
Examensarbete

Asynchronous Wrapper for Globally
Asynchronous Locally Synchronous Systems

Olof Manbo

Reg nr: LiTH-ISY-EX-3210-2002
2002-06-06

Asynchronous Wrapper for Globally
Asynchronous Locally Synchronous Systems

Examensarbete utfört i Elektroniksystem vid Linköpings
tekniska högskola

av
Olof Manbo

Reg nr: LiTH-ISY-EX-3210-2002

Handledare: Kent Palmkvist
Examinator: Kent Palmkvist

Linköping 2002-06-06

Avdelning, Institution
Division, Department

Institutionen för Systemteknik
581 83 LINKÖPING

Datum
Date
2002-06-06

Språk
Language

Rapporttyp
Report category

ISBN

Svenska/Swedish
X Engelska/English

Licentiatavhandling
X Examensarbete

ISRN LITH-ISY-EX-3210-2002

C-uppsats
D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2002/3210/

Titel
Title

Asynkron wrapper för globalt asynkrona lokalt synkrona system

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems

Författare
 Author

Olof Manbo

Sammanfattning
Abstract

This thesis is investigating the new globally asynchronous locally synchronous (GALS)
technology for integrated circuits. Different types of asynchronous wrappers are tested and a new
wrapper design is presented. It also investigates the possibility to use VHDL for asynchronous
simulation and synthesis. The conclusions are that the GALS technology is possible to use but that
it needs new synthesis tools, because todays tools are designed for synchronous technology.

Nyckelord
Keyword
GALS, asynchronous, wrapper, electronics, VHDL, FPGA, VLSI

p-
e possi-
are
ols,
Abstract

This thesis is investigating the new globally asynchronous locally synchronous
(GALS) technology for integrated circuits. Different types of asynchronous wra
pers are tested and a new wrapper design is presented. It also investigates th
bility to use VHDL for asynchronous simulation and synthesis. The conclusions
that the GALS technology is possible to use but that it needs new synthesis to
because todays tools are designed for synchronous technology.

.... 1
.... 2

... 3

... 4
... 5
.... 7
... 8
... 9
... 9
. 10
.. 11

. 14

.. 14
15

.. 21
21
. 22
.. 27
. 29
30
4

Table of contents

1 Introduction ...1
1.1 Goal ..
1.2 Programs and hardware ..

2 Technology introduction ..3
2.1 Asynchronous circuits ...
2.2 Communication protocols ...
2.3 Hazard-free circuits ...
2.4 Extended burst-mode..
2.5 Metastability..
2.7 Muller-C elements...
2.8 FIFO ..
2.9 Micropipelines...
2.10 Synthesis tool for extended burst-mode ...

3 Introduction to asynchronous wrappers ..13
3.1 Preventing metastability ..
3.2 Previous designs ...
3.3 The control circuit ..

4 Designing the wrapper ...17

5 Implementing the wrapper ...21
5.1 Tools ...
5.2 VHDL-programming..
5.3 Simulation ...
5.4 Synthesis...
5.5 Synthesizing the complete circuit ...
5.6 Example: Implementation of Muller-C element
5.6 Muller-C element in CMOS VLSI ... 3

6 Conclusions ..35

References..37

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 1

 dif-
 part
nd
 also
ts, and

tem
ip.

ware

n-
nica-

and
stor-
orks
1 Introduction

This project examines the possibility of using asynchronous signaling between
ferent clocked parts of an integrated circuit. The idea is to feed every different
of the chip with it’s own clock, which decreases the problem with clock skew a
makes it easier to have different clock-frequencies on the same chip. It should
be possible to have storage elements between the different processing elemen
these should be easier to implement in asynchronous technology.

The idea behind this is that it will in the future be possible to have a whole sys
on one chip, which will imply that there is more than one clock frequency per ch
There must exist a solution to this problem before so called System-On-Chip-
can become possible.

Fig 1. Example of an integrated circuit with several clocks. On a real system-o
chip there will also usually be analog parts, but this thesis only covers commu
tion between the digital parts.

1.1 Goal

The goal of this project is to design a so called asynchronous wrapper in VHDL
test the functionality in an FPGA. It should also be possible to have a FIFO, a
age element, between the wrappers. It should be very interesting to see if this w
because the synthesis tool is designed for clocked circuits.

Clocked
Subsystem

Clocked
Subsystem

Clocked
Subsystem

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 2

pro-
ics
and
n-
S40-

x.
1.2 Programs and hardware

The computer used for this thesis was a Sun Ultra 10 with Solaris 7. For VHDL
gramming, simulation and synthesis FPGA Advantage 5.2 from Mentor Graph
was used. FPGA Advantage consists of HDL Designer 2001.5, ModelSim 5.5e
LeonardoSpectrum v2001_1d.45. For FPGA implementation Xilinx Design Ma
ager 4.1.01i was used. The hardware used for FPGA implementation was the X
10XL+ board from Xess Corporation which has an XC4010XL FPGA from Xilin
The report was written using Adobe FrameMaker 5.5.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 3

ign, a
sign
The
ver
syn-
gn of
ps can
tries

two

ight
but
[1].
 a
and

me
the
s,
chro-
as to
t can
that
rfor-

to be
 haz-
e out-
ight
will
ut
2 Technology introduction

Since the used technologies are not the most common in todays electronic des
brief introduction to those technologies will be made. Asynchronous circuit de
is actually an old technology, even older than synchronous circuit technology.
clocked technology later became standard and asynchronous design have ne
been able to compete with clocked circuits until recently. The new interest in a
chronous circuits comes from the fact that new research has simplified the desi
them and that synchronous design now has encountered problems that perha
be solved more easily by using asynchronous circuit design. As the project also
to combine asynchronous and synchronous technology you can combine the
paradigms to get the benefits from both.

2.1 Asynchronous circuits

When students are studying switching theory, they are usually taught that they
should never bother to design an asynchronous circuit [2]. This might be the r
way to think when designing simple circuits with TTL gates and stuff like that,
recently asynchronous design methodologies have become interesting again
The problem with clock-skew and the ever increasing number of transistors on
single chip might be easier to handle with asynchronous or mixed synchronous
asynchronous techniques. In a clocked circuit everything will happen at the sa
time, when the clock rises, which will make the power consumption very high at
rising edge of the clock. If there is no clock, or if there is a lot of different clock
the power consumption will be more spread out over time. The speed of a syn
nous circuit will always be as slow as the slowest part, as the clock-frequency h
be chosen according to the slowest part. In an asynchronous circuit every par
work at its own maximum speed. A disadvantage with asynchronous circuits is
you cannot use dynamic logic circuits, because they use clocking to improve pe
mance.

The biggest problem with asynchronous design is the fact that the circuits has
hazard-free, which makes it harder to design the logical nets. An example of a
ard is when a logical net has a low output, and then the inputs changes, but th
put should still be low. If the logic is not designed to be hazard free the output m
go high for a short while before it stabilizes at a zero. When a clock is used this
not be a problem if the clock period is long enough for the circuit to stabilize, b

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 4

exist,
ercial

 sig-
s and
and a-

 con-
ly a
goes
d ack
 that

nsi-
l
l
anges
ocol
e data
for asynchronous systems this could be a disaster. Fortunately synthesis tools
although the asynchronous paradigm hasn’t become big enough for any comm
program to exist.

When asynchronous technology is used, sometimes not only the levels on the
nals are of interest, but also the transitions between the levels. To show this plu
minus signs are used, i. e., a+ means that the signal a goes from low to high,
means that the signal goes from high to low.

2.2 Communication protocols

Since there is no clock in asynchronous circuits, data has to be sent with extra
trol signals called req, for request and ack, for acknowledge (see fig 2). Usual
four-phase protocol is used where req goes up, followed by ack and then req
down, followed by ack. The data should be valid between req going to one an
returning back to zero. Of course the signals ack+ and req- doesn’t matter and
is why a two-phase protocol using transition signalling might be preferred. Tra
tion signalling differs from the “normal” signalling in that the level of the contro
signals has no meaning. Instead the only thing that matters is when the signa
changes. This means that a rising edge is equivalent to a falling edge. These ch
are called events. When transition signalling is used for the communication prot
it means that there is an event on req and then ack answers with an event. Th
should be valid between the events.

Fig 2. Asynchronous circuit sending data.

data

ack

req
sender receiver

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 5

 cir-
the

 the
en
ally
he
 to
ome
e.
Fig 3. Two-phase protocol.

Fig 4. Four-phase protocol.

2.3 Hazard-free circuits

There exist two models for asynchronous circuits, Huffman circuits and Muller
cuits. Huffman circuits are also called delay-insensitive circuits. This is because
circuits are guaranteed to work regardless of gate and wire delays, as long as
bound on the delay is known. The easiest way to make a Huffman circuit is wh
you only let one input change at a time. This is called single-input-change. Usu
this is to restrictive so multiple-input change circuits is a better way to design t
circuit. The latest way to synthesize a multiple-input change Huffman circuit is
use something called extended burst-mode. Extended burst-mode also puts s
restrictions on the circuit, but is still a lot more flexible than single-input chang

req

ack

data valid data valid

req

ack

data valid

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 6

nder
delay

he
s is
 that
e.
rd. In
nput
haz-

xists
ous
ven
Muller circuits are also called speed-independent. This model is hazard free u
the assumption that the gate delay is unbounded but finite, and that there is no
on wires.

Fig 5. Karnaugh map of circuit with risk of 1-1 hazard.

Fig 6. Karnaugh map of circuit without risk of 1-1 hazard.

Now an example of a hazard in a single-input circuit will be shown. Consider t
karnaugh maps in fig 5 and fig 6. In fig 5 the ones are put into two groups. Thi
the normal way to do it if a synchronous circuit is designed, but the problem is
the circuit can go from one group to the other and the output should still be on
Because the transition is between the groups, the circuit may produce a haza
fig 6 an extra group is added in the karnaugh map. Then, independent of the i
change, the transition will always be inside a group, and thus there will be no
ards, at least between inputs where the output should be high.

This was a simple example of a hazard and hazard free circuit, but today there e
no simple solution to the synthesis of hazard-free circuits. For small synchron
nets, karnaugh maps are an excellent way to do the synthesis “by hand”, but e
for small asynchronous nets you need to use rather complicated algorithms is
needed, which implies the use of synthesis tools.

1

1 0 0

0

0

0000

0

0 0

1 1

0

1

1 0 0

0

0

0000

0

0 0

1 1

0

1

1 0 0

0

0

0000

0

0 0

1 1

0

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 7

e cor-
n the

ut-

lled
ide
ls is
tate,
very
aving
M if
cted
e. Of
may
n’t
ted

g 7.
al
nal
2.4 Extended burst-mode

A normal FSM works as shown in fig 7. The states change when they have th
rect value. In the example the machine will go from state zero to state one whe
signal a is one.

Fig 7. Example of a FSM transition. The signal a is an input signal, b and c are o
puts.

The most popular model for asynchronous finite state machines (AFSM) is ca
Extended Burst Mode (XBM). In a normal FSM:s the values of the signals dec
when it should go to a new state. When using XBM the transitions of the signa
what is important. When a normal FSM needs something like a=1 to change s
XBM uses the transition a+. At least one input signal should change between e
state, since the lack of a clock makes it impossible to stay in a state without h
to wait for a signal change (a synchronous circuit could be designed using XB
the clock is treated as an input signal). XBM also allows something called dire
don’t cares, which allows a signal to either keep the same value or change onc
course another signal must have a “normal” transition since a signal that only
change cannot be used to determine what state the AFSM is in. A directed do
care also has to be followed by a “normal” transition on the same signal. If direc
don’t cares are not allowed the model is just called Burst Mode (BM).

Fig 8. Example of an XBM transition working in the same way as the FSM in fi
The signal a is an input signal, b and c are outputs. A plus means that the sign
should go high, a minus that it should go low. If there is an asterisk after the sig
name, instead of a plus or minus, the signal is a directed don’t care.

0 1
a=1 / b=1 c=0

0 1
a+ / b+ c−

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 8

nize
 D-

n the
n’t
ut
ip-
ally

in
do it
any

his
tasta-

t it
t hav-
gm

 sig-
ous
 prob-
n are
2.5 Metastability

A big problem with the asynchronous paradigm is the communication between
asynchronous and synchronous circuits. In fig 9 a is simple approach to synchro
an asynchronous signal shown. Usually this works fine. When the input to the
flip-flop changes before the rising edge of the clock the output will only change
when the clock rises, and will then be synchronized. The problem occurs whe
input changes too close in time to the rising edge of the clock. The flip-flop wo
know if it should change or not, and will enter a metastable state, with the outp
not being high nor low. One might then say that this is not a big problem, the fl
flop will enter the correct state next clock cycle, but the problem is that theoretic
the circuit could stay in the metastable state forever. If you put more D-flip-flops
series the risk of entering the metastable state will be lower, but as long as you
this way preventing metastability can never be 100 percent guaranteed. With m
flip-flops in a row latency will also increase. But there exist another solution to t
problem. As shown later, asynchronous wrappers are designed to prevent me
bility from ever occurring.

Fig 9. Simple circuit for synchronization.

2.6 Globally Asynchronous Locally Synchronous

The idea of Globally Asynchronous Locally Synchronous (GALS) circuits is tha
is possible to get some of the advantages of asynchronous technology withou
ing to throw away all the knowledge in synchronous design. The GALS paradi
uses asynchronous signalling between different clocked units on a chip. Every
clocked part is surrounded by an asynchronous wrapper that takes care of the
nalling between the different clocked parts. Since the design of the asynchron
wrapper is much easier than designing a whole asynchronous system and the
lem of clock-skew is much smaller some of the benefits of asynchronous desig

clk

D Q

clock

synchronized
input

asynchronous

input

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 9

e
rts of
’t
ti-

lobal
with

 on
’s
its

so be
n is

por-
f a
s

a in a
t can
gained without having to get rid of the D-flip-flops. Different blocks can also us
different clock-frequencies. This could also decrease the design time, since pa
the circuit that are not used too often can use a lower clock frequency and don
have to be optimized as much as the often-used parts. If the clock period is op
mized to be as long as possible for every part, power consumption will also be
lower, as every part can work at as low clock frequency as possible. Since a g
clock creates a lot of noise by having a spike in the power spectrum, problems
noise will also decrease.

2.7 Muller-C elements

A Muller-C element is an important gate in asynchronous design. It has a zero
the output if both inputs are zero, and a one if both inputs are one but keeps it
value otherwise. This could sometimes be important to make hazard-free circu
because it changes value only after every input signal have changed. It could al
used as an AND-gate for events if transition signalling is used. The OR-functio
then provided by an XOR-gate [4].

Fig 10. Symbol of Muller-C element.

2.8 FIFO

FIFO stands for First In-First Out and that describes how a FIFO works. It is im
tant to recognize that a FIFO is not similar to a shift-register since the length o
FIFO is dynamic. A four bit long shift-register will always have to shift four time
to get the latest input to the output, but a FIFO can be empty or only store dat
few of its storage elements. This means that if the FIFO is empty the latest inpu
be read at the output directly.

C

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 10

pe-
, it
trol-
s a
nts.

le-
ce
2.9 Micropipelines

A micropipeline [4] is an asynchronous pipeline that could be used to make pi
lined computations. If the pipeline only has storage-elements without any logic
will work like a FIFO, which is the way it has been used in this thesis. The con
circuit in the micropipeline uses transition signalling and that means that it use
two-phase protocol. The micropipeline makes extensive use of Muller-C eleme

Fig 11. The control circuit of the Micropipeline. The outputs from the Muller-C e
ments control the storage elements. A stands for ack and R stands for req. Sin
there are four Muller-C elements, this control circuit is designed for a 4 bit long
FIFO.

C C
C C

R(in) A(1) R(2) A(3) R(out)

A(out)A(in) R(1) A(2) R(3)

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 11

. It is
s

t.

ort.

ram

e log-
that
2.10 Synthesis tool for extended burst-mode

The 3D synthesis tool has been used to create the nets for the in- and outport
very simple to use, the XBM AFSM should be defined as in fig 12. The result i
shown in fig 13. A more detailed text about the tool can be found in [3].

input enable 0
input ack 0
output stretch 0
output req 0

0 1 enable+| stretch+ req+
1 2 ack+| stretch-
2 3 enable-| stretch+ req-
3 0 ack-| stretch-

Fig 12. Example of input file to the 3D synthesis tool. This XBM-spec is outpor

stretch =
 enable’ ack +
 enable ack’

req =
 enable

Fig 13. Example of equation file from the tool. These are the equations of outp

Another synthesis program called Minimalist [8] was also tested, but that prog
could only handle burst-mode specifications, not XBM. This was unfortunate,
because that program had some nice features such as the possibility to show th
ical nets graphically. But when the program to use was selected it was unknown
the designed AFSM would only need burst-mode.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 12

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 13

e the
 used

This
ed
 part
for

con-
s of

gn in
.

it
3 Introduction to asynchronous wrappers

The idea of an asynchronous wrapper is that it is used as a camouflage to hid
fact that it is clocked on the inside. That means that a clocked circuit could be
inside the wrapper, but on the outside it acts like an asynchronous circuit. The
maybe most important thing needed to accomplish this is the stretchable clock.
clock acts like a normal clock if it is not required to stretch, but when the clock
circuit needs an input or it has to output some data the clock stretches the low
of the clock-period. This means that the clocked circuit sleeps when it is waiting
new data or for outputting data. Communication between wrappers has to be
trolled by a handshake protocol since there is no global clock. Previous design
wrappers have used a four-phase protocol for global communication, the desi
this thesis uses a two-phase protocol, since it has to work with micropipelines

Fig 14. Principal design of an asynchronous wrapper. Inport is the control circu
for data input, Outport controls the data output.

Stretchable
Clock

OutportInport

Data In Data Out

ack

clock

req req

ack

stretch stretch

enable Clocked Circuit enable

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 14

riod
e the

l, as
the
 clock
is no
yn-
this
ked
 if
ircuit

ed a

O. It
via a
een
other
y Bor-

o-
the

hase
Fig 15. Example of the output from a stretchable clock. Notice that only low pe
of the clock is stretched, even if stretch goes high when the clock is high. Sinc
clock sleeps when the circuit is not active, power consumption will be lower.

3.1 Preventing metastability

The metastability problem may occur if you synchronize an asynchronous signa
mentioned above. The asynchronous wrapper solves this problem by doing it
opposite way. Since asynchronous communication only takes place when the
stretches, the signals will be stable when the clock starts again, and thus there
risk of synchronization failure. The idea is that instead of synchronizing the as
chronous signals, the synchronous parts are “unsynchronized”. A problem with
solution may arise when a chip communicates asynchronously with other cloc
chips. In this situation there will be problems with synchronization anyway, but
you are planning to have a whole system on one custom designed integrated c
this will not be a problem.

3.2 Previous designs

When this project was started, the first paper examined was [5] which describ
unit for asynchronous communication between different locally synchronous
blocks. This was an example of an asynchronous wrapper that included a FIF
also had a data-bus that worked in both directions. The FIFO was implemented
RAM. This made the unit rather complicated with a lot of communication betw
the synchronous and asynchronous parts of the unit. Therefor was a search for
papers about asynchronous wrappers done. First found was a paper written b
mann and Cheung [6], which didn’t have a FIFO but introduced the concept of
stretchable clocks. A paper by Muttersbach et. al. [7] was also examined. It pr
posed a similar design but also introduced the concept of transition signalling on
enable signal, which made the design a bit simpler, but they still used a four-p

clock

stretch

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 15

n in
nal

nal
ve a

ed cir-
ck
ed

es

o-
ut
O.
protocol which made the solution a bit complicated. The final design also uses
micropipelines that was introduced by Sutherland [4].

3.3 The control circuit

The Bormann/Cheung wrapper has a control unit AFSM specification as show
fig 16. The design has only four states, but there is a lot of signals, and the sig
stretch is used both as an output and an input. The big problem is that the sig
input does not use transition signalling, which means that the clock needs to ha
rising edge between state three and zero. Because input is sent from the clock
cuit it cannot change unless the clock is ticking. This means that one extra clo
cycle is needed every time data is sent or received. If data should be transmitt
every clock cycle this is a huge drawback. The most important thing about this
wrapper is that it introduced the idea of a stretchable clock, which is what mak
asynchronous wrappers possible in the first place.

Ack = Req*Stretch + Input*Ack +Latch*Ack
Stretch = Req*Input + Input*Ack + Latch*Stretch

Latch =Req * Ack

Fig 16. The inport of the Bormann/Cheung wrapper, XBM specification and bo
lean equations. The signal Input is equivalent to enable. Latch controls the inp
latches of the wrapper, which are needed since this design does not use a FIF

0 1

23

Input−

Strech−

Latch+ /

Ack− Ack+

Latch* /

Stretch+

Req+

Stretch−

Req− Latch− /

Input+ Req* Latch* /

Stretch+

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 16

rs-
r the
able
nal

de a

 be
logic
lock
Ri = Rp*Ri +Den*Z0 + Den*Ap*Z0
Ap = Rp*Ai + Ai*Ap

Z0 = Rp*Z0 + Ai*Z0 + Den*Rp*Ap

Fig 17. XBM specification and Boolean equations of the input port of the Mutte
bach et. al. wrapper. Note that the equations are almost as simple as they are fo
Bromann/Cheung wrapper despite this wrapper having 8 states. Den are the en
signal, Rp stands for req, Ri is stretch, Ap is ach and Ai is an acknowledge sig
from the stretchclock.

The Bormann/Cheung wrapper was improved by Muttersbach et. al. which ma
control circuit according to fig 17. They introduced transition signalling on the
enable signal, which simplified the design because no output signal needed to
used as an input. On the other hand the AFSM needed 8 states, but the control
was not much more complicated, and the wrapper could transmit data every c
cycle.

0 1 2

3

456

7

Ai− /
Ap−

Den+ Rp* / Ri+ Ai+ Rp+ / Ap+

Rp− /
Ri−

Ai−/
Ap−

Den− Rp* /Ri+Ai+ Rp+ / Ap+

Rp− /
Ri−

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 17

t. al.
hen
came
pper

ich
4 Designing the wrapper

req = enable
stretch =enable*ack + enable*ack

Fig 18. XBM specification and boolean equations of outport.

ack =enable
stretch = enable*req +enable*req

Fig 19. XBM specification and boolean equations of inport. Notice that enable
should be high when the circuit is started.

The biggest inspiration to the new wrapper design came from the Muttersbach e
wrapper. The Liljeberg et. al. wrapper described the idea of using a FIFO, but w
a micropipeline FIFO was connected between the wrappers the new design be
much more simple than the Liljeberg et. al. wrapper. The new design of the wra
differs from Muttersbach et. al. only in the way the AFSM control circuits are
designed and how they behave. It uses transition signalling on every signal wh

0 1

23
enable− / stretch+ req+

ack+ /

enable+ / stretch+ req−

stretch−
ack− /

stretch−

0 1

23

enable+ /
ack−
stretch+

enable− /
ack+
stretch+

req+ / stretch−

req− /stretch−

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 18

no
use
is

le
e syn-
circuit
he cir-
time
 two.
 on

ansi-
ads

se
nous

revi-
 so this
ns. A
a
s be
care

 only
hen
tom
made it possible to have only four states. The signalling is now so simple that
feedback is needed. Ironically, after a lot of studies of AFSM:s it is enough to
simple combinatorial logic, but it is still important to make sure that the circuit
hazard-free since it is still working in an asynchronous environment.

The outport starts at state zero waiting for the synchronous circuit to set enab
high. When enable goes high, the correct values should be on the output of th
chronous circuit, and thus req goes high. Stretch also goes high because the
should not to do anything before the output data has been read. At state one t
cuit waits for ack to go high, which indicates that the data has been read so it is
to set stretch low and wait for another event on enable, which is done at state
The rest of the states work the same way, but with negative transitions except
stretch.

The inport starts with enable set high because there should always be a req tr
tion before there is a transition on ack. Otherwise it works like the outport but re
the data instead of outputting it.

The disadvantage with this design is that it will not work without a FIFO, becau
then the outport will have stretch high until ack changes, and thus the synchro
logic will not work until the inport is ready. This problem could be overcome by
always having a FIFO between the ports, even if it is only one cell long. The p
ous designs of wrappers uses latches that store the values between the ports
should not make the performance of the design worse than the previous desig
circuit like the one in fig 20 can be used to generate a stretchable clock using
external clock source, but this circuit has the disadvantage that there will alway
one rising edge of the clock after stretch goes high.This can of course be taken
of in the synchronous circuit, but this will have the disadvantage that data can
be sent or received every other clock cycle instead of once every clock cycle. W
the circuit was synthesized into an FPGA it used an external clock, but if a cus
ASIC is used an internal ring oscillator is a better choice.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 19
Fig 20. A way to make a stretchable clock using external clocks.

clock

stretch

global clock
stretchclock

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 20

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 21

en-
DL

e

h

o get
ould
thing
ded

em

tput

ing
d Che-
 was
d I

me
 also
iffi-
 to
a lot

. One
s

5 Implementing the wrapper

5.1 Tools

The tool used for VHDL coding and compilation was FPGA Advantage from M
tor Graphics. It consists of HDL Designer, ModelSim and LeonardoSpectrum. H
Designer makes it simple to use a top-down methodology when programming
VHDL. Although this sounds very good it was sometimes very frustrating to us
this program, as the graphic user interface didn’t always work as expected.

Modelsim is the simulation program, and it is easy to use and did not give muc
trouble.

LeonardoSpectrum is the program used for synthesis and it was rather tricky t
it to work. The synthesis result depended on the order of the input files, which c
make sense if there was a special order that the files should be in. The strange
is that LeonardoSpectrum is started from HDL designer, and the input files is loa
automatically. Still, the files was read in the wrong order. A solution to this probl
has not been found.

For FPGA implementation Xilinx Design Manager was used, which used the ou
files from LeonardoSpectrum, and there was no problems with it.

5.2 VHDL-programming

After a lot of literature studies a behavioral description in VHDL was created us
mentor graphics FPGA Advantage. First a wrapper as described Bormann an
ung was created. This was a simple task as the equations and everything that
needed to make the wrapper was available. After the circuit had been simulate
became aware of the problems mentioned above regarding this wrapper beca
apparent, so implementation of the Muttersbach et. al. wrapper was started. It
worked fine, but then A FIFO also had to be implemented. This proved to be d
cult, since the paper by Liljeberg et. al. didn’t give as much information on how
implement their wrapper. Their wrapper was also much more complicated, so
of effort was put into finding a way to simplify their design. The biggest problem
was to implement the FIFO-design, since it was based on the use of a memory
solution was found, but then micropipelines was introduced. Micropipelines wa

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 22

al-

 for
line
rk as

m-

s
 the
o-
iling
LS

ets
not only a very good solution to make a FIFO, it also introduced transition sign
ling, which allowed for simplifications of the control circuits of the wrapper. As
previously mentioned, the end result was combinatorial logic without the need
feedback, which should make the wrapper very fast and reliable. The micropipe
also had another advantage. The storage elements in the pipeline will also wo
amplifiers, which will remove the need for extra amplifiers on long bus lines.

5.3 Simulation

Simulation of asynchronous and GALS circuits was not to complicated The co
piler had no problem with the lack of a clock. In fig 21 there is an example of a
block diagram from HDL Designer showing an AFSM. An extra delayblock wa
needed to control the feedback as the output signals needed to be fed back to
AFSM. This showed an disadvantage of VHDL if it should be used for asynchr
nous design. But this was the only technical problem I encountered when comp
and simulating the circuit and it had an simple solution. So for simulation of GA
circuits VHDL was very useful.

Fig 21. Example of an AFSM in HDL Designer. The AFSM block is the logical n
end delayblock is used for feedback of the output and internal state signals.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 23

e it
mple
nd

data

if ack
t
the
ble
The first circuit that was simulated was the simple circuit shown in fig 22. It mad
possible to see if the stretch signal worked as it should. In fig 23 there is an exa
of a simulation of this circuit. First are four bits loaded into the micropipeline a
then they are outputted. The only signals forced manually in the simulation is
enableo and enablei. Notice that stretchi starts high, and goes low when there is
to read on the output of the micropipeline. The glitches on stretcho are there
because the AFSM needs to go from state 0 or 2 to 1 or 3 to change req, even
answers immediately. If the stretchable clock is designed correctly these shor
stretch signals will not affect the clock frequency. It is also important to notice
transition signalling, i. e., the circuit is not triggered by the rising edge on the ena
signals, but every time the signals change.

Fig 22. The first circuit simulated.

Micro−
pipeline

Rin

Ain

Outport

stretcho

enableo

Datain

Rout

Aout

Inport
enablei

stretchi

Dataout

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 24

hown
two
cir-

asyn-
he
Fig 23. Simulation example from the first circuit.

Then the wrapper was simulated in a context. A four-bit adder was created as s
in fig 24. There were three asynchronous buses used because the adder had
inputs. Thus this was also a test if the wrapper worked with multiple inputs. The
cuit was designed to create its own inputs and input them to the adder via two
chronous buses. The output from the adder was then sent via another bus to t
output. The circuit uses three different stretchable clocks.

00
00

00
01

00
10

01
00

10
00

00
00

00
00

00
01

00
10

01
00

10
00

00
00

0
50

0
1

us

/ts
t4

bi
t1

/d
in

00
00

00
01

00
10

01
00

10
00

00
00

/ts
t4

bi
t1

/d
ou

t
00

00
00

01
00

10
01

00
10

00
00

00

/ts
t4

bi
t1

/e
na

bl
ei

/ts
t4

bi
t1

/e
na

bl
eo

/ts
t4

bi
t1

/s
tr

et
ch

i

/ts
t4

bi
t1

/s
tr

et
ch

o

/ts
t4

bi
t1

/a
in

c1

/ts
t4

bi
t1

/a
ou

tc
5

/ts
t4

bi
t1

/r
in

/ts
t4

bi
t1

/r
ou

tc
4

E
nt

ity
:ts

t4
bi

t1
 A

rc
hi

te
ct

ur
e:

st
ru

ct
 D

at
e:

 F
ri

F
eb

 1
5

15
:3

1:
51

 M
E

T
 2

00
2

 R
ow

: 1
 P

ag
e:

 1

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 25

 a
Fig 24. A 4-bit adder with wrappers and FIFO. The Bus consists of an outport,
FIFO and an inport.

inA

inB

Bus

Bus

Adder

Bus out

A
synchronous W

rapper for G
lobally A

synchronous Locally S
ynchronous S

ystem
s

26

0000 0001 0100

1000 0001 0010

1001 0011 0110

400 600

0000 0001 0100

1000 0001 0010

1001 0011 0110

1

F
ig

 2
5

. S
im

u
lta

io
n

 o
f th

e
 4

-b
it a

d
d

e
r w

ith
 w

ra
p

p
e

rs.

0000 1000

0001 0010 0100 1000 0001 0010 0100

0011 0110 1100 1001 0011 0110 1100

0 200

/bench4bitadder/finalout 0000 1000

/bench4bitadder/dina 0001 0010 0100 1000 0001 0010 0100

/bench4bitadder/dinb 0011 0110 1100 1001 0011 0110 1100

/bench4bitadder/enableia

/bench4bitadder/enableib

/bench4bitadder/enableifn

/bench4bitadder/enableoa

/bench4bitadder/enableob

/bench4bitadder/enableofn

/bench4bitadder/inclock

/bench4bitadder/outblockclock

/bench4bitadder/outclock

/bench4bitadder/stretchi

/bench4bitadder/stretcho

/bench4bitadder/stretchofn

Entity:bench4bitadder Architecture:struct Date: Tue Feb 19 17:53:46 MET 2002 Row: 1 Page:

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 27

o is
ible

e-
rk
here.
ith a
cted
ock
 clock
tes.
ardo
-C
l

5.4 Synthesis

The synthesis was made for a Xilinx XC4010XL FPGA. The FPGA technology
consists of look-up-tables, flip-flops and a connection network.

The synthesis of the VHDL-model proved to be a bit difficult because Leonard
designed for clocked circuits, but the interesting thing was to see if it was poss
to synthesize the design anyway. The first problem was to make a Muller-C el
ment. Using a behavioral description with a process and if-clauses did not wo
because the synthesis tool always thought that there should be a clock somew
The first attempt was to use a SR-latch and some logic as shown in fig 26 but w
“process” latch it did not work. LeonardoSpectrum synthesized it in an unexpe
way. It was impossible to make synthesize it without the tool wanting to put a cl
somewhere. At some point the reset input on the latch was assumed to be the
input! The solution was to make the SR-latch in the classic way with two nor ga
This worked, but when the Muller-C element was used in a bigger context Leon
had a lot of warnings about combinatorial loops. As shown in fig 27 the Muller
element was synthesized as a look-up table with feedback which hopefully wil
make it reliable when it is used in a context.

Fig 26. Solution of Muller-C element.

S

R

A
B

C

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 28

ing
ole

ller-

.
tch
esize
.

Fig 27. Technology schematic of Muller-C element.

Fig 28. Technology schematic of SR-latch.

In fig 28 is the technology schematic of the SR-latch shown. The interesting th
was that the SR-latch was synthesized in a more complicated way then the wh
Muller-C element, which indicates that LeonardoSpectrum did optimize the Mu
C element.

Next to synthesize was the micropipeline which consisting of the Muller-C ele-
ments in the control circuitry and switches which were made with if statements
This time the synthesis worked well, the tool seemed to understand that a swi
doesn’t need clocking. The inport and outport circuits were also easy to synth
since they only consisted of combinatorial logic with no feedback.

X

Y

reset

Z

O

I0

I1

I2

I3

ix9

F4_LUTOI

reset_ibuf

IBUF

OI

Y_ibuf

IBUF

OI

X_ibuf

IBUF

OI

Z

INV

O

I

GTS

Z_obuf

OBUF

R

S

reset

Q

OI

S_ibuf

IBUF

OI

R_ibuf

IBUF

OI

Q

INV

O

I

GTS

Q_obuf

OBUF

O

I

GTS

notQ_obuf

OBUF

O

I0

I1

I2

I3

ix10

F4_LUT

O

I0

I1

I2

ix11

F3_LUT

notQ

OI

reset_ibuf

IBUF

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 29

L
com-
 This
. The
s
ems

able
as
sed

tions

 cir-
ted
esis
rds
5.5 Synthesizing the complete circuit

To test the whole design a circuit according to fig 29 was first synthesized.

Fig 29. The first circuit synthesized.

This was not easy because for some reason when starting Leonardo from HD
Designer the input files must have been entered in the wrong order. The circuit
ing out of the synthesis always had some part that was not synthesized at all!
problem was probably due to the fact that the circuit was partly asynchronous
solution to this problem was to load the input files manually. Of course this wa
very strange and the usability of Leonardo for asynchronous synthesis thus se
limited.

A very simple synchronous circuit was also created to test the idea of the stretch
clock, and it also worked after loading the input files manually. The problem w
that a ring oscillator for the clock could not be used so an external clock was u
instead, and it was set to zero when stretch was high. For more critical applica
this could be a problem since it is not a true stretchable clock.

Maybe the biggest problem with using synthesis tools to create asynchronous
cuits is how to know if the circuits are hazard free. The circuits worked when tes
in the FPGA, but it is difficult to guarantee that hazards never occur. The synth
tool will optimize the circuits, and then the extra gates needed to prevent haza
will removed.

Outport ImportFIFO
enable

stretch

req

ack

req

ack enable

stretch

Data Data

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 30

own
5.6 Example: Implementation of Muller-C element

The first idea was first simply to make a Muller-C element by using the code sh
in fig 30.

-- renoir header_start
--
-- VHDL Architecture basic_element.MullerC.interface
--
-- Created:
-- by - olofm.es_exj (delling.isy.liu.se)
-- at - 17:02:22 09/27/01
--
-- Generated by Mentor Graphics’ Renoir(TM) 2000.3 (Build 2)
--
-- renoir header_end
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY MullerC IS
 PORT(
 A : IN std_logic ;
 B : IN std_logic ;
 reset : IN std_logic ;
 C : OUT std_logic
);

-- Declarations

END MullerC ;

-- renoir interface_end
ARCHITECTURE source OF MullerC IS
BEGIN
 PROCESS(A,B,reset)
 variable oldc : std_logic;
 BEGIN
 if reset = ’1’ then
 C <= ’0’;
 oldc := ’0’;
 elsif A = ’1’ and B = ’1’ then
 C <= ’1’;
 oldc := ’1’;

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 31

is
ss
 The
d not
e final
e

 elsif A = ’0’ and B = ’0’ then
 C <= ’0’;
 oldc := ’0’;
 elsif A = ’1’ and B = ’0’ then
 C <= oldc;
 elsif A = ’0’ and B = ’1’ then
 C <= oldc;
 end if;
 end process;
END source;

Fig 30. The first Muller-C element in VHDL.

This idea worked well during simulation, but it did not work well with the synthes
tool. As mentioned above the synthesis tool could not understand that a proce
without clocking could exist. Then was another solution to the problem tested.
idea was as shown above in fig 26 to connect gates to a SR-latch. First this di
work, but that was because a process was still used to make the SR-latch. Th
solution was to do the SR-latch the classic way with two nor gates. In fig 31 th
HDL-designer schematic of the final solution is shown, and in fig 32 the VHDL
code for the two blocks.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 32
Fig 31. HDL-designer schematic of an SR-latch.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 33

nt
ARCHITECTURE source OF intlogic IS
BEGIN
 notQ <= not (S or Qd);
 Q <= not (R or notQd);
END source;

ARCHITECTURE source OF feedback IS
BEGIN
 process(reset,Q,notQ)
 BEGIN
 if reset = ’1’ then
 Qd <= ’0’;
 notQd <= ’1’;
 else
 Qd <= Q;
 notQd <= notQ;
 end if;
 end process;
END source;

Fig 32. VHDL-code for the two blocks in the final Muller-C element.

This solution also worked well during synthesis so this was the Muller-C eleme
used in the final version of the VHDL micropipeline.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 34

 fig
 but
since

the
 a
5.7 Muller-C element in CMOS VLSI

When a Muller-C element should be implemented in VLSI the circuit shown in
33 is usually used [9]. It is also possible to make a dynamic Muller-C element,
that seems to be rather dangerous when they are used in asynchronous circuits
it is never known how long a signal must be hold before it is changed.

Fig 33. CMOS implementaion of a Muller-C element [9].

It is very important to notice that usually the reset signal is not usually shown on
schematic symbol of Muller-C elements, but as the element in a way works as
memory it is still important to reset the elements when the circuit is started.

Vdd

Vdd Vdd

Vdd

Vdd

reset

C

A

B

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 35

hey
rd for
sed

yn-
they
f

em
com-
ces-
n is
eans
ALS
e old
stan-

hem
 cir-

 tech-

s cir-
ard-
ard-
ll
cir-
,
tion
ses
ance.
t pos-
e
pec-
ram
6 Conclusions

The concept of GALS circuits are of course very interesting and theoretically t
have benefits that seem to make it inevitable that they will become the standa
integrated circuits. This will on the other hand not guarantee that they will be u
commercially. Maybe they will just be something that will be forgotten. Fully as
chronous circuits can also claim to have benefits over synchronous circuits, but
have never been able to compete, at least not for the last 30 to 35 years [1]. O
course there is the problem of compatibility. According to [1] an important probl
for asynchronous circuits to be used commercially is that they have problems
municating with other clocked parts. For example, if an asynchronous micropro
sor is used it might have problems to work with other clocked chips. The solutio
of course to use asynchronous wrappers around the clocked parts, but this m
that every circuit has to be custom made, at least until the fully asynchronous/G
paradigm has become standard. The problem with communication between th
and new chips can cause a big problem for the GALS paradigm to become the
dard paradigm. As research about fully asynchronous circuits also will make t
more easy to design, GALS circuits might be an unnecessary paradigm. GALS
cuits may only be a transition phase between synchronous and asynchronous
nology.

The other thing that has been tested was the possibility to make asynchronou
cuits using VHDL. The problems here were two: First, the circuits must be haz
free. Since it is hard to know whether LeonardoSpectrum will optimize the haz
free nets or not, it will be difficult to guarantee that the circuit will work under a
circumstances. This makes it unlikely that the synthesis will end with a working
cuit. In the wrapper design the logical nets were already the simplest possible
which might be why they worked anyway. The second problem is that the solu
to the problem that LeonardoSpectrum did not finish the synthesis in some ca
was to reload the input files in a new order, and the order was found out by ch
This was possibly because the project was rather small, but of course this is no
sible to do when the circuits grows bigger. So the conclusion is that it should b
possible to make asynchronous or GALS circuits using VHDL, but LeonardoS
trum should not be used. There does not exist any commercial synthesis prog
for asynchronous design yet, but it should be possible to write one.

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 36

Asynchronous Wrapper for Globally Asynchronous Locally Synchronous Systems 37

’,
ms,

nit

us
ym-

-
er-

c-
References

[1]Myers C. J., ’Asynchronous Circuit Design’, Wiley 2001

[2] Danielsson P.-E., Bengtsson L., ‘Digital teknik’, Studentlitteratur 1996

[3] Yun K. Y., Dill D. L., ‘Automatic Synthesis of Extended Burst-Mode Circuits
IEEE Transactions on Computer-Aided design of integrated circuits and syste
Vol. 18 no 2, February 1999

[4] Sutherland I. E., ‘Micropipelines’, Communications of the ACM, June 1989
Volume 32 Number 6

[5] Liljeberg P., Plosila J., Isoaho J., ‘Synchronous/Asynchrnonous Interface U
for IP based SoC systems’, NORCHIP 2000

[6] Bormann D. S., Cheung P. Y. K., ‘Asynchronous Wrapper for Heterogenous
Systems’ In Proc International Conf. Computer Design (ICCD), Oct 1997

[7] Muttersbach J., Villiger T., Fichtner W., ‘Practical Design of Globally-Asyn-
chronous Locally-Synchronous Systems’, Advanced Research in Asynchrono
Circuits and Systems, 2000 (ASYNC 2000) Proceedings. Sixth International S
posium on, 2000

[8] Fuhrer M. R. et. al., ‘MINIMALIST: An Environment for the Synthesis, Verifi
cation and Testability of Burst-Mode Asynchronous Machines’, Columbia Univ
sity Computer Science Dept. Tech Report #CUCS-020-99

[9] Lu S. L., ‘Improved design of CMOS multiple-input Muller-C-elements’, Ele
tronic letters 16th September 1993 Vol. 29 No. 19

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Olof Manbo

	Abstract
	Table of contents
	1 Introduction 1
	1.1 Goal 1
	1.2 Programs and hardware 2

	2 Technology introduction 3
	2.1 Asynchronous circuits 3
	2.2 Communication protocols 4
	2.3 Hazard-free circuits 5
	2.4 Extended burst-mode 7
	2.5 Metastability 8
	2.7 Muller-C elements 9
	2.8 FIFO 9
	2.9 Micropipelines 10
	2.10 Synthesis tool for extended burst-mode 11

	3 Introduction to asynchronous wrappers 13
	3.1 Preventing metastability 14
	3.2 Previous designs 14
	3.3 The control circuit 15

	4 Designing the wrapper 17
	5 Implementing the wrapper 21
	5.1 Tools 21
	5.2 VHDL-programming 21
	5.3 Simulation 22
	5.4 Synthesis 27
	5.5 Synthesizing the complete circuit 29
	5.6 Example: Implementation of Muller-C element 30
	5.6 Muller-C element in CMOS VLSI 34

	6 Conclusions 35
	References 37

	1 Introduction
	1.1 Goal
	1.2 Programs and hardware

	2 Technology introduction
	2.1 Asynchronous circuits
	2.2 Communication protocols
	2.3 Hazard-free circuits
	2.4 Extended burst-mode
	2.5 Metastability
	2.6 Globally Asynchronous Locally Synchronous
	2.7 Muller-C elements
	2.8 FIFO
	2.9 Micropipelines
	2.10 Synthesis tool for extended burst-mode

	3 Introduction to asynchronous wrappers
	3.1 Preventing metastability
	3.2 Previous designs
	3.3 The control circuit

	4 Designing the wrapper
	5 Implementing the wrapper
	5.1 Tools
	5.2 VHDL-programming
	5.3 Simulation
	5.4 Synthesis
	5.5 Synthesizing the complete circuit
	5.7 Muller-C element in CMOS VLSI

	6 Conclusions
	References

