## Quantum Phase

 Estimation using Multivalued Logic
## Agenda

- Importance of Quantum Phase Estimation (QPE)
- QPE using binary logic
- QPE using MVL
- Performance Requirements
- Salient features
- Conclusion


## Introduction

- QPE - one of the most important quantum subroutines, used in :
- 1) Shor's Algorithm
- 2) Abrams and Lloyd Algorithm
- (Simulating quantum systems)
- Calculation of Molecular Ground State Energies
- 3) Quantum Counting (for Grover Search)
-4) Fourier Transform on arbitrary $Z_{p}$


## Abstract

- We generalize the Quantum Phase Estimation algorithm to MVL logic.
- We show the quantum circuits for QPE using qudits.
- We derive the performance requirements of the QPE to achieve high probability of success.
- We show how this leads to logarithmic decrease in the number of qudits and exponential decrease in error probability of the QPE algorithm as the value of the radix $d$ increases.

$$
\begin{gathered}
\text { General } \\
\text { Controlled } \\
\text { Gates }
\end{gathered}
$$

## Controlled-U gate

- Two-qubit controlled-U

- Multi-qubit controlled-U

This is a new concept, but essentially the same


## Controlled-U gate



Another new concept we use controlled powers of some Unitary Matrix U

## REMINDER OF

## EIGENVALUES AND

EIGENVECTORS

## What is eigenvalue?

## MATRIX * VECTOR = Constant * VECTOR

Eigenvector of this
Matrix

$$
\begin{aligned}
& \text { le of this } \\
& \text { trix }
\end{aligned}
$$

## Basic Math

## for Binary

Phase
Estimation

## Phase estimation algorithm

- Given a unitary operator and an eigenstate of the operator
- The goal of the PE algorithm is to find the corresponding eigenvalue


Finding the eigenvalue is the same as finding its phase $\phi$

## Phase estimation algorithm

- The PE algorithm uses two registers of qubits
- The target register, to which $U$ can be applied
- The index register, which will be used to store the eigenvalue of $U$


## Phase estimation algorithm



## Phase estimation algorithm

- We initially start with the system in the state

$$
|0\rangle|\phi\rangle
$$

- Performing the Hadamard gates on the index register creates the state

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|\phi\rangle
$$

- Performing the series of controlled- $U$ gates gives


## Formulas for the phase estimation algorithm

$$
\hat{U}^{\hat{x}}\left(\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|\phi\rangle\right)
$$

Phase estimation algonithm


This is the input to QFT

## Phase estimation algorithm

- We can move the $U$ inside the summation

- And replace U with $e^{i \phi}$

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle e^{i x \varphi}|\phi\rangle
$$

## Phase estimation algorithm

- Rearranging,


## Assume k an integer

then

$$
\begin{aligned}
& |\phi\rangle \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1} e^{i x \varphi}|x\rangle \text { if } \phi=\frac{2 \pi k}{2^{m}} \\
& |\phi\rangle \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1} e^{\frac{2 \pi i x k}{2^{m}}}|x\rangle
\end{aligned}
$$

Applying the quantum Fourier transform gives


## Phase estimation algorithm

- Generally, $k$ will not be an integer
- With high probability we will obtain the nearest integer to $k$ - Thus, we have an m-bit approximation to $\phi$.


## Towards

## Generalization

of Phase
Estimation

## Agenda

- Importance of Quantum Phase Estimation (QPE)
- QPE using binary logic
- QPE using MVL
- Performance Requirements
- Salient features
- Conclusion

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## Abstract

- We generalize the Quantum Phase Estimation algorithm to MVL logic.
- We show the quantum circuits for QPE using qudits.
- We derive the performance requirements of the QPE to achieve high probability of success.
- We show how this leads to logarithmic decrease in the number of qudits and exponential decrease in error probability of the QPE algorithm as the value of the radix $d$ increases.

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## Introduction

- QPE - one of the most important quantum subroutines, used in :
- 1) Shor's Algorithm
- 2) Abrams and Lloyd Algorithm
- (Simulating quantum systems)
- Calculation of Molecular Ground State Energies
- 3) Quantum Counting (for Grover Search)
-4) Fourier Transform on arbitrary $Z_{p}$


## Quantum phase estimation (QPE)

Let $|u\rangle$ be the eigenstate of a unitary operator $U$ with an eigenvalue $e^{2 \pi i \varphi_{u}}$, where the value of the phase $\varphi_{u}$ is unknown. The goal of the QPE algorithm is to determine the best approximation to the phase $\varphi_{u}$.

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## QPE - Formal Definition

- More formally, if we have $U|u\rangle=e^{2 \pi i \varphi_{u}}|u\rangle$

Let $\varphi_{u} \approx \frac{\tilde{\varphi}_{u}}{d^{t}}=0 . \tilde{\varphi}_{1} \tilde{\varphi}_{2} \tilde{\varphi}_{3} \ldots \tilde{\varphi}_{t-1} \tilde{\varphi}_{t}$ be the best $t$ 'dit' approximation to $\varphi_{u}$

- This implies,

$$
\frac{\tilde{\varphi}_{u}}{d^{t}}=\tilde{\varphi}_{1} d^{-1}+\tilde{\varphi}_{2} d^{-2}+. . \tilde{\varphi}_{t-1} d^{-(t-1)}+\tilde{\varphi}_{t} d^{-t}
$$

for each $\tilde{\varphi}_{i} \in[0, d-1]$.

- Thus the goal of the QPE algorithm is to find the value of $\tilde{\varphi}_{u}$ which gives the best estimate of the original phase $\varphi_{u}$

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## QPE Algorithm- Binary logic case

We first review the binary case:

$$
\text { Let } \varphi_{u} \approx \frac{\tilde{\varphi}_{u}}{2^{t}}=\tilde{\varphi}_{1} 2^{-1}+\tilde{\varphi}_{2} 2^{-2}+. . \tilde{\varphi}_{t-1} 2^{-(t-1)}+\tilde{\varphi}_{t} 2^{-t} \text { be }
$$

the best $t$ bit approximation to $\varphi_{u}$. In short, it is represented as $\varphi_{u} \approx 0 . \tilde{\varphi}_{1} \tilde{\varphi}_{2} \tilde{\varphi}_{3} \ldots \tilde{\varphi}_{t-1} \tilde{\varphi}_{t}$

## Schematic for the QPE Algorithm



Measure phase in t qubits

## QPE : step 1 - Initialization, Binary logic case

## $|0\rangle^{t}$ be the tensor product of $t$ qubits each in the state $|0\rangle$



ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## QPE : step 2 - Apply the operator U



Binary logic case
$U^{j}$ denotes the controlled unitary operator U controlled on the state vector $|j\rangle$.

$$
\left(U^{J}|u\rangle\right)=\left(e^{2 \pi \pi_{u}}\right)^{j}|u\rangle=\left(e^{2 \pi \frac{a^{h}}{z^{\prime}}}\right)^{j}|u\rangle
$$

## QPE : step 3 - Apply Inverse QFT

Binary logic case


QFT Definition: $|j\rangle \rightarrow \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle$

## QPE : step 4 - Measurement



Binary logic case

- If the phase $?_{u}$ is an exact binary fraction, we measure the estimate of the phase ${ }^{0}$ with probability of 1.
- If not, then we measure the estimate of the phase with a very high probability close to 1.


## Quantum circuit for $u^{j}$

$$
\begin{aligned}
& \text { If } j=j_{1} 2^{t-1}+j_{2} 2^{t-2}+\ldots j_{k} 2^{t-k} \ldots+j_{t-1} 2^{1}+j_{t} 2^{0} . \\
& U^{j}=U^{j_{1} 2^{t-1}} \times U^{j_{2} 2^{t-2}} \times \ldots U^{j_{k} 2^{t-k}} \ldots \times U^{j_{t-1} 2^{1}} \times U^{j_{t} 2^{0}}
\end{aligned}
$$



The circuit for QFT is well known and hence not discussed.

## Multiple-

 ValuedPhase
Estimation

## QPE - Generalization to MVL

MV logic case

- We represent the phase $\varphi_{\imath}$ as a d-ary fraction given by $\varphi_{u} \approx \frac{\tilde{\varphi}_{u}}{d^{t}}=0 . \tilde{\varphi}_{1} \tilde{\varphi}_{2} \tilde{\varphi}_{3} \ldots . \tilde{\varphi}_{t-1} \tilde{\varphi}_{t}$

Now we have
We have t

$$
\frac{\tilde{\varphi}_{u}}{d^{t}}=\tilde{\varphi}_{1} d^{-1}+\tilde{\varphi}_{2} d^{-2}+. . \tilde{\varphi}_{t-1} d^{-(t-1)}+\tilde{\varphi}_{t} d^{-t}
$$

 qudits for phase


## Schematic for QPE using Qudits

## Some definitions arfand Cheseresen

MV logic case

- The Multivalued logic QFT on $\boldsymbol{n}$ qudits is defined as:

$$
|j\rangle \xrightarrow{Q F T} \frac{1}{\sqrt{d^{n}}} \sum_{k=0}^{d^{n}-1} e^{\frac{2 \pi i j k}{d^{n}}}|k\rangle
$$

- The action of a Chrestenson (CH) gate on a single qudit is defined as:

$$
C H|x\rangle \rightarrow \frac{1}{\sqrt{d}} \sum_{y \in[0, d-1]} e^{\frac{2 \pi i x y}{d}}|y\rangle
$$

For $d=2$, the CH gate reduces to Hadamard gate

## MVL QPE : Step 1 - Initialization

MV logic case


$$
\left(C H|0\rangle \rightarrow \frac{1}{\sqrt{d}} \sum_{j \in[0, d-1]}|j\rangle\right)
$$

## MVL QPE: step 2 - Apply Controlled u gate

MV logic case



ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## MVL QPE: Step 3 - apply iqft

MV logic case


ISMVL 2011, 23-25 May, Tuusula, Finland

## MVL QPE: Step 4 -- measurement

- After making a measurement on the first qudit register, we now get $\tilde{\varphi}_{u}$ which is an estimate of the phase $\varphi_{u}$
- If $\varphi_{u}$ is not an exact $d$-ary fraction then we can only measure the phase with a high success probability close to 1 but not exactly 1.


## Quantum circuit for $\boldsymbol{u}^{j}$

$$
\text { Let } \left.\left.|j\rangle=\stackrel{\otimes}{\otimes}\left|J_{k=1}^{t}\right| J_{k}\right\rangle \quad \Rightarrow U^{j}=U^{\left(\sum_{k=1}^{t} J_{k} d^{t-k}\right.}\right)=\prod_{k=1}^{t} U^{J_{k} d^{t-k}} \quad \text { Mv logic case }
$$



## D-valued quantum multiplexers

Case $d=3$



## QUANTUM Circuit

- IQFT can be implemented with a complexity of $\mathrm{O}(\mathrm{n} \operatorname{logn})$ but the expensive part is implementing higher order powers of U .
- This determines the complexity of the circuit.

ISMVL 2011, 23-25 May, Tuusula, Finland

## Performance of

$$
\begin{gathered}
\text { Quantum } \\
\text { Phase } \\
\text { Estimation }
\end{gathered}
$$

## QPE - Performance



$$
\frac{1}{\sqrt{d^{t}}} \sum_{j=0}^{d^{t}-1}\left(e^{2 \pi i j \frac{\tilde{\varphi}_{u}}{d^{t}}}\right)|j\rangle|u\rangle \xrightarrow{Q F T^{\dagger}}\left|\tilde{\varphi}_{u}\right\rangle|u\rangle
$$

If the phase $\boldsymbol{\varphi}_{\boldsymbol{u}}$ is an exact d-ary fraction i.e.
$\varphi_{u}=\frac{\tilde{\varphi}_{u}}{d^{t}}$ then after QFT ... QPE algorithm gives correct answer with probability of 1.
What if it is not an exact faction ?

$$
\text { i.e. } \varphi_{u}=\frac{\tilde{\varphi}_{u}}{d^{t}}+\delta \quad\left(0 \leq \delta<d^{-t}\right)
$$

ISMVL 2011, 23-25 May, Tuusula, Finland

## QPE Performance

- It can be shown that, in the general case, when the phase is not an exact fraction, QPE succeeds with minimum probability of $\frac{8}{\pi^{2}}=81.5 \%$
- What can we do to increase this success probability very close to 1 ?
- Will MVL help in this aspect? YES


## QPE Performance: PHASE $=$ d-ary fraction

- Let's analyze what happens if the phase is not an exact fraction. Applying the QFT gives a new superposition state

MV logic case

$$
\frac{1}{\sqrt{d^{t}}} \sum_{j=0}^{d^{t}-1}\left(e^{2 \pi i j \frac{\tilde{\varphi}_{u}}{d^{t}}}\right)|j\rangle \xrightarrow{Q F T^{\dagger}} \sum_{l=0}^{d^{t}-1} \alpha_{l}|l\rangle
$$

It is not hard to show that, the probability of measuring an $l$ given by $P(l)$ is

$$
P(l)=\left|\alpha_{l}\right|^{2}=\left|\frac{1}{d^{t}} \sum_{j=0}^{d^{t}-1} \exp \left(2 \pi i \frac{\left(\varphi_{u}-j\right)}{d^{t}} l\right)\right|^{2}
$$

## QPE Performance

- Using the fact that $\quad \varphi_{u}=\frac{\tilde{\varphi}_{u}}{d^{t}}+\delta \quad\left(0 \leq \delta<d^{-t}\right)$

We get $\quad P(l)=\left|\alpha_{l}\right|^{2}=\left|\frac{1}{d^{t}}\left(\frac{1-e^{2 \pi i\left(d^{t} \delta+\left(\tilde{q}_{u}-l\right)\right)}}{1-e^{2 \pi i\left(\delta+\frac{\tilde{q}_{u}-l}{d^{t}}\right)}}\right)\right|^{2}$
MV logic case

- Thus after measurement, we get some value $l$ with the probability given above. i.e. this implies $\varphi_{u}=\frac{l}{d^{t}}$
- If $l$ is close to $\tilde{\varphi}_{u}$ then we can say QPE succeeded else QPE fails.
- How close is close ?

ISMVL 2011, 23-25 May, Tuusula, Finland

## QPE : Success Probability lower bound

- It is easy to show that the probability that QPE returns either $l$ or $l+l$ such that $l \leq \tilde{\varphi}_{u} \leq l+1$ is $\frac{8}{\pi^{2}}=81.5 \%$ as

$$
P(l)=\left|\alpha_{l}\right|^{2}=\left|\frac{1}{d^{t}} \frac{1-e^{2 \pi i\left(d^{t} \phi_{u}-l\right)}}{1-e^{2 \pi i\left(\varphi_{u}-\frac{l}{d^{t}}\right)}}\right|^{2} \geq \frac{4}{\pi^{2}}
$$

MV logic case

- Although encouraging, the lower bound is not good enough.
- We need SUCCESS PROBABILITY close to 1 .
- How to define SUCCESS PROBABILITY?


## Success probability = 1 - failure probability

- Suppose we have a $t$ dit approximation to the phase

$$
\varphi_{u} \approx \frac{\tilde{\varphi}_{u}}{d^{t}}=0 . \tilde{\varphi}_{1} \tilde{q}_{2} \tilde{\varphi}_{3} \ldots \tilde{\varphi}_{t-1} \tilde{\varphi}_{t}
$$

- If we are only interested in a precision of only upto $n$ dits

$$
\text { i.e. } \varphi_{u}=\frac{\tilde{\varphi}_{u}}{d^{t}}+\delta \quad\left(0 \leq \delta<d^{-n}\right)
$$

- then as long as QPE returns some li.e. $\varphi_{u}=\frac{l}{d^{t}}$ such that the above condition is satisfied, we have a success.

$$
e=l-\tilde{\varphi}_{u}=\delta d^{t} \text { but }\left(0 \leq \delta<d^{-n}\right)
$$

- The error $e$ is

$$
\Rightarrow e<d^{t-n}
$$

## Failure probability

- We define the failure probability as

$$
\varepsilon=p\left(\left|l-\tilde{\varphi}_{u}\right|>e\right)=\sum_{l=0, l \in\left[\tilde{\varphi}_{u}-e, \tilde{q}_{u}+e\right]}^{d^{t}-1}\left|\alpha_{l}\right|^{2} \leq \frac{1}{2(e-1)}
$$

- The failure probability has a lower bound and hence the success probability has an upper bound.

$$
p(\text { Success })=1-\varepsilon>1-\frac{1}{2(e-1)}
$$

$$
\text { where } e=d^{t-n}-1
$$

## Success probability: REQUIREMENTS

- Thus to achieve phase estimation with a success probability of $1-\varepsilon$ with precision/accuracy up to $n$ dits, we need to use a system with $t$ dits. The value of $t$ is given by

$$
t=n+p=n+\log _{d}\left(2+\frac{1}{2 \varepsilon}\right)
$$

- Now we show quantitative results in some graphs

ISMVL 2011, 23-25 May, Tuusula, Finland

## How MVL HELPS

- Failure probability decreases exponentially with increase in radix $d$ of the logic used



## Less number of qudits for a given precision

These are the requirements for a real world problem of calculating molecular energies

Number of qudits required (t) vs dimension of quifits (d) to obtain a precision of upto 5 decimal digits with a success probability of $\mathbf{9 8 \%}$


## More RESULTS

## Number OF Qudits required For QPE Algorithm

| Precision in <br> decimal digits | Success <br> probability | $d=2$ | $d=3$ | $d=4$ | $d=5$ | $d=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $99.5 \%$ | 24 | 15 | 12 | 11 | 10 |
| 4 | $98 \%$ | 19 | 12 | 10 | 9 | 8 |
| 4 | $95 \%$ | 18 | 12 | 9 | 8 | 7 |
| 4 | $85 \%$ | 17 | 11 | 9 | 8 | 7 |
| 3 | $98 \%$ | 17 | 11 | 9 | 8 | 7 |
| 2 | $99 \%$ | 14 | 9 | 7 | 6 | 6 |
| 2 | $90 \%$ | 11 | 7 | 6 | 5 | 5 |

ISMVL 2011, 23-25 May, Tuusula, Finland

## Conclusions

- Quantum Phase Estimation has many applications in Quantum Computing
- MVL is very helpful for Quantum Phase Estimation
- Using MVL causes exponential decrease in the failure probability for a given precision of phase required.
- Using MVL results in signification reduction in the number of qudits required as radix $d$ increases

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

## Conclusions 2

- The method creates high power unitary matrices $\mathrm{U}^{\mathrm{k}}$ of the original Matrix U for which eigenvector |u> we want to find phase.
- We cannot design these matrices as powers. This would be extremely wasteful
- We have to calculate these matrices and decompose them to gates
- New type of quantum logic synthesis problem: not permutative U, not arbitrary U, there are other problems like that, we found
- This research problem has been not solved in literature even in case of binary unitary matrices U

ISMVL 2011, 23-25 May 2011, Tuusula, Finland

