
Quantum Circuits

and Algorithms
 Modular Arithmetic, XOR

 Reversible Computation revisited

 Quantum Gates revisited

 A taste of quantum algorithms: Deutsch algorithm

 Other algorithms, general overviews

 Measurements revisited

Sources:
John P. Hayes, Mike Frank Michele Mosca, Artur Ekert, Bulitko, Rezania. Dave

Bacon, 156 Jorgensen, dabacon@cs.caltech.edu, Stephen Bartlett

Some review, some new.

• This lecture reviews some of the most

important facts from the class,

• Possibly in a new light

• To help you understand not only the top

quantum algorithms

• But also a philosophy and methodology of

creating quantum algorithms.

Outline
• Review and new ideas useful for quantum

algorithms

• Introduction to quantum algorithms

– Define algorithms and computational complexity

– Discuss factorization as an important algorithm for

information security

• Quantum algorithms

– What they contribute to computing and cryptography

– Deutsch algorithm and Deutsch-Jozsa algorithm

– Shor’s quantum algorithm for efficient factorization

– Quantum search algorithms

– Demonstrations of quantum algorithms

– Ongoing quantum algorithms research

Review of quantum

formalism, circuits

and new ideas

useful in quantum

algorithms

Universal Quantum gates

 Ideally, we’d like a set of gates that allows us
to generate all unitary operations on n qubits

 The controlled-NOT plus all 1-qubit gates is
universal in this sense

 However, this set of gates in infinite, and
therefore not “reasonable”

 We are happy with finite sets of gates that
allow us to approximate any unitary operation
on n qubits (more in Chapter 4 of Nielsen and
Chuang)

Universal Q-Gates: History

• Deutsch „89:

– Universal 3-qubit Toffoli-like gate.

• diVincenzo „95:

– Adequate set of 2-qubit gates.

• Barenco „95:

– Universal 2-qubit gate.

• Deutsch et al. „95

– Almost all 2-qubit gates are universal.

• Barenco et al. „95

– CNOT + set of 1-qubit gates is adequate.

• Later development of discrete gate sets...

Deutsch: Generalized 3-bit Toffoli gate:

• The following gate is universal:



























ab

ba

1

1

1

1

1

1

2/)1(

2/)1(

2/

2/





ii

ii

eieb

eiea





a b

b a

(Where  is any irrational number.)

Barenco‟s 2-bit generalized CNOT gate

• where ,,, are relatively irrational

• Also works, e.g., for =, =/2:





































cossin

sincos

1

1

),,(

)(

)(

ii

ii

eie

iee
A

























 

cossin

sincos

1

1

),,(2

i

i
A

U

Barenco et al. „95 results

• Universality of CNOT + 1-qubit gates

– 2-qubit Barenco gate already known universal

– 4 1-qubit gates + 2 CNOTs suffice to build it

• Construction of generalized Toffoli gates

– 3-bit version via five 2-qubit gates

– n-qubit version via O(n2) 2-qubit gates

– No auxilliary qubits needed for the above

• All operations done “in place” on input qubits.

– n-bit version via O(n) 2-qubit gates, given 1 work

qubit

Modular arithmetic

 For any positive integer N, we say a is
congruent to b modulo N (denoted

if and only if
N divides a-b

 E.g.
5mod0...15,10,5,0,5,10..., 

Nba mod

5mod1...16,11,6,1,4,9,14... 
5mod2...17,12,7,2,3,8,13... 
5mod3...18,13,8,3,2,7,12... 
5mod4...19,14,9,4,1,6,11... 

Modular arithmetic

 For any positive integer N, and for any
integer a, define to be the
unique integer, , between 0 and N-1 such
that

 For positive integers, a, we can say that
is the remainder when we divide a by N.

 If N=2, then if a is even

if a is odd

Na mod

Naa mod
a

a

02mod a
12mod a

Modulo versus XOR

 For }1,0{, ba

 The controlled-NOT also realizes the
reversible XOR function

a

b

  2modbaba 

a

ab 

reminder

Controlled-NOT can be used to copy

classical information

 If we initialize b=0, then the C-NOT can
be used to copy “classical” information

a

0

a

a

 We can use this operation in the copy part
of reversible computation

Reversibly computing f(x)

 Suppose we know how to compute

)(xfbxbx 

 We can realize the following reversible
implementation of f

mnf }1,0{}1,0{: 

Reversibly computing f(x)=y1y2

Step 1: Compute f(x)

21321 00000 bbxxx

X

2121321321 bbyyjjjxxx

Pauli X

is an

inverter

Reversibly computing f(x)=y1y2

Step 2: Add answer to output register

2121321321 bbyyjjjxxx

221121321321 ybybyyjjjxxx 

Reversibly computing f(x)=y1y2

Step 3: Uncompute f(x)

X

221121321321 ybybyyjjjxxx 

2211321 00000 ybybxxx 

A quantum gate

1NOT 0 

NOT 0 1
2

i

2

i

2

1

2

1 1

0

???

10 
2

i

2

1
What is supposed to mean?

One thing we know about it

10 0 1If we measure

we get with probability

and with probability

0

1

2

0

2

1

Please recall the notation!

10 10 

0 








0

1

1 








1

0

































1

0

10 1

0

0

1

corresponds to

corresponds to

corresponds to

Two very important 1-

qubit gates



















2

i

2

1
2

1

2

i

corresponds to






















2

1

2

1
2

1

2

1

HAnother useful gate:
(Hadamard gate)

Unexpected result again!










0

1

NOT0 NOT 1i



















22

1
2

1

2
i

i



















22

1
2

1

2
i

i










i

0 

Tensor Product again!

000
0 

00 0 0 








0

1
 









0

1























0

0

0

1

 00





















0

0

0

1 

Local versus Global description of a

2-qubit state









 1

2

1
0

2

i
0

 







 01

2

1
00

2

i









 10

2

1
00

2

i

A quantum computation: Entanglement

0

00

0

NOT 0

0

1

12

i


2

1

INOT 
10

2

1
00

2


i
11

2

1
00

2


iNOTc 

00
INOT 

10
2

1
00

2


i
11

2

1
00

2


iNOTc 





















0

0

0

1

I
i

i










1

1

2

1





















0

1

0

2

1

i

 




















0100

1000

0010

0001





















1

0

0

2

1

i



















i

i

i

i

010

001

100

010

2

1









I

i

i

1

1

2

1

A quantum computation: Entanglement

Quantum Circuit Model

0

0
0

0

H

X

  
X






 nx

x x
}1,0{

α

1
}1,0{

2


 nx
xα

Measurement
0

0
0

0

H

X

  
X





nxxxx 21

Measuring all n qubits yields the result
with

probability 2

xα

Partial Measurement

0

0
0

0

H

X

  
X





Partial Measurement


 nx

x x
}1,0{

α

















































































11

11

11

}1,0{ 1

1

1
}1,0{ 0

0

0

}1,0{
1

}1,0{
0

}1,0{
1

}1,0{
0

10

10

10

nn

nn

nn

y

y

y

y

y
y

y
y

y
y

y
y

y
a

ay
a

a

yy

yy

αα

αα

αα





1}1,0{

2

00
ny

ya α 



1}1,0{

2

11
ny

ya α

Suppose we measure the first bit of
which can be rewritten as

qubit 0

remaining

qubits

Partial Measurement

0


 1}1,0{ 0

0

ny

y y
a

α

The probability of obtaining is

and in this case the remaining qubits will be
left in the state





1}1,0{

2

0

2

0
ny

ya α

(reminiscent of Bayes’ theorem)

Measurement: observer

breaks a closed system

• Note that the act of measurement
involves interacting the formerly closed
system with an external system (the
“observer” or “measuring apparatus”).

• So the evolution of the system is no
longer necessarily unitary.

Note that “global” phase

doesn‟t matter

Measuring gives with probability
 nx

x x
}1,0{

α

2

xα


 nx

x
i xe

}1,0{

αφ

22

xx
ie ααφ 

x

Measuring gives with probabilityx

Note that “global” phase

doesn‟t matter

Can we apply some unitary operation that will
make the phase measurable? No!






























 nn x

x
i

x
x

i xUexeU
}1,0{}1,0{

ββ φφ

Another tensor product fact


















































































































d

c

b

a

d

c

b

a

bd

bc

ad

ac

d

c

b

a

α

α

α

α

α

α

α

Another tensor product fact

    yxyxyx ααα 

So

….please remember….

Now we have a base of facts to discuss the most interesting aspect

of quantum computing - quantum algorithms that are different than

for normal (Turing machine-like, circuit-like) computing.

Basic Ideas of

Quantum

Algorithms

Quantum Algorithms

give interesting speedups
•Grover‟s quantum database search algorithm finds

an item in an unsorted list of n items in O( n) steps;

classical algorithms require O(n).

•Shor‟s quantum algorithm finds the prime factors of

an n-digit number in time O(n3); the best known

classical factoring algorithms require at least time

O(2n 1/3 log(n)2/3)

Example: discrete Fourier transform

• Problem: for a given vector (x j), j= 1,..., N, what is the

discrete Fourier transform (DFT) vector

• Algorithm:

– a detailed step- by- step method to calculate the DFT (y j) for any

instance (x j)

• With such an algorithm, one could:

– write a DFT program to run on a computer

– build a custom chip that calculates the DFT

– train a team of children to execute the algorithm (remember the

Andleman DNA algorithm and children with Lego?)

Computational complexity of DFT

• For the DFT, N could be the dimension of the vector

• To calculate each y j , must sum N terms

• This sum must be performed for N different y j

• Computational complexity of DFT: requires N 2 steps

• DFTs are important --> a lot of work in optical computing

(1950s, 1960s) to do fast DFTs

• 1965: Tukey and Cooley invent the Fast Fourier Transform

(FFT), requires N logN steps

• FFT much faster --> optical computing almost dies overnight

Example: Factoring
• Factoring: given a number, what are its prime

factors?

• Considered a “hard” problem in general, especially

for numbers that are products of 2 large primes

Quantum algorithms
• Feynman (1982): there may be quantum systems

that cannot be simulated efficiently on a “classical”

computer

• Deutsch (1985): proposed that machines using

quantum processes might be able to perform

computations that “classical” computers can only

perform very poorly

Concept of quantum computer emerged as a universal

device to execute such quantum algorithms

Factoring with quantum systems
• Shor (1995): quantum factoring

algorithm

• Example: factor a 300- digit number

• To implement Shor’s algorithm, one could:

• run it as a program on a “universal quantum computer”

• design a custom quantum chip with hard- wired algorithm

• find a quantum system that does it naturally! (?)

Reminder to appreciate : exponential

savings is very good!

Factor a 5,000 digit number:

–Classical computer (1ns/instruction,
~today‟s best algorithm)

•over 5 trillion years (the universe is ~
10–16 billion years old).

–Quantum computer (1ns/instruction,
~Shor‟s algorithm)

•just over 2 minutes

….the power of quantum computing…...

Implications of Factoring and

other quantum algorithms
• Information security and e-commerce are based on the

use of NP problems that are not in P

– must be “hard” (not in P) so that security is unbreakable

– requires knowledge/ assumptions about the algorithmic and

computational power of your adversaries

• Quantum algorithms (e. g., Shor‟s factoring algorithm)

require us to reassess the security of such systems

• Lessons to be learned:

– algorithms and complexity classes can change!

– information security is based on assumptions of what is hard

and what is possible --> better be convinced of their validity

Shor‟s algorithm
• Hybrid algorithm to factor numbers

• Quantum component finds period r of sequence a1, a2, .

. . ai, . . . , given an oracle function that maps i to ai

• Skeleton of the algorithm:

– create a superposition of all oracle inputs and call the oracle

– apply a quantum Fourier transform to the input qubits

– read the input qubits to obtain a random multiple of 1/r

– repeat a small number of times to infer r

Shor Type Algorithms
1985 Deutsch‟s algorithm demonstrates task quantum computer can

perform in one shot that classically takes

two shots.

1992 Deutsch-Jozsa algorithm demonstrates an exponential separation

between classical deterministic and

quantum algorithms.

1993 Bernstein-Vaziranidemonstrates a superpolynomial

algorithm separation between probabilistic and

quantum algorithms.

1994 Simon‟s algorithm demonstrates an exponential separation

between probabilistic and quantum

algorithms.

1994 Shor‟s algorithm demonstrates that quantum computers can

efficiently factor numbers.

Search problems
• Problem 1 : Given an unsorted database of N items, how long will

it take to find a particular item x?

– Check items one at a time. Is it x?

– Average number of checks: N/ 2

• Problem 2 : Given an unsorted database of N items, each either

red or black, how many are red?

– Start a tally

– Check items one at a time. Is it red?

• If it is red, add one to the tally

• If it is black, don't change the tally

– Must check all items: requires N checks

• Not surprisingly, these are the best (classical) algorithms

• We can define quantum search algorithms that do better

Oracles
• We need a "quantum way" to recognize a solution

• Define an oracle to be the unitary operator

• O : |x> |q> --> |x> |q  f(x) >

where |q> is an ancilla qubit

• Could measure the ancilla qubit to determine if x is a
solution

• Doesn't this "oracle" need to know the solution?
– It just needs to recognize a solution when given one

– Similar to NP problems

• One oracle call represents a fixed number of
operations

• Address the complexity of a search algorithm in terms
of the number of oracle calls --> separates scaling
from fixed costs

Quantum searching

• Grover (1996): quantum search algorithm

• For M solutions in a database containing N elements:

• Quantum search algorithm works by applying the oracle to

superpositions of all elements,

– it increases the amplitude of solutions (viewed as states)

• Quantum search requires that we know M/ N (at least

approximately) prior to the algorithm, in order to perform the

correct number of steps

• Failure to measure a solution --> run the algorithm again .

Quantum counting
• What if the number of solutions M is not known?

• Need M in order to determine the number of

iterations of the Grover operator

• Classical algorithm requires N steps

• Quantum algorithm: Use phase estimation

techniques

– based on quantum Fourier transform (Shor)

– requires N 1/ 2 oracle calls

• For a search with unknown number of solutions:

– First perform quantum counting: N 1/ 2

– With M, perform quantum search: N 1/ 2

– Total search algorithm: still only N 1/ 2

Example of collaboration

of two quantum algorithms

Can we do better than Grover quantum search?

• Quantum search algorithm provides a quadratic speedup

over best classical algorithm

Classical: N steps Quantum: N 1/ 2 steps

• Maybe there is a better quantum search algorithm

• Imagine one that requires log N steps:

– Quantum search would be exponentially faster than any

classical algorithm

– Used for NP problems: could reduce them to P by searching

all possible solutions

• Unfortunately, NO: Quantum search algorithm is

"optimal"

• Any search- based method for NP problems is slow

How do quantum algorithms work?

• What makes a quantum algorithm potentially faster than any

classical one?

– Quantum parallelism: by using superpositions of quantum states, the

computer is executing the algorithm on all possible inputs at once

– Dimension of quantum Hilbert space: the “size” of the state space

for the quantum system is exponentially larger than the corresponding

classical system

– Entanglement capability: different subsystems (qubits) in a quantum

computer become entangled, exhibiting nonclassical correlations

• We don’t really know what makes quantum systems more

powerful than a classical computer

• Quantum algorithms are helping us understand the

computational power of quantum versus classical systems

Quantum algorithms research

• Require more quantum algorithms in order to:

– solve problems more efficiently

– understand the power of quantum computation

– make valid/ realistic assumptions for information

security

• Problems for quantum algorithms research:

– requires close collaboration between physicists

and computer scientists

– highly non- intuitive nature of quantum physics

– even classical algorithms research is difficult

Summary of quantum

algorithms

• It may be possible to solve a problem on a quantum

system much faster (i. e., using fewer steps) than on a

classical computer

• Factorization and searching are examples of problems

where quantum algorithms are known and are faster than

any classical ones

• Implications for cryptography, information security

• Study of quantum algorithms and quantum computation is

important in order to make assumptions about adversary’s

algorithmic and computational capabilities

• Leading to an understanding of the computational power

of quantum versus classical systems

Deutsch‟s

Problem

… everything started with small circuit of Deutsch…...

Deutsch’s Problem

David Deutsch

Delphi

Deutsch’s Problem
Determine whether f(x) is constant or balanced using as few

queries to the oracle as possible.

(1985)(Deutsch ’85)

Classical Deutsch

Classically we need to query the oracle two times to solve Deutsch‟s Problem


f

f
f(0)  f(1)

1 for balanced, 0 for constants

0

1

Quantum Deutsch:first explanation

1.

2.

3.

100 % |01> 100 % |01> 100 % |11> 100 % |11>

Substitute f

Deutsch Circuit
measure

Quantum Deutsch: second explanation

This kind of proof

is often faster and

more intuitive but it

is better to check

using matrices

because you likely

can make errors

This circuit is replaced

by this

Quantum Deutsch: second explanation

This is

obtained after

connecting

Hadamards

and

simplifying

Generalize these ideas

• So, we can distinguish by measurement between

first two circuits from bottom and second two

circuits from bottom.

• This method is very general, we can build various

oracles and check how they can be distinguished,

by how many tests.

• In this case, we just need one test, but in a more

general case we can have a decision tree for

decision making.

Find using only 1 evaluation of
a reversible “black-box” circuit for

}1,0{}1,0{: f

f
)1()0(ff

)x(f

x x

b)x(fb

Quantum Deutsch: third

explanation

Phase “kick-back” trick

x

)x(f10 

x)1()x(f

)10(x)1(

)10()1(x
)x(f

)x(f





10 

)1)x(f)x(f(x)10(x 

The phase

depends on

function f(x)

A Deutsch quantum algorithm:
third explanation continued

0 H

)x(f

H

10 10 

)1(f)0(f 

10 

)1)1(0()1(

1)1(0)1(
)1(f)0(f)0(f

)1(f)0(f



)1(f)0(f)1()0(f 

…here we reduce the number of H gates...

We apply

one

hadamard

In Hilbert space

After measurement

Deutsch Algorithm Philosophy

 Since we can prepare a superposition of all the inputs, we can learn a
global property of f (i.e. a property that depends on all the values of
f(x)) by only applying f once

 The global property is encoded in the phase information, which we
learn via interferometry

 Classically, one application of f will only allow us to probe its value on
one input

We use just one quantum evaluation by, in effect, computing f(0) and f(1) simultaneously

• The Circuit:

MH

H

H

y f(x)y

x x

Uf

Not

always

Deutsch‟s Algorithm

MH

H

H

y f(x)y

x x

Uf

• Initialize with |0 = |01

|0

|1

|0

• Create superposition of x states using the first
Hadamard (H) gate. Set y control input using the
second H gate

|1

• Compute f(x) using the special unitary circuit Uf

|2

• Interfere the |2 states using the third H gate

|3

• Measure the x qubit

|0 = constant; |1 = balanced

measurement

M

y f(x)y

x x

Uf

|0

|1

|0 |1 |2 |3

1 
0  1

2







0  1

2








2 
1 f (0) 0  1  f (1) 1

2









0  1

2










0  1

2







0  1

2









0  1

2







0  1

2
















H

H

H

3 

 0 
0  1

2








 1 
0  1

2
















if f(0) = f(1)

if f(0) ≠ f(1)

if f(0) = f(1)

if f(0) ≠ f(1)

0  0  1 

Deutsch‟s Algorithm with single

qubit measurement

Deutsch In Perspective

Quantum theory allows us to do in a

single query what classically requires two

queries.

What about problems where the

computational complexity is

exponentially more efficient?

Extended Deutsch‟s Problem

• Given black-box f:{0,1}n{0,1},

– and a guarantee that f is either constant or balanced (1 on

exactly ½ of inputs)

– Which is it?

– Minimize number of calls to f.

• Classical algorithm, worst-case:

– Order 2n time!

• What if the first 2n-1 cases examined are all 0?

– Function could be either constant or balanced.

• Case number 2n-1+1: if 0, constant; if 1, balanced.

• Quantum algorithm is exponentially faster!

– (Deutsch & Jozsa, 1992.)

Deutsch-Jozsa Problem

Deutsch-Jozsa Problem

Determine whether f(x) is constant or balanced using as few queries

to the oracle as possible.

(1992)

Classical DJ

x

1

0

1

0 x

This is a

probabilistic

algorithm!

Quantum DJ
Now we additionally apply

Hadamard in output of the function

Quantum DJ

Full Quantum DJ

Solves DJ with a SINGLE

query vs 2n-1+1 classical

deterministic!!!!!!!!!

Deutsch-Josza Algorithm (contd)

• This algorithm distinguishes constant from

balanced functions in one evaluation of f, versus

2n–1 + 1 evaluations for classical deterministic

algorithms

• Balanced functions have many interesting and

some useful properties

– K. Chakrabarty and J.P. Hayes, “Balanced Boolean

functions,” IEE Proc: Digital Techniques, vol. 145, pp

52 - 62, Jan. 1998.

