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Introduction

* QPE —one of the most important quantum
subroutines, used in:
— 1) Shor’s Algorithm
— 2) Abrams and Lloyd Algorithm

e (Simulating quantum systems)

— Calculation of Molecular Ground State Energies

— 3) Quantum Counting (for Grover Search)
— 4) Fourier Transform on arbitrary Z,



Abstract

We generalize the Quantum Phase Estimation algorithm to
MVL logic.

We show the quantum circuits for QPE using qudits.

We derive the performance requirements of the QPE to
achieve high probability of success.

We show how this leads to logarithmic decrease in the
number of qudits and exponential decrease in error
probability of the QPE algorithm as the value of the radix d
Increases.
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Controlled-U gate

+ Two-qubit controlled-U

!
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* Multi-qubit controlled-U

!
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This is nothing new,

.~ CNOT, CV, CV+

This is a new concept, but
essentially the same

/concept and mathematics
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Controlled-U gate




REMINDER OF
EIGENVALUES AND
EIGENVECTORS




What is eigenvalue?

MATRIX * VECTOR = Constant * VECTOR

/

Eigenvector of this
Matrix

Eigenvalue of this
Matrix



Basic Math
for Binary

Phase
Estimation




Phase estimation algorithm

* Given a unitary operator and an
eigenstate of the operator

» The goal of the PE algorithm is to find
the corresponding eigenvalue
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Finding the eigenvalue is the same as finding its phase ¢



Phase estimation algorithm

+ The PE algorithm uses two registers
of qubits
- The target register, o which

applied




Phase estimation algorithm

/ We initialize to all states we measure
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uantum circuit diagram

Unitary operator for which we calculate phase of eigenvalue using phase kickback




Phase estimation algorithm
* Weinitially start with the system in the state

0)l#)

. Per'forsi;'ning the Hadamard gates on the index
register creates the state

ﬁm >|¢>

. Per‘fnrmmg the series of cnn‘frolled U gates gives
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Quantum circuit diagram
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This is the input to QFT




Phase estimation algorithm
+ We can move the U inside the summation




Phase estimation algori‘rhm

* Rearranging,
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then
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Assume k a

nteger

Number of bits

Applying The quantum Fourier transform gives

We found
phase
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Phase estimation algorithm

+ Generally, k will not be an
Integer

+ With high probability we will
obtain the nearest integer to k

» Thus, we have an m-bit
approximation to ¢.

Concluding, we can calculate phase



Towards
Generalization
of Phase
Estimation



Agenda

Importance of Quantum Phase Estimation (QPE)
QPE using binary logic

QPE using MVL

Performance Requirements

Salient features

Conclusion

ISMVL 2011, 23-25 May 2011, Tuusula, Finland



Abstract

We generalize the Quantum Phase Estimation algorithm to
MVL logic.

We show the quantum circuits for QPE using qudits.

We derive the performance requirements of the QPE to
achieve high probability of success.

We show how this leads to logarithmic decrease in the
number of qudits and exponential decrease in error
probability of the QPE algorithm as the value of the radix d
Increases.

ISMVL 2011, 23-25 May 2011, Tuusula, Finland



Introduction

* QPE —one of the most important quantum
subroutines, used in:
— 1) Shor’s Algorithm
— 2) Abrams and Lloyd Algorithm

e (Simulating quantum systems)

— Calculation of Molecular Ground State Energies

— 3) Quantum Counting (for Grover Search)
— 4) Fourier Transform on arbitrary Z,

ISMVL 2011, 23-25 May 2011, Tuusula, Finland



Quantum phase estimation (QPE)
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QPE - Formal Definition
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QPE Algorithm- Binary logic case

We first review the binary case:

Schematic for the QPE Algorithm Measure

phaseint

0Y —— H T QFT H 1= &,
Eigenvector

fu .
T ) U’ )




QPE : step 1 - Initialization, Binary
logic case
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QPE : step 2 - Apply the operator U




QPE : step 3 - Apply Inverse QFT




QPE : step 4 - Measurement
0y —— H )y QFTT P,

w) —+# []J U
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Binary logic case

* If the phase [, is an exact binary fraction, we
measure the estimate of the phase [, with
probability of 1.

* If not, then we measure the estimate of the
phase with a very high probability close to 1.
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Quantum circuit for

Binary logic case
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The circuit for QFT is well known and hence not discussed.



Multiple-
Valued
Phase
Estimation




QPE - Generalization to MVL

MV logic case

* We represent the phase ®as a d-ary fraction

. D D M (N DO
given by Qp,~—= O.Qf)lg/)zg/)g----g/);_lq)r

r Now we have
We have t d . .
. N qudits not qubits
phase —=@qd  +@,d T +.p,d +o.d

\ : |7)
0 —HCH tloF L= 2
Ao NG

arbitrary
Now we Inverse QFT on base d, not base ?

med  Schematic for QPE using Qudits

Hadamard




SO m e d Efi n itionS QFT and Chrestenson

MV logic case
* The Multivalued logic QFT on n qudits is defined as:
27 jk
o d?’! ‘k>

d”—l

fko

* The action of a Chrestenson (CH) gate on a single qudit is
defined as:
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For d = 2, the CH gate reduces to Hadamard gate



MVL QPE : Step 1 - Initialization

MV logic case

0) HHCH MT QFT' H = 4.
u) U’ u)
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MVL QPE: step 2 — Apply Controlled u gate

, MV logic case
1 d —1
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MVL QPE: Step 3 - apply igft

MV logic case

0y —HCH mT QFTT H 1~ 2.

‘U) // UJ k\ ‘U)
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We apply inverse
Quantum Fourier
Transform
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MVL QPE: Step 4 -- measurement

MV logic case

e After making a measurement on the first
qudit register, we now get ¢ which is an
estimate of the phase ¢,

 If Py is not an exact d-ary fraction then we can
only measure the phase with a high success
probability close to 1 but not exactly 1.
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Quantum circuit for v

MV logic case
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D-valued quantum multiplexers

Case d=3

control I

Target (date)

=
5 &=




QUANTU M C| rCUit MV logic case

IQFT can be implemented with a complexity of

O(n logn) but the expensive part is
implementing higher order powers of U.

This determines the complexity of the circuit.
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QPE - Performance

0y —HCH ET QFTT I /ﬂf\= @, MV logic case
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If the phase ¢2,,is an exact d-ary fraction i.e.

_h
Py _d_; then after QFT ... QPE algorithm gives
correct answer with probability of 1.

What if it is not an exact faction ?

ISMVL 2011, 23-25 May, Tuusula, Finland



QPE Performance

binary

* |t can be shown that, in the general case, /

when the phase is not an exact fraction, QPE

8

succeeds with minimum probability of — =81.5%
T

e What can we do to increase this success
probability very closeto 1 ?

* Will MVL help in this aspect? YES
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QPE Performance: PHASE #= d-ary fraction

» Let’s analyze what happens if the phase 1s not
an exact fraction. Applying the QFT gives a new
superposition state

MV logic case

ln"fl
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— > {e d’ J|;> orT__ ; a;|/>
—0

d’ j=0

It 1s not hard to show that, the probability of
measuring an / given by P(l) is
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QPE Performance

* Using the fact that

We get  py=|of =|-

(0<5<a™)
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MV logic case

* Thus after measurement, we get some value / with the

probability given above. 1.¢. this implies ¢, =—

/
gt

 If /1s close to ¢, then we can say QPE succeeded else

QPE fails.

 How close 1s close ?
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QPE : Success Probability lower bound

It 1s easy to show that the probability that QPE
returns either [ or [+1 such that | <@ <[+1 IS
® _g81.5% as st |

2 5 1 1— .
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Although encouraging, the lower bound 1s not good
enough.

We need SUCCESS PROBABILITY close to 1.

How to define SUCCESS PROBABILITY ?
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Success probability = 1 - failure
probability

MV logic case

Suppose we have a 7 dit approximation to the phase

N@H ~ ~ o~

D, d; = 0'%@2@3""@3‘—1@!

If we are only interested in a precision of only upto 7
dits .
; _ Pu , < o =7
le. @ =—+0 |0<50<d

Py =g +0 fosos)
then as long as QPE returns some /i.e. 9, = i such
that the above condition 1s satisfied, we have a

SUCCCSS.

e=1—,=0od" bu (0<5<d"

The error e 1s =1
= e<d



Failure probability

 We define the failure probability as

3 a1 , 1
Szp(‘l—gon‘,\z@): 2. CARES

1=0.1¢[ @, —e.,, +€] 2(€ o l)

* The failure probability has a lower bound and

hence the success probability has an upper

bound. 1
Success)=1—&>1—
plouccess) 2e—1)

where e=d"™" —1
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Success probability: REQUIREMENTS

* Thus to achieve phase estimation with a
success probability of 1—¢ with
precision/accuracy up to »n dits, we need to use
a system with 7 dits. The value of 7 1s given by

1
t=n+p=n+logd(2+—]
2¢&

* Now we show quantitative results in some
graphs
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How MVL HELPS

 Failure probability decreases exponentially
with increase in radix d of the logic used

Failure Probability € (as percentage)
for p=3 qudits [p=lﬂgt1 (2+1/2g))

—
o

]
- -]

NN

as percentage
=7

M

=

2 3 4 5 &6 7 8 9 10
d{dimension of qudits)



Less number of qudits for a given

precision

These are the requirements for a real world problem of calculating molecular energies

Number of qudits required (t) vs dimension of qudits (d)

to obtain a precision of upto 5 decimal digits with a success probability of 98%

t (number of qudits required )

2 3 4 5 6 7 8 9 10
d (dimension of the qudits)



More RESULTS

NUMBER OF QUDITS REQUIRED FOR QPE ALGORITHM

Precision in Success d=2 | d=3 | d=4 | d=5 | d=06

decimal digits probability
3 09.5% 24 15 12 11 10
4 08 % 19 12 10 9 8
4 05 % 18 12 Y 3 7
4 85 % 17 11 9 3 7
3 08 %% 17 11 Y 8 7
2 99 % 14 9 7 6 6
2 00 % 11 7 6 5 5
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Conclusions

Quantum Phase Estimation has many applications in
Quantum Computing

MVL is very helpful for Quantum Phase Estimation

Using MVL causes exponential decrease in the failure
probability for a given precision of phase required.

Using MVL results in signification reduction in the
number of qudits required as radix d increases
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Conclusions 2

The method creates high power unitary matrices U* of the original
Matrix U for which eigenvector |u> we want to find phase.

We cannot design these matrices as powers. This would be
extremely wasteful

We have to calculate these matrices and decompose them to gates

New type of quantum logic synthesis problem: not permutative U,
not arbitrary U, there are other problems like that, we found

This research problem has been not solved in literature even in case
of binary unitary matrices U
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