Shor Algorithm (continued)

Use of number theory and reductions

Anuj Dawar



Reductions [ Solve RSA }

[ Factor big integers }

[ Find period J

[ Estimate Phase }

[ Fourier Transform }




RCA
ENCRYPTION




RSA encryption

+ Named after Rivest, Shamir and Adleman,
who came up with the scheme

m,xm, =N
L—""

Primes

- Based on the ease with which N can
be calculated from m; and m,

+ And the difficulty of calculating m;,
and m, from N

Easy to multiply but difficult to factor
big integers.




RSA encryption

* N is made publicly available, and is used to
encrypt data

* m; and m, are the secret keys which enable
you to decrypt the data

- To crack the code, a code-breaker needs to
factor N

+ Best current cracking method on a classical
computer

~ Number field sieve

~ Requires exp(O(n3 log®/3 n))

- nis the length of N



Review of
Number
Theory




Shor knows number theory and uses it!!!

1. In many cases, we can use the knowledge from other
areas of research in a new and creative way.

2. You do not have to invent everything from scratch. You
just reuse something that was invented by other people.

3. If the two areas are not obviously linked, your invention
can be very important.

4. This is exactly what was done by Shor.

1. Weintroduced modular arithmetic in last lecture as a general
tool for algorithms and hardware

2.  Now we will show how creatively Shor used it in his algorithm.



A little number theory

Smallest .
Assume:\ h B
m, xm, =N a =1lmodN
Modular Arithmetic Co-prime

a=bmodN ged(a,N) =1

Greatest Common Divisor

Simply means |
PTY No factors in common!

a=b+kN 1

kis any iﬂ‘l‘EQE;r" We want to find the
smallest  such that the

and b < N above is true




A little number theory

mxm,=N <> a =ImodN

Consider the equation We want to find the
7 smallest I such that
1 P— 1 mOd N the above is true

v —1=0modN
(y+1)(y=1)=0modN
(y+1)(y—=1)=kN

Now we substitute m, *
m,, for N



A little number theory

mxm,=N <> a =IlmodN
o (VD = 1) = km,m,

denomlnator

gcd(v+1N) —

Trivial solutions

gC-d(y—LN):l -

More interesting case —\ . gt:d can bE CﬂlCLI|GTEd
ng(y 4] N) =m, - very efficiently '

+ Euclid's algorithm

cged(y—1L,N)=m,) - 3008c




A little number theory

mxm,=N <> a =ImodN

+ If we can find r 2 _
—p + And the r is even Vo= lmod N

- Then (

m,=ged(a”? ~1N)

r/2 - A
m,=ged(a ~+1,N)

— -+ Provided we don't get trivial

s 0 I U Tl 0 ns We want to find the smallest __) Finding the

I such that the above is true smallest period r




A little number theory

But we had some additional assumptions on last slide, what if not satisfied?
L
mxm,=N < a =ImodN

- What about the ifs and buts ?1?

Theorem:

Let N = m,m,, where m, and m, are prime numbers not
equal to 2. Suppose a 1s chosen at random from the set
a1 <a <N, gcdia,N) = [}. Let r be the order of v
mod N. Then the probability

: . ]
Prob(r 1s even and non-trivial) = —
7

Proof: long, boring and complicated Do not worry now, we are
not mathematicians




A litTle number theory

So now we are quite optimistic!

mxm,=N <> a =lmodN

‘| Finding r is equivalent to factoring N

+ Why can't we use a classical computer
to find r?
- It takes O(2") operations

So now V_Vhatb . Exercise: Using the reduction of
remains IS to be able . - -

to find period, but factoring to order-finding, and the
this is something well fact that 10 is co-prime to 21,

done with spectral fﬂETﬂr‘ 21

transforms.




Reductions [ Solve RSA }

[ Factor big integers }

[ Find period J

[ Estimate Phase }

This was done
earlier

[ Fourier Transform }




Going Back to
Phase
Estimation

We will use phase estimation to find period



Choosing the
operator U

1. It requires modulo multiplication in modular
arithmetic

2. Not trivial

3. Potential research how to do this efficiently



Choosing a U

r -
+ Consider the operator, a =1modN

U x) —> ‘ax modN)
+ As a and N are co-prime, this operator is

unitary

+ Can be efficiently implemented on a
quantum computer

+ What about U2, U4, U8, . U2}

Uz‘x>%|a2xm0dN>




Choosing the
Initial state for
operator U

1. In general not easy

2. But hopefully we find a special case

3. Potential research how to do this efficiently for
arbitrary cases



Choosing an initial state

- Consider the state,

a" =1modN

r—1
vi)=2e
j=0

a

flﬂOdN)

' ‘%ﬂ) IS an eigensi'a’re of U, with eigenvalue

2;3- E*'[—)*/ Phase is 1/r

can use the PE algorithm to efficiently

find r. and hence factor N.




Choosing an initial state

0y {H .

. ol
) fi——y— QT
0y {1 T

) —URU — ~ Ui — "

»+ Therefore, if we could prepare ‘l,ffl), we
can use the PE algorithm fo efficiently
find r, and hence factor N.

Now the problem is reduced to creation of certain quantum state.
We published papers — see David Rosenbaum




Choosing an initial state

- Consider the states,

a " =1modN

27 ij

r—1 —<
y)=e¢ " |a

j=0

2;1':’(?—:)

€

HnodN)

keil,...r}

y yf_,-l) is an eigenstate of U, with eigenvalue

Exercise: Show ‘1) = ;‘W&




Final circult for period finding

|{Z}> —H ——
I B
O e~ _|OFT
0) —{H T
Yy —URU — ~ 7% ) We find this
E :
ineii'isglization ‘ 1> — Z‘ W A,) glcj;;g?ii:eéo be
k=1
U |x) = |a*x mod N ) a"=1modN



Now we use a classical
computer.

1. Therefore, using the QPE algorithm, we can efficiently
calculate

K

I

where k and r are unknown

2. If k and r are co-prime, then canceling to an irreducible
fraction will yield r.

3. If k and r are not co-prime, we try again.



Summary of Shor Algorithm

1. We want to find m, * m, = N where N is the
number to factorize

2. We prove that this problem is equivalent to
solving

a‘=1modN

3. We use the QPE circuit initialized to |0) |1)

4. We calculate each of the circuits U, U?, ... U 2*2n

5. We apply the Quantum Phase Estimation
Algorithm.

6. We use standard computer for verification and
we repeat QPE If required.



