Designing Oracles
for Grover Algorithm

Homework

1. You have time until December 3 to return me this homework.
2. Please use PPT, Word or some word processor. You may send also PDF. The simulation should be done in Matlab. Matlab code and all results should be submitted with comments and explanations.
3. The homework is to simulate Grover algorithm on some small oracle of your design.
4. The absolute minimum is to solve the map coloring problem (planar graph coloring) which I discussed in the class. You have to show all stages of your design and explanations of design procedures. For doing this part of homework you obtain 10 points.
5. If you will add a part of oracle to calculate that the cost of coloring is below certain value T , you will obtain another 10 points. See some hints in next slides.
6. If you design an oracle for some other NP-hard or NP-complete problem, different than the graph coloring problem, and simulate it successfully, you will obtain a total of 20 points. This cannot be a satisfiability problem and the problem should have some practical meaning and not be some arbitrary Boolean function as an oracle.
7. Quality of presentation of results, explanation, figures and use of English will be also taken into account while grading.

Examples of Problems for Oracles

- Satisfiability oracles: These oracles are based on creating the singleoutput satisfiability formula. The formula can use various gate types and structures, depending on the problem.
- Constraint satisfaction oracles: These type of oracles are for constraint satisfaction problems such as graph coloring, image matching or cryptographic puzzles. These oracles use both logical, arithmetical and relational blocks and have often the decision oracle and the optimization oracle as their components. The decision oracle is the global AND of several partial decision sub-oracles.
- Path problems: These are problems to find certain path in a graph, for introduce Euler path or Hamiltonian path. Many games and puzzles such as "Man, wolf, Goat and Cabbage" belong to this category. The oracles includes decision sub-oracles for each move(edge) in the graph of the problem(game)
- Problems related to spectral transforms:
- The mapping problems, including their special class, the subset selection problems.

The Satifiability oracles includes the following:

- POS satisfiability.
- Solving unite covering problem by Petrich Function.
- Solving binate covering problem
- Solving various multi-level SAT formulas, especially the generalized SAT of the form
- Solving even-odd covering problem for ESOP, PPRM, FPRM and similar minimization problems
- Solving AND-OR DAG from robotics and Artificial intelligence.

The constraint satisfiability oracles include:

- Proper graph coloring
- Compatible graph coloring
- Graph coloring problems with non-standard cost functions
- Waltz algorithm for image matching
- Cryptoarithmetic puzzles such as SEND + MORE $=$ MONEY

The Mapping oracles include:

- Maximum cliques (used in Maghoute algorithm for graph coloring)
- Maximum independent set
- Finding prime implicants of the Boolean Function.

Path oracles include:

- Euler path
- Hamilton path
- Shortest path
- Longest path
- Traveling salesman
- Missionaries and cannibals logic puzzle
- Man, Wolf, Goat and Cabbage logic puzzle

Exhaustive solving of equations includes:

- $a^{n}+b^{n}=c^{n}$

Finding a Hamiltonian Path in a Graph

- Problem.
- Given is a non-oriented graph. Find a path of edges of this graph that goes through all nodes, passing each of them only once, and finishes in the initial node.
- Find a Hamiltonian path or prove that such path does not exist for a given graph.
yes

NO

- (a) A graph with Hamiltonian Path, (b) a graph with no Hamiltonian Path

Finding Maximum Cliques in a graph

- Maximum Clique in a graph.
- There are other maximum cliques but this is the only one maximum clique with four nodes.
- $\{3,4,6\}$ is a maximum clique with 3 nodes.

Solving the Satisfiability Class of Problems

- Classical oracle for POS Satisfiability .

- Realization of oracle for POS SAT .

$$
f=(a+\bar{c}+d) \bullet(\bar{a}+\bar{c}) \bullet(\bar{c}+\bar{b}+\bar{d})
$$

For example, given is a SAT formula:

$$
f_{2}=[(a b+c d) \bullet(a c+\bar{b})] \oplus[(a b \bar{c} d) \bullet(a+b+c)]
$$

The formula is transformed to the following form

using mirror circuits to decrease the number of ancilla bits.

The circuit is not minimized.

Classical versus Quantum Oracle

B) Non optimized quantum array of the classical oracle from Fig A)

Maximum Cliques and Maximum Independent Sets of graphs

Fig. A presents the incompability graph.
Every two ancilla bits that can not be combined are linked by a solid edge.
The graph shows that there are the following maximum independent sets: $\left\{a_{1}, a_{4}\right\},\left\{a_{1}, a_{5}\right\},\left\{a_{2}, a_{5}\right\},\left\{a_{2}, a_{4}\right\}$, among others. We select pairs $\left\{a_{1}, a_{4}\right\}$ and $\left\{a_{2}, a_{5}\right\}$ for folding.
This leads to the quantum array with mirror circuit, presented in Fig. B

CONSTRAINTS SATISFACTION PROBLEMS

SEND
+ MORE
MONEY

- Fig. 9.9.

$$
\begin{gathered}
D+E=10 C_{1}+Y \\
N+R+C_{1}=10 C_{2}+E \\
E+O+C_{2}=10 C_{3}+N \\
S+M+C_{3}=10 C_{4}+O \\
C_{4}=M
\end{gathered}
$$

Fig. 9.10a. Equations compiled from the problem formulation from Figure 9.9.
$S\{0,1,2,3,4,5,6,7,8,9\}$
E $\{0,1,2,3,4,5,6,7,8,9\}$
$\mathrm{N}\{0,1,2,3,4,5,6,7,8,9\}$
D $\{0,1,2,3,4,5,6,7,8,9\}$
M $\{0,1,2,3,4,5,6,7,8,9\}$
$O\{0,1,2,3,4,5,6,7,8,9\}$
$R\{0,1,2,3,4,5,6,7,8,9\}$
$\mathrm{Y}\{0,1,2,3,4,5,6,7,8,9\}$
Fig. 9.10b. Constraints for nodes in the graph.

$S \neq E, S \neq N, S \neq D, S \neq M$ etc.

Fig. 9.10c. Inequalities for unique encoding of nodes of the graph.

$$
\begin{aligned}
& C_{4}=M \\
& M=1 \\
& \\
& S+M+C_{3}=10 C_{4}+O \\
& S+M+C_{3}=10 M+O \\
& S+C_{3}=9 M+O \\
& S+C_{3}=9+O \quad \text { (Simplified equation) }
\end{aligned}
$$

Fig.9.11. Equations compiled from the SEND+MORE=MONEY equation

Fig. 9.12. Graph of constraints for the SEND+MORE=MONEY problem.

Fig. 9.14. The remaining part of the oracle for the SEND+MORE=MONEY problem.

- Fig.9.15. The part of an oracle for the SEND+MORE=MONEY problem that checks uniqueness of mapping

Fig. 9.16. The part of oracle for the SEND+MORE=MONEY problem that....

ORACLES FOR CONSTRAINT SATISFACTION PROBLEMS

Map of Europe

The Graph Coloring Problem.

Figure 5: Block Diagram

Figure 6a: A simple graph coloring problem

Value 1 for good coloring

Simplified schematic of our Graph Coloring
Oracle.

Quantum Adders.
(a)Half-adder realized using Toffoli and Feynman gates,
(b) (b) Full adder realized using two Toffoli, Feynman and inverter gates.

Block "Count Ones" realized using binary Half-Adders and FullAdders.

The block at the bottom is the adder from Figure 9.2.

BINARY EQUALITY COMPARATOR

$$
\bar{M}=\overline{a_{0}} \bar{a}_{1} \bar{b}_{0} \bar{b}_{1}+\bar{a}_{0} a_{1} \bar{b}_{0} b_{1}+a_{0} \bar{a}_{1} b_{0} \bar{b}_{1}+a_{0} a_{1} b_{0} b_{1}
$$

$$
\left.=\overline{a_{0}} \bar{b}_{0}\left(\bar{a}_{1} \bar{b}_{1}+a_{1} b_{1}\right)+a_{0} b_{0} \overline{\left(a_{1} b_{1}\right.}+a_{1} b_{1}\right)
$$

$$
\left.=\left(\overline{a_{1}} \overline{b_{1}}+a_{1} b_{1}\right) \overline{\left(a_{0}\right.} \bar{b}_{0}+a_{0} b_{0}\right)
$$

$\mathrm{a}_{0} \mathrm{a}_{1}$	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

Inverted Karnaugh map of C block.

Quantum C Block

Binary Implementation of Comparator. Please observe the Toffoli gate with 5 inputs in AND.

Count ones

- Quantum Implementation of 8:4 Compressor and Comparator

Butterfly iterative circuit for sorting/absorbing

SAP block

The map for c, d, z, and v signals

Karnaugh map for $Q_{1}+$

Karnaugh map for $Q_{2}+$

Circuit for $Q_{1}+Q_{2}+$

