 variables or less uses K-maps

The first stage is to obtain the sum-of-products standard form using algebraic manipulation

The function is then represented in K-map form
Finally the simplest form for the expression is extracted from the K-map

To obtain the simplest sum-of-products form the K-map is inspected for the largest groups first; then for progressively smaller groups

Boolean Simplification

Simplest sum-of-products form for F is:

$$
F=\bar{A}+B \cdot \bar{C} \cdot \bar{D}
$$

Boolean Implementation

The simplest sum-of-products form for F :

$$
F=\bar{A}+B \cdot \bar{C} \cdot \bar{D}
$$

can now be implemented using a combination of AND, OR and NOT gates:

Boolean Simplification

To obtain a function F in simplest product-of-sums form, the first step is to obtain \bar{F} in simplest sum-of-products form:

Simplest sum-of-products form for \bar{F} is:

$$
\bar{F}=A \cdot \bar{B}+A \cdot D+A \cdot C
$$

Boolean Simplification

$$
\bar{F}=A \cdot \bar{B}+A \cdot D+A \cdot C
$$

Now use duality to obtain F in simplest product-of-sums form:

$$
\begin{aligned}
& \bar{F}=(A \cdot \bar{B})+(A \cdot D)+(A \cdot C) \\
& F=(\bar{A}+B) \cdot(\bar{A}+\bar{D}) \cdot(\bar{A}+\bar{C})
\end{aligned}
$$

OR invert and use DeMorgan's Theorems twice to obtain F in simplest product-of-sums form:

$$
\begin{aligned}
\overline{\bar{F}} & =\overline{(A \cdot \bar{B})+(A \cdot D)+(A \cdot C)} \\
& =\overline{(A \cdot \bar{B})} \cdot \overline{(A \cdot D)} \cdot \overline{(A \cdot C)} \\
F & =(\bar{A}+B) \cdot(\bar{A}+\bar{D}) \cdot(\bar{A}+\bar{C})
\end{aligned}
$$

Boolean Implementation

$$
F=(\bar{A}+B) \cdot(\bar{A}+\bar{D}) \cdot(\bar{A}+\bar{C})
$$

Incompletely-Specified Functions

It often happens that the value of a function is not specified for some combinations of the input variables

In other words the value of the function is "don't-care" and this is represented by X

K-maps can be used to simplify incompletely-specified functions, with the don't-care conditions being assigned either 0 or 1

Incompletely-specified functions cannot be defined by a Boolean expression; instead a truth table is used

Incompletely-Specified Functions

Function F defined by a truth table:

A	B	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	X

A	B	C	D	F
1	0	0	0	0
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Incompletely-Specified Functions

Each row of the truth table corresponds to one square of the K-map:

Simplest sum-of-products form for F is:

$$
F=B+C \cdot D
$$

Incompletely-Specified Functions

Simplest sum-of-products form for \bar{F} is:

$$
\bar{F}=\bar{B} \cdot \bar{C}+\bar{B} \cdot \bar{D}
$$

Simplest product -of-sums form for F is:

$$
F=(B+C) \cdot(B+D)
$$

Boolean Implementation

A Boolean function can be implemented by first obtaining the simplest sum-of-products form:

$$
F=B+C \cdot D
$$

The overall OR function is then implemented using an OR gate, each of the terms is implemented using AND gates, and NOT gates are used where required to invert the inputs:

Boolean Implementation

Alternatively implementation can start from the simplest product-of-sums form:

$$
F=(B+C) \cdot(B+D)
$$

The overall AND function is then implemented using an AND gate, each of the factors is implemented using OR gates, and NOT gates are used where required to invert the inputs:

Universal Logic Gates

NAND gates:
NOT

NOT

AND

Universal Logic Gates

NOR gates:
NOT

NOT

AND

OR

Implementation in NAND

1. Obtain the function in simplest sum-of-products form:

$$
F=A \cdot B+C \cdot D \cdot E+\ldots
$$

2. Invert the function twice (thus leaving it unchanged):

$$
F=\overline{A \cdot B+C \cdot D \cdot E+\ldots}
$$

3. Use DeMorgan's theorem on lower inversion:

$$
F=\overline{(A \cdot B) \cdot \overline{(C . D . E)} \ldots}
$$

4. The function can now be implemented using only NAND gates

Implementation in NAND

Example:

$$
\begin{aligned}
F & =\bar{A}+B \cdot \bar{C} \cdot \bar{D} \\
& =\overline{\overline{\bar{A}+B \cdot \bar{C} \cdot \bar{D}}} \\
& =\overline{\bar{A}} \cdot \overline{(B \cdot \bar{C} \cdot \bar{D})} \\
& =\overline{A \cdot(\overline{(B \cdot \bar{C} \cdot \bar{D})}}
\end{aligned}
$$

Design Example

The days of the week are represented by a 3-bit binary code:

	P	Q	R
Sunday	0	0	1
Monday	0	1	0
Tuesday	0	1	1
Wednesday	1	0	0
Thursday	1	0	1
Friday	1	1	0
Saturday	1	1	1

The code 000 will never occur

Design a NAND system to give 1 for the work-days, and 0 for the rest-days

Design Example

The first stage is to construct a K-map:

$R=0 \quad R=1$				
$P=0$	X	0	Unused	Sunday
	1	1	Monday	Tuesday
	1	0	Friday	Saturday
Q=0	1	1	Wednesday	Thursday

Note the use of X for the unused code: 000
The simplest sum-of-products form is:

$$
F=\bar{R}+\bar{P} \cdot Q+P \cdot \bar{Q}
$$

Design Example

$$
\begin{aligned}
F & =\overline{\bar{R}+\bar{P} \cdot Q+P \cdot \bar{Q}} \\
& =\overline{\bar{R} \cdot(\bar{P} \cdot Q) \cdot(P \cdot \bar{Q})} \\
& =\overline{R \cdot(\bar{P} \cdot Q)} \cdot \overline{(P \cdot Q)}
\end{aligned}
$$

Design Example

The numbers 0 to 15 are represented by the 4-bit natural binary code $A B C D$ (A is the most-significant bit, D the leastsignificant

A function F is required to have a value of 1 for prime numbers, and to have a value of 0 for composite (nonprime) numbers.

For the purpose of this design example the numbers 0 and 1 will be taken to be composite.

Design a combinational logic system consisting of NAND gates to implement the function F of the variables A, B, C and D.

Design Example

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

$$
F=\bar{B} \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot C+B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot D
$$

The 1s on the K-map can be grouped in a different way:

$$
F=\bar{B} \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot C+B \cdot \bar{C} \cdot D+\bar{A} \cdot C \cdot D
$$

Design Example

$$
\begin{aligned}
F= & \bar{B} \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot C+B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot D \\
& \overline{\bar{B} \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot C+B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot D} \\
& \overline{\overline{(B \cdot C \cdot D)} \cdot \overline{(\bar{A} \cdot \bar{B} \cdot C)} \cdot \overline{(B \cdot C \cdot D)} \cdot \overline{(\bar{A} \cdot B \cdot D)}}
\end{aligned}
$$

Implementation in NOR

1. Obtain the function in simplest product-of-sums form:

$$
F=(A+B) \cdot(B+C+D) \ldots
$$

2. Invert the function twice (thus leaving it unchanged):

$$
F=\overline{(A+B) \cdot(B+C+D) \ldots}
$$

3. Use DeMorgan's theorem on lower inversion:

$$
F=\overline{(A+B)+(B+C+D)+\ldots}
$$

4. The function can now be implemented using only NOR gates

Implementation in NOR

Example:

$$
\begin{aligned}
F & =(\bar{A}+B) \cdot(\bar{A}+\bar{D}) \cdot(\bar{A}+\bar{C}) \\
& =\overline{(\bar{A}+B) \cdot(\bar{A}+\bar{D}) \cdot(\bar{A}+\bar{C})} \\
& =\overline{(\bar{A}+B)+(\bar{A}+\bar{D})+(\bar{A}+\bar{C})}
\end{aligned}
$$

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 77

Design Example

The days of the week are represented by a 3-bit binary code:

	P	Q	R
Sunday	0	0	1
Monday	0	1	0
Tuesday	0	1	1
Wednesday	1	0	0
Thursday	1	0	1
Friday	1	1	0
Saturday	1	1	1

The code 000 will never occur

Design a NOR system to give 1 for the work-days, and 0 for the rest-days

Design Example

The first stage is to construct a K-map:

The simplest sum-of-products form for \bar{F} is:

$$
\bar{F}=\bar{P} \cdot \bar{Q}+P \cdot Q . R
$$

The simplest product-of-sums form for F is:

$$
F=(P+Q) \cdot(\bar{P}+\bar{Q}+\bar{R})
$$

Design Example

Hazards in Combinational Logic Systems

A hazard is a transient change that occurs in a logic system following a change in an input

Hazards are the result of gate delays

The output C is given by:

$$
C=A+B=A+\bar{A}=1
$$

Thus the output should stay at logic 1 , and be independent of the input.

Hazards in Combinational Logic Systems

In fact an output pulse occurs following the $1 \rightarrow 0$ input transition:

Hazard exists for a time equal to the gate delay (typically a few ns)

Hazards in Combinational Logic Systems

There are two types of hazard: static hazards and dynamic hazards

Static hazard:

Dynamic hazard:

Whether hazards are significant depends on the application
Hazards are always a problem if they occur in logic providing the input to a system with memory

Hazards in NAND Systems

2-level NAND system:

Input gates
Suppose that an input Q changes: no input gate can have both Q and \bar{Q} for inputs because:

$$
\overline{Q . \bar{Q} \ldots}=\overline{0}=1
$$

Hazards in NAND Systems

Case 1: (potential dynamic hazard)

Input gate 1

Input gate 2

No Hazard

Hazards in NAND Systems

Case 2: (potential static hazard)

Input gate 1
Input gate 2

Output

No Hazard

Hazards in NAND Systems

Case 3: (potential static hazard)

Input gate 1
Input gate 2
Output

Dynamic hazards do not occur in 2-level NAND systems
Static hazards can occur if one input gate changes from $0 \rightarrow 1$ whilst another input gate changes from $1 \rightarrow 0$

Properties of K-maps

Moving one square horizontally or vertically corresponds to changing a single input variable

Each input gate corresponds to a group of 1 s on the K-map: moving in or out of a group causes the corresponding input gate to change state

If 2 groups of 1 s on the K-map are adjacent and nonoverlapping (horizontally or vertically) then changing a single input variable can move out of one group and into the other

This is the condition for a static hazard

Example of a Static Hazard

$$
F=\bar{A} \cdot \bar{C}+B \cdot C \cdot D+A \cdot B \cdot C
$$

A static hazard may occur if the inputs change from $A=0$, $B=1, C=0, D=1$ to $A=0, B=1, C=1, D=1$

Example of a Static Hazard

$$
\begin{aligned}
F & =\bar{A} \cdot \bar{C}+B \cdot C \cdot D+A \cdot B \cdot C \\
& =\overline{\overline{\bar{A} \cdot \bar{C}+B \cdot C \cdot D+A \cdot B \cdot C}} \\
& =\overline{\bar{A} \cdot \bar{C} \cdot \overline{(B \cdot C \cdot D)} \cdot \overline{(A \cdot B \cdot C)}} \\
& =\overline{Q 1 \cdot Q 2 \cdot Q 3} \\
& \\
& A B C D
\end{aligned} \quad A B C D,
$$

This is condition for a static hazard

Eliminating Static Hazards

Static hazards are eliminated by including extra groups which overlap the offending transitions:

The input gate corresponding to the new group remains at 0 throughout the transition

Eliminating Static Hazards

$$
\left.\begin{array}{rl}
F & =\bar{A} \cdot \bar{C}+B \cdot C \cdot D+A \cdot B \cdot C+\bar{A} \cdot B \cdot D \\
& =\overline{\overline{\bar{A}} \cdot \bar{C}+B \cdot C \cdot D+A \cdot B \cdot C+\bar{A} \cdot B \cdot D} \\
& =\overline{\overline{\bar{A}} \cdot \bar{C} \cdot \overline{(B \cdot C \cdot D)} \cdot \overline{(A \cdot B \cdot C)} \cdot \overline{(\bar{A} \cdot B \cdot D)}} \\
& =\overline{Q 1 \cdot Q 2 \cdot Q 3 \cdot Q 4} \\
& \\
Q 1= & \overline{(\bar{A} \cdot \bar{C})} \\
Q 2 & =\overline{(B \cdot C \cdot D)}
\end{array} 10 \quad A B C D\right)
$$

Static hazard has been eliminated

Design Example

Implement the function: $F=A \cdot D+B . C+B . D$
in hazard-free form using NAND gates

Simplest sum-of-products form:

$$
F=A \cdot D+B \cdot C+B \cdot \bar{D}
$$

Design Example

Include an extra group to overlap the border between the adjacent groups:

Hazard-free sum-of-products form:

$$
F=A \cdot D+B \cdot C+B \cdot \bar{D}+A \cdot B
$$

Design Example

$$
\begin{aligned}
F & =A \cdot D+B \cdot C+B \cdot \bar{D}+A \cdot B \\
& =\overline{\overline{A \cdot D+B \cdot C+B \cdot \bar{D}+A \cdot B}} \\
& =\overline{\overline{(A \cdot D)} \cdot \overline{(B \cdot C)} \cdot \overline{(B \cdot \bar{D})} \cdot \overline{(A \cdot B)}}
\end{aligned}
$$

Hazards in NOR Systems

Dynamic hazards do not occur in 2-level NOR systems

Static hazards can occur if one input gate changes from $0 \rightarrow 1$ whilst another input gate changes from $1 \rightarrow 0$

If 2 groups of 0 s on the K-map are adjacent and nonoverlapping (horizontally or vertically) then changing a single input variable can move out of one group and into the other

This is the condition for a static hazard

Example of a Static Hazard

A static hazard may occur if the inputs change from $A=1$, $B=0, C=1, D=0$ to $A=0, B=0, C=1, D=0$

Example of a Static Hazard

$$
\begin{aligned}
\bar{F} & =(\bar{A} \cdot C)+(A \cdot \bar{B} \cdot \bar{D}) \\
F & =(A+\bar{C}) \cdot(\bar{A}+B+D) \\
& =\overline{(A+\bar{C}) \cdot(\bar{A}+B+D)} \\
& =\overline{\overline{(A+\bar{C})}+(\bar{A}+B+D)} \\
& =\overline{Q 1+Q 2}
\end{aligned}
$$

	$A B C D$	$A B C D$
Q1 $=\overline{(A+\bar{C})}$	1010	0010
Q2 $=\overline{(\bar{A}+B+D)}$	0	1
	1	0

This is condition for a static hazard

Eliminating Static Hazards

Static hazards are eliminated by including extra groups which overlap the offending transitions:

The input gate corresponding to the new group remains at 1 throughout the transition

Eliminating Static Hazards

$$
\left.\begin{array}{rl}
\bar{F} & =(\bar{A} \cdot C)+(A \cdot \bar{B} \cdot \bar{D})+(\bar{B} \cdot C \cdot \bar{D}) \\
F & =(A+\bar{C}) \cdot(\bar{A}+B+D) \cdot(B+\bar{C}+D) \\
& =\overline{\overline{(A+\bar{C})}) \cdot(\bar{A}+B+D) \cdot(B+\bar{C}+D)} \\
& =\overline{(\overline{(A+\bar{C})}+\overline{(\bar{A}+B+D)}+\overline{(B+\bar{C}+D)}} \\
& =\overline{Q 1+Q 2+Q 3} \\
& A B C D
\end{array} \quad A B C D\right)
$$

Static hazard has been eliminated

Design Example

Implement the function: $F=\bar{A} \cdot \bar{C}+B \cdot \bar{C}+A \cdot B . C$ in hazard-free form using NOR gates

Simplest sum-of-products form for F :

$$
\bar{F}=\bar{A} \cdot C+A \cdot \bar{B}
$$

Design Example

Include an extra group to overlap the border between the adjacent groups:

$$
A=0\left\{\begin{array} { l }
{ \quad \begin{array} { l }
{ } \\
{ B = 0 }
\end{array} } \\
{ A = 1 }
\end{array} \left\{\begin{array}{|l||l|}
\hline 1 & 0 \\
\hline 1 & 0 \\
B=1 \\
B=0 & \left\{\begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 1 & 1 \\
\hline \hline 0 & 0 \\
\hline
\end{array}\right. \\
\hline
\end{array}\right.\right.
$$

Hazard-free sum-of-products form:

$$
\bar{F}=\bar{A} \cdot C+A \cdot \bar{B}+\bar{B} \cdot C
$$

Design Example

$$
\begin{aligned}
\bar{F} & =(\bar{A} \cdot C)+(A \cdot \bar{B})+(\bar{B} \cdot C) \\
F & =(A+\bar{C}) \cdot(\bar{A}+B) \cdot(B+\bar{C}) \\
& =\overline{\overline{(A+\bar{C})} \cdot(\overline{\bar{A}}+B) \cdot(B+\overline{\bar{C}})} \\
& =\overline{\overline{(A+\bar{C})}+\overline{(\bar{A}+B)}+\overline{(B+\bar{C})}}
\end{aligned}
$$

Dynamic Hazards

There must be at least three paths between the input and output to give the minimum of three transitions that constitute a dynamic hazard:

Dynamic Hazards

Exclusive-OR Gates

A XOR B or $A \oplus B$

This function is similar to the normal (inclusive) OR function except for the case $A=1, B=1$

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	0

Electrical symbol:

Identities:

$$
\begin{aligned}
A \oplus B & \equiv B \oplus A \\
(A \oplus B) \oplus C & \equiv A \oplus(B \oplus C)
\end{aligned}
$$

Exclusive-OR Gates

Exclusive-OR functions of more than 2 variables can be generated by using several 2-input gates:

Operating between several variables the exclusive-OR function is 1 if an odd number of the input variables are 1

Exclusive-OR Gates

$B=0$		$B=1$
$A=0$	0	1
$A=1$	1	0
$A \oplus B$		

	$C=0$		$C=1$	
	$D=0$	$D=1 \quad D=0$		
$A=0\left\{\begin{array}{l}B=0\end{array}\right.$	0	1	0	1
	1	0	1	0
$B=1$	0	1	0	1
$A=1 \quad B=0$	1	0	1	0

$A \oplus B \oplus C \oplus D$

7-Segment Decoder

7-segment display:

7-Segment Decoder

To reduce the number of connections the cathodes or anodes of the LEDs are connected in common:

Common anode

Common cathode

7-Segment Decoder

Value Binary 7-Segment Display

	D	C	B	A	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

7-Segment Decoder

Functions a, b, c, d, e, f of the binary code A, B, C, D can now be obtained using a K-map:

Function a:

The simplest sum-of-products form for a is:

$$
a=B+D+A \cdot C+\bar{A} \cdot \bar{C}
$$

7-Segment Decoder

Medium-Scale Integration (MSI) devices are available which implement these Boolean functions and also provide current drive:

Devices are also available to drive Liquid-Crystal Displays (LCD) and multi-digit displays

Decoders

A decoder converts the information on n input lines to 2^{n} output lines

For any input combination one, and only one, output line is set to logical 1

For example, a
3-to-8 line decoder

74HCT138

$\begin{array}{ll}A & Y 0 \\ B & Y 1\end{array}$		
C	Y2	
	Y3	
	Y4	
	Y5	
	Y6	
	Y7	

Decoders

Truth table for a 3-to-8 line decoder:

C	B	A	$Y 0$	$Y 1$	$Y 2$	$Y 3$	$Y 4$	$Y 5$	$Y 6$
$Y 7$									
0	0	0	1	0	0	0	0	0	0
0									
0	0	1	0	1	0	0	0	0	0
0									
0	1	0	0	0	1	0	0	0	0
0									
0	1	1	0	0	0	1	0	0	0
0									
1	0	0	0	0	0	0	1	0	0
0									
1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	0

J. B. Grimbleby School of Systems Engineering: Electronic Engineering

Encoders

Encoders have 2^{n} input lines, n output lines, and perform the opposite operation to decoders

If one of the input lines is at logical 1 then the output lines indicate the code for this input

For example, an 8-to-3 line encoder

74HCT148

Priority Encoders

Truth table for an 8-to-3 line priority encoder:

$Y 0$	$Y 1$	$Y 2$	$Y 3$	$Y 4$	$Y 5$	$Y 6$	$Y 7$	C	B	A
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
X	1	0	0	0	0	0	0	0	0	1
X	X	1	0	0	0	0	0	0	1	0
X	X	X	1	0	0	0	0	0	1	1
X	X	X	X	1	0	0	0	1	0	0
X	X	X	X	X	1	0	0	1	0	1
X	X	X	X	X	X	1	0	1	1	0
X	1	1	1	1						

J. B. Grimbleby School of Systems Engineering: Electronic Engineering

Multiplexers

A multiplexer (MUX) is a combinational logic device that selects binary information from one of several input lines

For example, an 8-to-1 line MUX

74HCT152

Multiplexers

Truth table for a 1-to-8 line multiplexer:

C	B	A	W
0	0	0	$D 0$
0	0	1	$D 1$
0	1	0	$D 2$
0	1	1	$D 3$
1	0	0	$D 4$
1	0	1	$D 5$
1	1	0	$D 6$
1	1	1	$D 7$

Programmable Logic

Programmable logic is increasingly being used instead of standard gates

Programmable logic often leads to lower cost (both design costs and hardware costs)

Types of programmable logic include: PROMs, PALs, GALs and FPGAs

The function of programmable logic is determined by the state of "fuses" on the integrated circuit

These fuses are programmed in a special-purpose programmer connected to a PC

Programmable Array Logic

HDL Definition File

```
Name EX1;
Partno EXOOOO;
Date 6/ 10/ 98;
Rev O1;
Desi gner J.B. Gri nbl eby;
Company Uni versity of Reading;
Assenbly None;
Location None;
Device pl6l 8;
/* i nput pi ns */
PIN 1 = A;
PIN 2 = B;
PIN 3 = C;
PIN 4 = D;
```


Boolean Operator Symbols:

```
                                    ! }->\mathrm{ NOT
                                    & }->\mathrm{ AND
                                    # -> OR
```

/* out put pi ns */
PIN 19 = F ;
/* equations */
$F=!A \&(B \# C \#!B \&!C) \# A \& B \&!(C \# D) ;$

HDL Documentation File

```
Expanded Product Terns:
```

$!F \Rightarrow$
A \& ! B
\# A \& C
\# A \& D
Symbol Table:

Pin Pol	Vari able Name	Ext	Pin Type	Pterns Used	Max Pterms	

A	1	V	-	-	-
B	2	V	-	-	-
C	3	V	-	-	-
D	4	V	-	-	-
F	19	V	3	7	1

JEDEC Output File

```
CUPL( WND 4. 9a Serial # MW 20007187
Device
Created
Name
Partno
Revision
Date
Desi gner
Company
Assembl y
Locati on
* QP20
* QF2048
*GO
*FO
*LOOOOO 11111111111111111111111111111111
*L00032 10011111111111111111111111111111
*L00064 11010111111111111111111111111111
*LO0096 11011111011111111111111111111111
*COFD1
* 76D1
```


Sequential Logic Systems

Any logic system that has feedback can have memory
The output is not simply a function of the present value of the inputs, but also of previous states of the system

Digital circuits with memory are termed sequential
General sequential logic systems are formalised as FiniteState Machines (FSMs)

This course will only cover counters which are a subset of FSMs

RS Flip-Flops

Logic circuits having two stable states are called flip-flops
The simplest flip-flop consists of two cross-coupled NOT gates:

There are two stable states:

$$
\begin{aligned}
& A=0, B=1 \\
& A=1, B=0
\end{aligned}
$$

RS Flip-Flops

Replacing the inverters by NOR gates:

$$
\begin{array}{lll}
R=0, S=0: & Q=\overline{(0+P)}=\bar{P} & P=\overline{(0+Q)}=\bar{Q} \\
R=1, S=0: & Q=\overline{(1+P)}=\overline{1}=0 & P=\overline{(0+Q)}=\overline{0}=1 \\
R=0, S=1: & P=\overline{(1+Q)}=\overline{1}=0 & Q=\overline{(0+P)}=\overline{0}=1
\end{array}
$$

RS Flip-Flops

The behaviour of the RS flip-flop can be summarised in the table:

S	R	Q
0	0	$Q-$
1	0	1
0	1	0
1	1	X

where Q - represents the previous value of Q, and X means that the result is undetermined

RS flip-flops can be used to store 1 bit of data

RS Flip-Flops

An alternative RS flip-flop using NAND gates:

$$
\begin{array}{lll}
R=1, S=1: & Q=\overline{(1 . P)}=\bar{P} & P=\overline{(1 . Q)}=\bar{Q} \\
R=1, S=0: & Q=\overline{(0 . P)}=\overline{0}=1 & P=\overline{(1 . Q)}=\overline{1}=0 \\
R=0, S=1: & P=\overline{(0 . Q)}=\overline{0}=1 & Q=\overline{(1 . P)}=\overline{1}=0
\end{array}
$$

RS Flip-Flops

The behaviour of the NAND RS flip-flop can be summarised in the table:

S	R	Q
1	1	$Q-$
0	1	1
1	0	0
0	0	X

Like NOR-based RS flip-flops, NAND RS flip-flops are not normally used for data storage

A common application is switch de-bouncing

Switch De-Bouncer

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 131

The D-Latch

With the addition of two AND gates and an inverter the RS flip-flop becomes a D-latch:

$l e=0 \rightarrow S=0, R=0: \quad Q=Q-\quad$ (latch holds data)
$l e=1 \rightarrow S=D, R=\bar{D}: \quad Q=D \quad$ (latch accepts data)
NB: $S=1, R=1$ cannot occur

The D-Latch

The operation of the D-latch is to accept data when le=1, and to store the data when $l e=0$

Most D-latches also have an inverted output \bar{Q}

Note that the control terminal is level-sensitive: as long as le=1 the latch remains transparent (the output Q follows the input D)

Edge-Triggered Flip-Flops

Level-sensitive flip-flops are not suitable for use in clocked sequential systems such as counters

For such applications it is necessary to use a different type of flip-flop which is edge-sensitive

Edge-sensitive flip-flops respond only to a change in the value of the control input (clock)

In an edge-sensitive flip-flop the output can only change at the instant of the clock transition

The output value depends on the data inputs immediately before the clock transition

Edge-Triggered Flip-Flops

The edge-triggered D-type flip-flop has a single data input D, and a clock input clk

The output Q changes only on a 0-to-1 transition of clk:

$$
Q+=D-
$$

where $Q+$ is the output value after the transition and D - is the data input value immediately before the transition

Synchronous and Asynchronous Systems

Sequential systems using edge-triggered flip-flops are classified according to how the clock inputs of the flip-flops are connected

Synchronous systems:
The clocks of all flip-flops are connected together to a common source

Asynchronous systems:
The clocks of the flip-flops are derived from different sources (usually the outputs of other flip-flops)

Asynchronous Counters

A divide-by-2 counter can be constructed by connecting the D input to the inverted output

Asynchronous Counters

Divide-by-2 stages can be cascaded to construct a natural binary counter:

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 138

Asynchronous Counters

Delays in the flip-flops cause spurious outputs while the flipflops are in the process of changing state following an input transition:

Input
Q1
Q2
Q3

Q1:	1	0	0	0
Q2:	1	1	0	0
Q3:	0	0	0	1

Synchronous Counters

In synchronous counters the clock terminals of all the flipflops are connected to the input

Input

Q1

Q2

D2
J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 140

Synchronous Counters

Synchronous counters can easily be made to count in any modulo:

Input

Q1

Q2
D2

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 141

Shift Registers

Clock

J. B. Grimbleby School of Systems Engineering: Electronic Engineering

Serial-to-Parallel Conversion

Serial data can be clocked into the shift register until the complete data word is stored

The data is then available in parallel form at the outputs of the shift register stages

Parallel-to-serial conversion is more difficult using the standard D-type flip-flop

Some flip-flops have asynchronous load which allows data to be forced onto the output

Data loaded in parallel into the flip-flops can be clocked out in serial form

Johnson-Code Counters

Johnson-code counters are shift registers with feedback from the inverting output.

They are synchronous and count modulo $2 n$ where n is the number of flip-flops

3-stage Johnson-code counter:

Johnson-Code Counters

Precautions must be taken to prevent the counter getting into one of the unused states:

Chain-Code Generators

Q1

Q2
Q3
 D1

Design of Synchronous Counters

Counter is required to count modulo-m: then n flip-flops will be required where $2^{n} \geq m$

The counter will consist of the n flip-flops connected to a common clock, each with a combinational logic network generating its D input from all the outputs:

Design of Synchronous Counters

Modulo-3 counter with 2 outputs A and B :

State	A	B	
1	0	0	
2	1	1	
3	1	0	
1	0	0	etc.

Y-map shows next state for each present state:

State $A=0, B=1$ does not occur in the required sequence, and is termed an unused state

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering

Design of Synchronous Counters

Now split Y-map into separate K-maps:

Thus:
$D A=\bar{A}+B$
$D B=\bar{A}$

Design of Synchronous Counters

Check unused states:

$$
\begin{gathered}
D A=\bar{A}+B \quad D B=\bar{A} \\
A=0, B=1: D A=1+1=1, D B=1 \rightarrow \quad A=1, B=1
\end{gathered}
$$

Design of Synchronous Counters

If the counter gets into any unused state it should regain the correct counting sequence after a limited number of input clock cycles

If necessary modify K-maps to force the unwanted state (01) back to a correct sequence state (00):

These functions are more complex than originals

Design Example

Design a modulo-5 synchronous counter, using D-type flipflops and NAND gates, that has 3 outputs A, B, C and counts in the sequence:

State	A	B	C	
1	0	1	0	
2	1	0	0	
3	0	0	1	
4	0	1	1	
5	1	1	0	
1	0	1	0	etc.

The number of flip-flops n required is given by:

$$
2^{n} \geq 5 \rightarrow n=3
$$

Design Example

State	A	B	C	
1	0	1	0	
2	1	0	0	
3	0	0	1	
4	0	1	1	
5	1	1	0	
1	0	1	0	etc.
Y-map:	$C=0$	$C=1$		
$\left\{\begin{array}{l}B=0\end{array}\right.$	XXX	011		
$A=0\}_{B=1}\{$	100	110		Present state 011 Next state 110
	010	XXX		
$A=1 \quad B=0$	001	XXX		
$D A D B D C$				

Design Example

$$
\begin{aligned}
& D A=\bar{A} . B \quad D B=C+A . B \\
& D C=\bar{B}
\end{aligned}
$$

Design Example

$$
D A=\bar{A} \cdot B \quad D B=C+A \cdot B \quad D C=\bar{B}
$$

Unwanted states:

$$
\begin{aligned}
& A=0, B=0, C=0: D A=0, D B=0, D C=1 \rightarrow A=0, B=0, C=1 \checkmark \\
& A=1, B=0, C=1: D A=0, D B=1, D C=1 \rightarrow \quad A=0, B=1, C=1 \checkmark \\
& A=1, B=1, C=1: D A=0, D B=1, D C=0 \rightarrow \quad A=0, B=1, C=0 \checkmark
\end{aligned}
$$

Convert to NAND form:

$$
D A=\overline{\overline{\bar{A}} \cdot B} \quad D B=\overline{\bar{C}} \cdot \overline{(A \cdot B)} \quad D C=\bar{B}
$$

Design Example

$$
D A=\overline{\bar{A} \cdot B} \quad D B=\bar{C} \cdot \overline{(A \cdot B)} \quad D C=\bar{B}
$$

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 156

Design Example

Design a modulo-5 synchronous counter, using D-type flipflops and NOR gates, that has 3 outputs A, B, C and counts in the sequence:

State	A	B	C	
1	0	1	0	
2	1	0	0	
3	0	0	1	
4	0	1	1	
5	1	1	0	
1	0	1	0	etc.

The number of flip-flops n required is given by:

$$
2^{n} \geq 5 \rightarrow n=3
$$

Design Example

$$
\overline{D A}=A+\bar{B} \quad \overline{D B}=A \cdot \bar{B}+\bar{A} \cdot \bar{C} \quad \overline{D C}=B
$$

Duality:

$$
D A=\bar{A} \cdot B \quad D B=(\bar{A}+B) \cdot(A+C) \quad D C=\bar{B}
$$

Design Example

$$
D A=\bar{A} \cdot B \quad D B=(\bar{A}+B) \cdot(A+C) \quad D C=\bar{B}
$$

Unwanted states:

$$
\begin{array}{ll}
A=0, B=0, C=0: D A=0, D B=0, D C=1 \rightarrow & A=0, B=0, C=1 \checkmark \\
A=1, B=0, C=1: D A=0, D B=0, D C=1 \rightarrow & A=0, B=0, C=1 \checkmark \\
A=1, B=1, C=1: D A=0, D B=1, D C=0 \rightarrow & A=0, B=1, C=0 \checkmark
\end{array}
$$

Convert to NOR form:

$$
D A=\overline{A+\bar{B}} \quad D B=\overline{(\bar{A}+B)}+\overline{(A+C)} \quad D C=\bar{B}
$$

Design Example

$$
D A=\overline{A+\bar{B}} \quad D B=\overline{\overline{(A+B)}+\overline{(A+C)}} \quad D C=\bar{B}
$$

Edge-Triggered JK Flip-Flops

The edge-triggered JK flip-flop has 2 data inputs J, K, and a clock input clk

The output Q changes only on a 0-to-1 transition of clk

The output Q+ immediately after the clock transition depends on the output Q - and the inputs J-, K - immediately before the transition

Edge-Triggered JK Flip-Flops

$J-$	$K-$	$Q+$
0	0	$Q-$
1	0	1
0	1	0
1	1	$\overline{Q-}$

A divide-by-2 counter can be constructed by connecting the J and K inputs to logic 1 :

J. B. Grimbleby

School of Systems Engineering: Electronic Engineering

Edge-Triggered JK Flip-Flops

Asynchronous natural binary counter:

Input

Q1

Q2

Q3
J. B. Grimbleby

School of Systems Engineering: Electronic Engineering
Slide 163

Edge-Triggered JK Flip-Flops

Shift register:

JK flip-flops can be used to design synchronous counters. The design process is more complicated than design with D-type flip-flops, but the result is often more economical

Types of Logic Gate

Electromechanical relays: slow ($\sim 10 \mathrm{~ms}$), poor reliability, physically large $\left(\sim 5 \mathrm{~cm}^{3}\right)$, high power consumption

Vacuum tubes: faster ($\sim 10 \mu \mathrm{~s}$), poor reliability, physically large ($\sim 2 \mathrm{~cm}^{3}$), high power consumption

Semiconductor devices: fast, (10 ns), excellent reliability, very small ($\sim 10^{-9} \mathrm{~cm}^{3}$), low power consumption

Three main families of semiconductor logic gates: TTL, CMOS and ECL

Types of Logic Gate

The important parameters of a logic family are:
Power dissipation: this is usually dependent on the transition frequency at the gate output.

Propagation delay: determines the maximum operating speed

Noise margin: high value reduces the susceptibility to interference

Fan-out: the maximum number of gates inputs that can be connected to a single gate output

Transistor-Transistor Logic (TTL)

TTL was the first integrated logic family and is still the most commonly used
$\begin{array}{lll}\text { Logic levels: } & \text { logic } 0 & 0.0 \rightarrow 0.8 \mathrm{~V} \\ & \text { logic } 1 & 2.0 \rightarrow 5.0 \mathrm{~V}\end{array}$
Basic TTL logic gate is NAND
Available in a number of variants including 74xxx, 74Sxxx, 74Lxxx, 74LSxxx, 74ASxxx, 74ALSxxx, 74Fxxx

Only the 74ALSxxx and 74Fxxx should be used in new designs

Properties of TTL Logic

(Values apply to the 74ALSxxx logic family)
Supply voltage: $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Propagation delay: 4 ns
Speed-power product (10 MHz): 5 pJ
Quiescent power consumption: 1 mW
Noise margin: 0.3 V
Fan-out: 20
Cost: Medium

Transistor-Transistor Logic (TTL)

The bipolar transistor:

Emitter

When used as a switch the transistor has two states:

$$
\begin{aligned}
& \text { OFF: } I_{B}=0 \quad I_{C}=0 \\
& \mathrm{ON}: \quad I_{B}>I_{C} / \beta \quad V_{B E}=0.6 \mathrm{~V} \quad V_{C E}<0.2 \mathrm{~V}
\end{aligned}
$$

Transistor-Transistor Logic (TTL)

Resistor-transistor logic gate:
Logic 0: 0.0V $\rightarrow 0.5 \mathrm{~V}$
Logic 1: $3.0 \mathrm{~V} \rightarrow 5.0 \mathrm{~V}$

$$
\begin{aligned}
& A=0\left\{\begin{array}{l}
\\
B=0 \\
B=1 \\
B=0
\end{array} \begin{array}{l}
C=0 \\
\hline 1
\end{array} \begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 0 \\
\hline 0 & 0 \\
\hline 0 & 0 \\
\hline
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
F & =\bar{A} \cdot \bar{B} \cdot \bar{C} \\
& =\overline{A+B+C}
\end{aligned}
$$

NOR gate

Complementary Metal-Oxide Semiconductor (CMOS) Logic

CMOS was introduced after TTL and is the technology used in nearly all LSI devices

It is now replacing TTL in most SSI and MSI applications because of its speed and lower power consumption

Logic levels:	logic 0	$0.0 \rightarrow 1.5 \mathrm{~V}$
(Typical)	logic 1	$3.5 \rightarrow 5.0 \mathrm{~V}$

There are also TTL-compatible CMOS logic families:
74HCTxxx and 74VHCT

Properties of CMOS Logic

(Values apply to the 74HCxxx logic family)
Supply voltage: $2 \mathrm{~V} \rightarrow 6 \mathrm{~V}$
Propagation delay: 10 ns
Speed-power product (10 MHz): 50 pJ
Quiescent power consumption: $10 \mu \mathrm{~W}$
Noise margin: 1.25 V
Fan-out: 20
Cost: low

CMOS Logic

Metal-oxide semiconductor (MOS) transistors:
n-channel MOSFET

p-channel MOSFET
Source

OFF: $V_{G S}=0.0 \rightarrow 1.5 \mathrm{~V}$
$R_{D S}>1 \mathrm{M} \Omega$
ON: $\quad V_{G S}=3.5 \rightarrow 5.0 \mathrm{~V}$ $R_{D S}<10 \Omega$

OFF: $V_{G S}=-1.5 \rightarrow 0.0 \mathrm{~V}$
$R_{D S}>1 \mathrm{M} \Omega$
ON: $\quad V_{G S}=-5.0 \rightarrow-3.5 \mathrm{~V}$ $R_{D S}<10 \Omega$

CMOS NOT Gate

Thus when input is low, output is high, and when input is high, output is low
J. B. Grimbleby

School of Systems Engineering: Electronic Engineering

CMOS NOR Gate

A	B	Q1	Q2	Q3	Q4	F
lo	lo	OFF	OFF	ON	ON	hi
lo	hi	OFF	ON	ON	OFF	lo
hi	lo	ON	OFF	OFF	ON	lo
hi	hi	ON	ON	OFF	OFF	lo

CMOS NAND Gate

A	B	Q1	Q2	Q3	Q4	F
lo	lo	OFF	OFF	ON	ON	hi
lo	hi	OFF	ON	ON	OFF	hi
hi	lo	ON	OFF	OFF	ON	hi
hi	hi	ON	ON	OFF	OFF	lo

Emitter-Coupled Logic (ECL)

ECL is the fastest, and most difficult to use, logic family
Logic levels: logic $0 \quad-1.850 \rightarrow-1.475 \mathrm{~V}$ logic $1 \quad-1.105 \rightarrow-0.810 \vee$

Basic ECL logic gate is OR / NOR
Difficult to interface to other logic families
Extreme switching speed means that length of interconnections becomes significant

Used only when the fastest switching speed is essential

Properties of ECL Logic

(Values apply to the 100K logic family)
Supply voltage: -4.5 V
Propagation delay: 0.75 ns
Speed-power product: 80 pJ
Quiescent power consumption: 40 mW
Noise margin: 0.125 V
Fan-out: 20
Cost: high

Decoupling

All logic devices take current pulses from the power supply when switching output state

This causes negative-going pulse on the power supply (because of supply impedance)

Thus switching in one device could affect another device
This problem is overcome by decoupling: capacitors are placed across the supply close to the logic devices

Typically 47 nF ceramic capacitors are used
For high-speed logic a decoupling capacitor is required close to each device

Introduction to Digital Circuits

© J. B. Grimbleby, February 07

