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Some review, some new.

• This lecture reviews some of the most 

important facts from the class,

• Possibly in a new light

• To help you understand not only the top 

quantum algorithms

• But also a philosophy and methodology of 

creating quantum algorithms.



Outline
• Review and new ideas useful for quantum 

algorithms

• Introduction to quantum algorithms

– Define algorithms and computational complexity

– Discuss factorization as an important algorithm for 

information security

• Quantum algorithms

– What they contribute to computing and cryptography

– Deutsch algorithm and Deutsch-Jozsa algorithm

– Shor’s quantum algorithm for efficient factorization

– Quantum search algorithms

– Demonstrations of quantum algorithms

– Ongoing quantum algorithms research



Review of quantum 

formalism, circuits 

and new ideas 

useful in quantum 

algorithms



Universal Quantum gates

 Ideally, we’d like a set of gates that allows us 
to generate all unitary operations on n qubits

 The controlled-NOT plus all 1-qubit gates is 
universal in this sense

 However, this set of gates in infinite, and 
therefore not “reasonable”

 We are happy with finite sets of gates that 
allow us to approximate any unitary operation 
on n qubits (more in Chapter 4 of Nielsen and 
Chuang)



Universal Q-Gates: History

• Deutsch „89:

– Universal 3-qubit Toffoli-like gate.

• diVincenzo „95:

– Adequate set of 2-qubit gates.

• Barenco „95:

– Universal 2-qubit gate.

• Deutsch et al. „95

– Almost all 2-qubit gates are universal.

• Barenco et al. „95

– CNOT + set of 1-qubit gates is adequate.

• Later development of discrete gate sets...



Deutsch: Generalized 3-bit Toffoli gate:

• The following gate is universal:
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Barenco‟s 2-bit generalized CNOT gate

• where ,,, are relatively irrational

• Also works, e.g., for =, =/2:
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Barenco et al. „95 results

• Universality of CNOT + 1-qubit gates

– 2-qubit Barenco gate already known universal

– 4 1-qubit gates + 2 CNOTs suffice to build it

• Construction of generalized Toffoli gates

– 3-bit version via five 2-qubit gates

– n-qubit version via O(n2) 2-qubit gates

– No auxilliary qubits needed for the above

• All operations done “in place” on input qubits.

– n-bit version via O(n) 2-qubit gates, given 1 work 

qubit



Modular arithmetic

 For any positive integer N, we say a is 
congruent to b modulo N (denoted                    

if and only if 
N divides a-b

 E.g. 
5mod0...15,10,5,0,5,10..., 

Nba mod

5mod1...16,11,6,1,4,9,14... 
5mod2...17,12,7,2,3,8,13... 
5mod3...18,13,8,3,2,7,12... 
5mod4...19,14,9,4,1,6,11... 



Modular arithmetic

 For any positive integer N, and for any 
integer a, define                     to be the 
unique integer,   , between 0 and N-1 such 
that

 For positive integers, a, we can say that     
is the remainder when we divide a by N.

 If N=2, then if a is even

if a is odd 

Na mod

Naa mod
a

a

02mod a
12mod a



Modulo versus XOR

 For }1,0{, ba

 The controlled-NOT also realizes the 
reversible XOR function

a

b

  2modbaba 

a

ab 

reminder



Controlled-NOT can be used to copy 

classical information

 If we initialize b=0, then the C-NOT can 
be used to copy “classical” information 

a

0

a

a

 We can use this operation in the copy part 
of reversible computation 



Reversibly computing f(x)

 Suppose we know how to compute 

)(xfbxbx 

 We can realize the following reversible 
implementation of f

mnf }1,0{}1,0{: 



Reversibly computing f(x)=y1y2

Step 1: Compute f(x)

21321 00000 bbxxx

X

2121321321 bbyyjjjxxx

Pauli X 

is an 

inverter



Reversibly computing f(x)=y1y2

Step 2: Add answer to output register

2121321321 bbyyjjjxxx

221121321321 ybybyyjjjxxx 



Reversibly computing f(x)=y1y2

Step 3: Uncompute f(x)

X

221121321321 ybybyyjjjxxx 

2211321 00000 ybybxxx 



A quantum gate
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One thing we know about it

10 0 1If we measure                                  

we get        with probability
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Please recall the notation!
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Two very important 1-

qubit gates
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Unexpected result again!
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Tensor Product again!
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Local versus Global description of a 

2-qubit state
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A quantum computation: Entanglement
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A quantum computation: Entanglement



Quantum Circuit Model
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Measurement
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Partial Measurement
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Partial Measurement
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Partial Measurement
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Measurement: observer 

breaks a closed system

• Note that the act of measurement
involves interacting the formerly closed 
system with an external system (the 
“observer” or “measuring apparatus”). 

• So the evolution of the system is no 
longer necessarily unitary.



Note that “global” phase 

doesn‟t matter
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Note that “global” phase 

doesn‟t matter

Can we apply some unitary operation that will 
make the phase measurable?  No!
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Another tensor product fact
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Another tensor product fact

    yxyxyx ααα 

So

….please remember….

Now we have a base of facts to discuss the most interesting aspect 

of quantum computing - quantum algorithms that are different than 

for normal (Turing machine-like, circuit-like) computing.



Basic Ideas of 

Quantum 

Algorithms



Quantum Algorithms 

give interesting speedups
•Grover‟s quantum database search algorithm finds 

an item in an unsorted list of n items in O( n) steps; 

classical algorithms require O(n).

•Shor‟s quantum algorithm finds the prime factors of 

an n-digit number in time O(n3); the best known 

classical factoring algorithms require at least time 

O(2n 1/3 log(n)2/3)



Example: discrete Fourier transform

• Problem: for a given vector ( x j ), j= 1,..., N, what is the 

discrete Fourier transform (DFT) vector

• Algorithm:

– a detailed step- by- step method to calculate the DFT (y j ) for any 

instance (x j )

• With such an algorithm, one could:

– write a DFT program to run on a computer

– build a custom chip that calculates the DFT

– train a team of children to execute the algorithm (remember the 

Andleman DNA algorithm and children with Lego?)



Computational complexity of DFT

• For the DFT, N could be the dimension of the vector

• To calculate each y j , must sum N terms

• This sum must be performed for N different y j

• Computational complexity of DFT: requires N 2 steps

• DFTs are important --> a lot of work in optical computing 

(1950s, 1960s) to do fast DFTs

• 1965: Tukey and Cooley invent the Fast Fourier Transform 

(FFT), requires N logN steps

• FFT much faster --> optical computing almost dies overnight



Example: Factoring
• Factoring: given a number, what are its prime 

factors?

• Considered a “hard” problem in general, especially 

for numbers that are products of 2 large primes



Quantum algorithms
• Feynman (1982): there may be quantum systems 

that cannot be simulated efficiently on a “classical” 

computer

• Deutsch (1985): proposed that machines using 

quantum processes might be able to perform 

computations that “classical” computers can only 

perform very poorly

Concept of quantum computer emerged as a universal 

device to execute such quantum algorithms



Factoring with quantum systems
• Shor (1995): quantum factoring 

algorithm

• Example: factor a 300- digit number

• To implement Shor’s algorithm, one could:

• run it as a program on a “universal quantum computer”

• design a custom quantum chip with hard- wired algorithm

• find a quantum system that does it naturally! (?)



Reminder to appreciate : exponential 

savings is very good!

Factor a 5,000 digit number: 

–Classical computer (1ns/instruction, 
~today‟s best algorithm) 

•over 5 trillion years (the universe is ~ 
10–16 billion years old). 

–Quantum computer (1ns/instruction, 
~Shor‟s algorithm) 

•just over 2 minutes 

….the power of quantum computing…...



Implications of Factoring and 

other quantum algorithms
• Information security and e-commerce are based on the 

use of NP problems that are not in P 

– must be “hard” (not in P ) so that security is unbreakable

– requires knowledge/ assumptions about the algorithmic and 

computational power of your adversaries

• Quantum algorithms (e. g., Shor‟s factoring algorithm) 

require us to reassess the security of such systems

• Lessons to be learned:

– algorithms and complexity classes can change!

– information security is based on assumptions of what is hard 

and what is possible --> better be convinced of their validity



Shor‟s algorithm
• Hybrid algorithm to factor numbers 

• Quantum component finds period r of sequence a1, a2, . 

. . ai, . . . , given an oracle function that maps i to ai

• Skeleton of the algorithm: 

– create a superposition of all oracle inputs and call the oracle 

– apply a quantum Fourier transform to the input qubits 

– read the input qubits to obtain a random multiple of 1/r

– repeat a small number of times to infer r 



Shor Type Algorithms
1985 Deutsch‟s algorithm demonstrates task quantum computer can      

perform in one shot that classically takes 

two shots.

1992 Deutsch-Jozsa algorithm demonstrates an exponential separation

between classical deterministic and 

quantum algorithms.

1993 Bernstein-Vaziranidemonstrates a superpolynomial 

algorithm separation between probabilistic and 

quantum algorithms.

1994 Simon‟s algorithm demonstrates an exponential separation

between probabilistic and quantum 

algorithms.

1994 Shor‟s algorithm demonstrates that quantum computers can 

efficiently factor numbers.



Search problems
• Problem 1 : Given an unsorted database of N items, how long will 

it take to find a particular item x?

– Check items one at a time. Is it x?

– Average number of checks: N/ 2

• Problem 2 : Given an unsorted database of N items, each either 

red or black, how many are red?

– Start a tally

– Check items one at a time. Is it red?

• If it is red, add one to the tally

• If it is black, don't change the tally

– Must check all items: requires N checks

• Not surprisingly, these are the best (classical) algorithms

• We can define quantum search algorithms that do better



Oracles
• We need a "quantum way" to recognize a solution

• Define an oracle to be the unitary operator

• O : |x> |q>  --> |x> |q  f( x) >

where |q> is an ancilla qubit

• Could measure the ancilla qubit to determine if x is a 
solution

• Doesn't this "oracle" need to know the solution?
– It just needs to recognize a solution when given one

– Similar to NP problems

• One oracle call represents a fixed number of 
operations

• Address the complexity of a search algorithm in terms 
of the number of oracle calls -->  separates scaling 
from fixed costs



Quantum searching

• Grover (1996): quantum search algorithm

• For M solutions in a database containing N elements:

• Quantum search algorithm works by applying the oracle to 

superpositions of all elements, 

– it increases the amplitude of solutions (viewed as states)

• Quantum search requires that we know M/ N (at least 

approximately) prior to the algorithm, in order to perform the 

correct number of steps

• Failure to measure a solution --> run the algorithm again .



Quantum counting
• What if the number of solutions M is not known?

• Need M in order to determine the number of 

iterations of the Grover operator

• Classical algorithm requires N steps

• Quantum algorithm: Use phase estimation

techniques 

– based on quantum Fourier transform (Shor) 

– requires N 1/ 2 oracle calls

• For a search with unknown number of solutions:

– First perform quantum counting: N 1/ 2

– With M, perform quantum search: N 1/ 2

– Total search algorithm: still only N 1/ 2

Example of collaboration 

of two quantum algorithms



Can we do better than Grover quantum search?

• Quantum search algorithm provides a quadratic speedup

over best classical algorithm

Classical: N steps               Quantum: N 1/ 2 steps

• Maybe there is a better quantum search algorithm

• Imagine one that requires log N steps:

– Quantum search would be exponentially faster than any 

classical algorithm

– Used for NP problems: could reduce them to P by searching 

all possible solutions

• Unfortunately, NO: Quantum search algorithm is 

"optimal"

• Any search- based method for NP problems is slow



How do quantum algorithms work?

• What makes a quantum algorithm potentially faster than any 

classical one?

– Quantum parallelism: by using superpositions of quantum states, the 

computer is executing the algorithm on all possible inputs at once

– Dimension of quantum Hilbert space: the “size” of the state space 

for the quantum system is exponentially larger than the corresponding 

classical system

– Entanglement capability: different subsystems (qubits) in a quantum 

computer become entangled, exhibiting nonclassical correlations

• We don’t really know what makes quantum systems more 

powerful than a classical computer

• Quantum algorithms are helping us understand the 

computational power of quantum versus classical systems



Quantum algorithms research

• Require more quantum algorithms in order to:

– solve problems more efficiently

– understand the power of quantum computation

– make valid/ realistic assumptions for information 

security

• Problems for quantum algorithms research:

– requires close collaboration between physicists

and computer scientists

– highly non- intuitive nature of quantum physics

– even classical algorithms research is difficult



Summary of quantum 

algorithms

• It may be possible to solve a problem on a quantum 

system much faster (i. e., using fewer steps) than on a 

classical computer

• Factorization and searching are examples of problems 

where quantum algorithms are known and are faster than 

any classical ones

• Implications for cryptography, information security

• Study of quantum algorithms and quantum computation is 

important in order to make assumptions about adversary’s 

algorithmic and computational capabilities

• Leading to an understanding of the computational power 

of quantum versus classical systems



Deutsch‟s 

Problem

… everything started with small circuit of Deutsch…...



Deutsch’s Problem

David Deutsch

Delphi

Deutsch’s Problem
Determine whether f(x) is constant or balanced using as few 

queries to the oracle as possible.

(1985)(Deutsch ’85)



Classical Deutsch

Classically we need to query the oracle two times to solve Deutsch‟s Problem


f

f
f(0)  f(1)

1 for balanced, 0 for constants

0

1



Quantum Deutsch:first explanation

1.

2.

3.

100 % |01> 100 % |01> 100 % |11> 100 % |11>

Substitute f



Deutsch Circuit
measure



Quantum Deutsch:  second  explanation

This kind of proof 

is often faster and 

more intuitive but it 

is better to check 

using matrices 

because you likely 

can make errors

This circuit is replaced 

by this



Quantum Deutsch:  second  explanation

This is 

obtained after 

connecting 

Hadamards 

and 

simplifying



Generalize these ideas

• So, we can distinguish by measurement between 

first two circuits from bottom and second two 

circuits from bottom.

• This method is very general, we can build various 

oracles and check how they can be distinguished, 

by how many tests. 

• In this case, we just need one test, but in a more 

general case we can have a decision tree for 

decision making.



Find       using only 1 evaluation of 
a reversible “black-box” circuit for
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Quantum Deutsch:  third  

explanation



Phase “kick-back” trick
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The phase 

depends on 

function f(x)



A Deutsch quantum algorithm: 
third explanation continued

0 H

)x(f
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…here we reduce the number of H gates...

We apply 

one 

hadamard

In Hilbert space

After measurement



Deutsch Algorithm Philosophy

 Since we can prepare a superposition of all the inputs, we can learn a 
global property of f (i.e. a property that depends on all the values of 
f(x)) by only applying f once

 The global property is encoded in the phase information, which we 
learn via interferometry

 Classically, one application of f will only allow us to probe its value on 
one input

We use just one quantum evaluation by, in effect, computing f(0) and  f(1) simultaneously

• The Circuit:

MH

H

H

y f(x)y

x x

Uf

Not 

always



Deutsch‟s Algorithm

MH

H

H

y f(x)y

x x

Uf

• Initialize with |0 = |01

|0

|1

|0

• Create superposition of x states using the first 
Hadamard (H) gate. Set y control input using the 
second H gate

|1

• Compute f(x) using the special unitary circuit Uf

|2

• Interfere the |2 states using the third H gate

|3

• Measure the x qubit

|0 = constant; |1 = balanced

measurement



M

y f(x)y

x x

Uf

|0

|1

|0 |1 |2 |3

1 
0  1

2







0  1

2








2 
1 f (0) 0  1  f (1) 1

2









0  1

2










0  1

2







0  1

2









0  1

2







0  1

2
















H

H

H

3 

 0 
0  1

2








 1 
0  1

2
















if f(0) = f(1)

if f(0) ≠ f(1)

if f(0) = f(1)

if f(0) ≠ f(1)

0  0  1 

Deutsch‟s Algorithm with single 

qubit measurement



Deutsch In Perspective

Quantum theory allows us to do in a 

single query what classically requires two 

queries.

What about problems where the 

computational complexity is 

exponentially more efficient?



Extended Deutsch‟s Problem

• Given black-box f:{0,1}n{0,1},

– and a guarantee that f is either constant or balanced (1 on 

exactly ½ of inputs)

– Which is it?

– Minimize number of calls to f.

• Classical algorithm, worst-case:

– Order 2n time!

• What if the first  2n-1 cases examined are all 0?

– Function could be either constant or balanced.

• Case number 2n-1+1: if 0, constant; if 1, balanced.

• Quantum algorithm is exponentially faster!

– (Deutsch & Jozsa, 1992.)



Deutsch-Jozsa Problem

Deutsch-Jozsa Problem

Determine whether f(x) is constant or balanced using as few queries

to the oracle as possible.

(1992)



Classical DJ

x

1

0

1

0 x

This is a 

probabilistic 

algorithm!



Quantum DJ
Now we additionally apply 

Hadamard in output of the function



Quantum DJ



Full Quantum DJ

Solves DJ with a SINGLE 

query vs 2n-1+1 classical 

deterministic!!!!!!!!!



Deutsch-Josza Algorithm (contd)

• This algorithm distinguishes constant from 

balanced functions in one evaluation of f, versus 

2n–1 + 1 evaluations for classical deterministic 

algorithms

• Balanced functions have many interesting and 

some useful properties

– K. Chakrabarty and J.P. Hayes, “Balanced Boolean 

functions,” IEE Proc: Digital Techniques, vol. 145, pp 

52 - 62, Jan. 1998.


