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ABSTRACT

Effective logic simulation programs must consider
device propagation delays to be bounded values.
This requires that the logic devices be simulated
by models which use a multi-valued logical
algebra.

A quinary algebra is developed and employed in
special algorithms which not only accurately pre-
dict the behavior of a logic circuit for all values of
delay, but also detect the possibility of latent
hazards and race conditions.

A sample problem is simulated, and conclusions
drawn.

INTRODUCTION

Several logic simulation programs have been de-
veloped to assist in the design and analysis of
switching circuits, but these programs are not en-
joying wide usage by logic designers. Basically,
the problem lies in the fact that the simulation
models of the logic devices have not been complete
enough to reliably predict the behavior of a cir-
cuit for all combinations of device delays.

Users of logic simulation programs typically
select the maximum propagation delay specifica-
tion for each device, assuming that this is the
"worst-case" situation. However, it can easily
be shown that other combinations of delays may
actually be the "worst-case". For example, con-
sider the circuit of Figure 1. Assume that it is
part of a larger circuit, and that for the time
period of consideration:

a=0 and b=0.
Furthermore, assume that all devices are se-
lected from a batch for which the propagation de-
lay lies in the range:

5 = 0 = 15 nanoseconds.
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Figure 1. Hazard Example
If the circuit is simulated using the maximum de-
lay for all devices, then there is no output pulse
for the given input transition as shown in Figure 2.
However, Figure 3 illustrates an assortment of
delays which yields an output pulse from the cir-
cuit. This situation is known as a "hazard", and
is obviously an important consideration in the
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Figure 2. Timing Diagram for Maximum Delays

X, |
Xo |

T T (R S TR S S S I B
0 10 20 306 40 50

nanoseconds

Figure 3. Timing Diagram for Random Delays



design of logic networks since hazards can cause
a circuit to malfunction. Several simulation runs
could be made with random choices of delays to
try to find such hazards, but it is doubtful that all
such delay-dependent situations would be un-
covered if given a large logic network. There-
fore, it is obvious that any useful and realistic
simulation must be based on device models which
simultaneously consider all possible values of
propagation delay. In other words, given a de-
vice with an input transition, the model must pre-
dict the earliest and the latest possible time that
the device output could change. The models de-
veloped in this report (and the corresponding
simulation program) reliably locate all hazards
by treating propagation delays as bounded values.

MODELING DEVICE CHARACTERISTICS

Actual logic devices have two main characteris-
tics: their specific logic function, and their in-
herent propagation delay. Thus any modeling can
be separated into two parts as shown in Figure 4.
Such a model assumes that all delays are associa-
ted with device outputs, and are therefore lumped
at those points. This infers that delays due to
wire length are negligible compared to delays due
to logic devices.
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Figure 4. Basic Device Model
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Part 1: Logic Function

Assume that the input logic signals to a particular
device have been sampled at some instant of time
so that their values are stable. These inputs are
then applied to the first part of the modeling pro-
cess which is a time-independent evaluation of the
logic function of the device.

For example, if the device is an OR gate, the
logic function is given by

Y=X,_ORX,OR.... X
1 2 n

where the sampled input signals are denoted by
X, Koy veee X

If the device is a T flip-flop, then the logic
function is given by

Y" = T EXOR Y"1
where the superscript n denotes the nth calculation

of Y, and T = 1 means that the flip-flop has been
triggered by a clock pulse.

Although these functions are normally evaluated

using a Boolean algebra of binary variables(l),
other algebras of multi-valued variables are
. 2, 3, 4, 5¢, 6, 7, 8)
sometimes more useful.

Part 2: Delay Function

The second part of the modeling process uses the
propagation delay parameter(s) of the particular
device and the results accumulated from Part 1
to compute the behavior of the device at its output
terminal.

Fixed Propagation Delay

Every physical logic device will exhibit a non-
zero amount of propagation delay. If the delay of
a single device is known, its delay characteristic
can be described by

Z(t) = Y(t-0)
where
Y(t) ={F Xl(t), Xz(t), Xn(t)

and 0 is the propagation delay of the device.

In a simulation program, time is a variable which
changes in discrete steps so that
+ At

b=t

Therefore, if we compute
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to the nearest whole integer, then the delay
characteristics can be expressed incrementally by
Z. =Y, .
i i-n

This relationship is given in block diagram form
by Figure 5.
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Figure 5. Fixed Delay Function

The delay function for fixed propagation delay can
be thought of as a storage vector for the values
calculated by the logic function. For each ti the

values in the vector are shifted down, and the new



value of Yi is placed at the top. The value at the
bottom of the storage vector is Yi-n’ or the pre-

sent state of the output logic signal, Zi'

Bounded Propagati()n Delay (2)(53.)

The consideration of a propagation delay as a
bounded value requires that the design and analysis
allow for a period of time between the earliest and
the latest transition of the output during which the
output of the device is indeterminate. For ex-
ample, consider the example of Figure 6.
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Figure 6. Bounded Delay Example

The output signal of the inverter is shown relative
to the given input signal. The period of time when
the output is indeterminate is shown asthe cross-
hatched region defined by the difference between

6 . and$d , the minimum and maximum
min max

propagation delay specifications. Note, however,
that the signal transition has a direction (obviously
there are two possible directions) impled by the
signal values at either end of the transition.

In order to simulate bounded propagation delays,
one value of Zi must be calculated for every
possible delay.
- .
_| 6min _ | 5 max
Py = _At—} and ny = [_At_] :
Thus there will be n2-n1+1 possible solutions for
Z..
i

a value which is representative of all of the
possible solutions.

For example, let

These solutions are then used to determine
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Figure 7. Bounded Delay Function
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Just as for the fixed delay function, the bounded
delay function of Figure 7 uses a storage vector
for the values calculated by Part 1 of the modeling
process. Similarly, for each ti the values in the

vector are shifted down, and the new value of Yi

is placed at the top. However, now all of the

values from Y, to Y, are inputs to a special
i-n, i-n,

function which determines a value for Zi which is

representative of all possibilities.

The set of normal binary values (0=FALSE;
1=TRUE) is no longer adequate to represent the
value of Zi' Now higher-order number systems

with new value assignments must be used when Zi

is not known to be exactly "TRUE" or exactly
"FALSE"*,

QUINARY LOGICAL ALGEBRA

The logical algebra normally used for logic design

(1)

is known as Boolean algebra'"’. It involves
variables (X, Y, etc.) which may have values
from the set:

{o,1}
FALSE
TRUE.

Hn e

X
where 0
dl1

This representation implies that logic signals may
only be classified as either exactly TRUE or ex-
actly FALSE. In order to study the behavior of
logic circuits during periods when their values

are not exactly defined, other mathematical repre-
sentations which allow non-binary values are re-
quired. The quinary logical algebra defined in
this report meets this requirement by using five
symbols to represent various logic conditions as
shown in Figure 8.

Quinary

Interpretation
symbol P

0 Equivalent to state 0 of the two-valued
switching algebra

1 Equivalent to state 1 of the two-valued
switching algebra

The representation of a logic signal during
a period of time allowed for a transition
from state O to state |

01

The representation of a logic signal during
a period of time allowed for a transition
from state 1 to state 0

1/0

The representation of a logic signal not
covered by any of the above (l.e., hazards
and race conditions)

%

Figure 8. Quinary Symbol Interpretations

*Note that this requires the logic function to
handle non-binary input values.



The quinary logical operators are based on the
following set of axiomatic rules, similar to those
of binary Boolean algebra:

0AND5X=0 OOR5X=X
1AND5X=X 10R5X=1
XAND5 X=X XOR5X=X

where X ¢ {0, 1, 0/1, 1/0, and 2} .

This set defines the quinary AND and the quinary
OR operations for nineteen of the twenty-five
ordered pairs of quinary values. The remaining
six pairs are those among the quinary values
0/1, %, and 1/0. The AND and OR operations
for these pairs are indeterminate and are thus
assigned values of % . The complete AND and OR

operators of quinary logical algebra are sum-
marized in the following truth tables:

Y
x 0 o1 % 1/0 1
ojofolojo]o
0/l r'o /1 % | %0/
51005 |5 5]3%
10l 0 15 | % [1/0]1/0
1o o]y /o)
X AND, Y
Y
x 0 01y 1/0 1
oo |01y [1/0]0
ooy |y 5|1
Y 5[5 0515

10{1/00y | 1 101

Figure 9. Quinary AND and OR Operators
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It can be shown by an exhaustive test of all cases
that these relationships obey the associative and
commutative laws.

The remaining logical operation of complementa-
tion is defined by the following truth table.

X

0/1{1/0

1/0 | o

NOT5 X

Figure 10. Quinary NOT Operator

No attempt has been made to define these functions

in terms of Post algebra(g). Rather, the algebra
is meant to be a "table-look-up" process based on
rather obvious and intuitive relationships, and it

is designed to yield a value of—;- whenever there

is the possibility of a hazard.
SIMULATION ALGORITHMS

A logic simulation program is a repetitive process
involving certain algorithms which are the im-
plementations of the models used to represent the
logic devices. Three algorithms have been de-
veloped here to implement the models of combina-
tional logic, flip-flops, and bounded delays.

Combinational Logic Algorithm

Since quinary logical algebra is both associative
and commutative, then the specific logic function
of any combinational device may be separated into
inverters and two-input AND and OR gates. Then
the truth tables of the algebra may be used to
evaluate the logic function, and determine the in-
put to the bounded delay function. An example of
such a decomposition is illustrated in Figure 11.

1 AND
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3 INV

AND Y

X4

Figure 11, Decomposition of 4-Input NAND Gate



Flip-Flop Algorithm

There are many types of flip-flops currently
available to the logic designer, such as the J-K,
R-S8, T, and D types. Each of these can be
thought of as a basic memory cell and some as-
sociated combinational logic. Consider a basic
memory cell which has a clock input that causes
the cell to change state from its present state to
the complement of its present state every time
the clock input is pulsed. Furthermore, let the
associated combinational logic define the clock
for the cell as a function of the cell's present
state and any inputs. Then, for example, a D type
flip-flop can be realized by a logic circuit such as
the one shown in Figure 12, A quick examination
of the circuit will show that the flip-flop realiza-
tion behaves as a D type, since the output Q takes
the value of the input D after every clock pulse.

» _Jpred

]
Basic
Memory
AND
CLOCK —— Cell Q
Figure 12. Realization of D Type Flip-Flop

Some flip-flops also have a pair of direct inputs
which override all other inputs. These should be
added to the basic memory cell as shown in

Figure 13.
SET ]
Basic
Memory|
CLOCK — Q

Cell

CLEAR ——-j\

Figure 13. Improved Memory Cell

This basic memory cell with some associated
combinational logic can now be used to realize
any type of flip-flop similar to the use of the com-
binational logic algorithm to realize any type of
combinational logic device.

The study of the simulation algorithm of this
model of a basic memory cell can be simplified
if the input states are separated into two cases:

Case 1: SET # 0 and/or CLEAR £ 0.

In this case the direct inputs (SET and CLEAR)
override any clock input pulses. Then the output
(to be used as an input to the bounded delay al-
gorithm) behaves according to the flow chart of
Figure 14.
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Figure 14. Flip-Flop Algorithm
(SET # 0 and/or CLEAR # 0)

As shown by the flow chart, if either the SET in-
put or the CLEAR input is 0, then the other must
not be 0, and the value of the output is determined
by the value of the latter input. However, if
neither of the inputs is 0, then a "race" condition
exists since the flip-flop is simultaneously being
set and cleared. In such a situation, the output

is indeterminate (%).
The derivation of this part of the algorithm is
based on rather obvious and intuitive relation-

ships which characterize the behavior of SET and
CLEAR inputs in general.

Case 2: SET =0 and CLEAR = 0.

In this case the direct inputs are disabled, and the
behavior of the basic memory cell is a function of
its previous state (Qn-l) and the CLOCK input.

Therefore, the previous value (CLOCKn_l) and
the present value (CLOCKn) of the clock must be

compared to determine if a transition* has tog-
gled the flip-flop. Figure 15 is a flow chart of
this portion of the algorithm:
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Figure 15. Flip-Flop Algorithm

(SET and CLEAR = 0)

*Tt is assumed here that only negative transitions

will toggle the flip-flop.



Considering Figure 15, it should be obvious that
an indeterminate ("% ") CLOCK must cause the

output to be indeterminate. Furthermore, the
state of the flip-flop will continue to be indeter-
minate until it is redefined by either the SET or
CLEAR input. If the flip-flop is toggled by a
CLOCK transition, the output is determined ac-
cording to whether the toggle was a definite tog-
gle or only a possible toggle as shown in the
figure. A possible toggle imples that there is a
possibility that the flip-flop output may have
changed, but such a change is not guaranteed.

Bounded Delay Algorithm

As discussed previously, the propagation delay of
a logic device should be simulated as a bounded
value. This may be accomplished by an algorithm
based on Figure 7. In such aa algorithm there
are two main parts., First there is a storage vec-
tor for the values calculated by Part 1 of the
modeling process (Yi through Y, ), and secondly,
2

the values of Y,
i-n,
special function which selects a value for Zi

through Yi-n are inputs to a

which is representative of all of the nz—n1+1
possible solutions.

The selection of a value for Zi depends on the

through Y, as
1 -

order of the values of Y,
1-n l’l2

well as their actual values. There are four types

of sequences of the values of Y that can occur, and

these determine the value of Zi in the following

manner:

TYPE 1 (Identical inputs): If all of the
values of Y, through Y. are the same,
1-n1 1—n2
then Zi must take that value.
TYPE 2 (Indeterminate inputs): If any of the
through Y, is then
i-n,

non
’

values of Y.
1-n
the value of Zi is also "%".

TYPE 3 (Ordered inputs): If the values of Y,
taken in order from Y, to Y, , cor-
i-n, i-n,
respond to an increasing (decreasing) se-
quence such as "0"-"0/1"-1" ("1"-"1/0"-
"0") with any one of these values either re-
peated or missing, then the value of Z, is
"0/1" (nl/on). 1

TYPE 4 (Unordered inputs): If the values of

Y. through Y, do not correspond to an
i-n, i-n,

increasing or decreasing sequence, then the

5 n_l_ "
value of Zi is "3".
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These types yield a value for Zi which is worst-

through
1
, each of which is a possible value for Zi’

case representation of the values of Yi—n

Yi-n2
corresponding to each of the possible values of
propagation delay of the device. This is based on
rather obvious and intuitive relationships, similar
to the definition of the quinary logical algebra.

Consider the examples of Figure 16.
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Figure 16. Bounded Delay Algorithm Examples

TYPICAL SIMULATION PROBLEM

Suppose it is necessary to design a logic circuit
which will provide a hazard-free output signal
after three clock pulses have occurred, assuming
that the circuit is initially reset.

Synchroncus Binary Counter

Consider the circuit illustrated by Figure 17.
This is a synchronous binary counter with the out-
put provided by an AND gate which decodes the
"11" count of the flip-flops. The first flip-flop

FF No.1 FF No.2
Clock o
1 — ]
| _ i
2 1|AND )2 4
IL _ _} Output
AND 5

(The outputs of all devices are initially "0",)

Figure 17. Synchronous Binary Counter

toggles once for every clock pulse, but the second
flip-flop has an enable input which allows it to
toggle only for those clock pulses which occur
while the first flip-flop is set. The delay charac-
teristic of every device can be described by

minimum propagation delay = 0 nsec,

maximum propagation delay = 10 nsec.



In order to simulate this circuit, however, gate
number three must have a zero maximum delay
as well. It is part of the realization of the second
flip-flop, and the propagation delay of that device
is specified by the delay characteristic of the
basic memory cell.

The output of the computer simulation program is
given in Figure 18. It reveals that there is a
hazard at the output of the decoding AND gate*.
Close examination of the simulation will show that
this is due to simultaneous opposite transitions at
the two inputs of the gate. Obviously, another de-
sign is required.

*It has been shown (10) that a value of 1/2 may
occur in the simulation if and only if a hazard or
race condition exists in the logic circuit.
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Figure 18. Simulation of Synchronous
Binary Counter

CONCLUSIONS

Hazards and race conditions can occur in switch-
ing networks whenever the propagation delay
characteristics of the logic devices are ignored.
Furthermore, it is not sufficient to merely con-
sider the maximum possible delay of each device;
rather, the entire distribution of delays from the
minimum to the maximum must be considered.
The bounded delay algorithm described in this
report meets this requirement.

The practicality of the quinary logical algebra has
been demonstrated by transforming the simulation
algorithms into an actual Fortran program, and it
has been shown that this program can actually be
used as an efficient aid to detect hazards, while
verifying the design of a switching network.
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