Phase In
Quantum
Computing



Main concepts of
computing
illustrated with
simple examples




Quantum Theory Made Easy

Classical Quantum
probabilities amplitudes
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Quantum Theory Made Easy
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Interference

1
v2 V2 A T1] 500
measure

1 1
(\15 7? ) 50%
V2 P2 50%

measure

100%
0%

0%

100%



Interfering Pathways
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Classical Quantum



Superposition
Qubits

amplitudes
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a; IS a complex number
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Classical versus
guantum
computers



Some differences between classical and
guantum computers

The state of a classical reversible computer is confined to
being one of the computational basis states at any time
(queries to the black box for f can only be made one at a
time)

uantum computers can branch out over exponentially many
computational basis states, like

Using the black box for f only once, one can then evaluate f(x)
for exponentially many x in superposition:
3 superposition
> | X) | f(x))
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sl I
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Such states can be further processed (quantumly) to extract
hidden properties of f

Hidden properties of oracles



Randomised Classical Computation
versus Quantum Computation

Deterministic Turing machine

Recall that |a deterministic computation|can be regarded as a
path through "configuration space” of all configurations of a
Turing machine (each configuration corresponds to an

element of the computational basis)

Alrandomised computation|can be regarded as a tree

Probabilistic Turing machine

\W\uu}

where each branch has a probability p, associated with it



Probabillities of reaching states

Randomised Classical v. Quantum Computers (2)

\9'?\1111}

The outcome |000;} in this computation can be reached by two
paths (red and green)

Probability of reaching |000} by the red path is |agy|?2 =poP;
Probability of reaching |000} by the green path is |a;p|? =pips

The total probability of reaching |000} is thus |ay,,|2 + |a,,]?




Formulas for reaching states

Randomised Classical v. Quantum Computers (3)

In our interferometry experiment, recall that there are two
“computational paths” that lead to the ocutcome 0 (red path
and green path):

10) GA) — [0

cos?((p1- 99)/2)

1) - A 1)

The probability amplitude of reaching 0 by the red path is
Ago = exp(ipg)/2

The probability amplitude of reaching 0 by the green path is
a,o = exp(ie,)/2

The total probability of reaching 0 is

|@gg + A391%2= cOS2((py- 9g)/ 2)



Relative phase, destructive and
constructive inferences

Randomised Classical v. Quantum Computers (4)

= exp(ip,)/2
= _'YZ"'_'\TZ
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The total probability of reaching ['.I IS |agy + A39]2= cOS2((0,- 9g)/ 2)

The relative phase between the probability amplitudes of the
two paths matters (no such concept in the classical case), and
can result in constructive or destructive interference

Destructive
e.g. destructive interference occurs when a,, = -a,,, interference
e.g. constructive interference occurs when ay, = a,, Constructive

interference

One goal of quantum algorithms is to induce constructive
interference on good ocutcomes and destructive interference
on bad outcomes




Most quantum algorithms can be viewed
as big interferometry experiments

Equivalent
circuits

Basic idea: the measurement can distinguish the two cages
p=0 and ¢p==n



The “eigenvalue
kick-back”
concept



There are also some other ways to

introduce a relative phase

10) H R, H o
|0) + e'¢|1)
is equivalent to
|0} H T H /X
e
) 0 e ly)

10) @ |y} + [1) @(e|y)) = (|0)+ e*|1))®|y)

with respect to the top qubit; bottom qubit was unchanged...




The “eigenvalue kick-back” concept

Other ways to introduce a relative phase (2)

... more generally, the bottom qubit will "kick back” a relative
phase (eigenvalue) in the top qubit if the bottom qubit is in an
eigenstate of U:

10) H * H 7 X

[y} U | )

Now we know that
the eigenvalue is
the same as
where relative phase

Uly) = elv|y)

(10)+ e*|1))@]y)

This so-called "eigenvalue kick-back” is a useful mechanism
by which to analyse (though, not necessarily implement)

quantum algorithms




The “eigenvalue kick-
back” concept

illustrated for
DEUTSCH



The “shift operation” as a generalization to
Deutsch’s Tricks

Deutsch’s problem (7)

|0) H ' H .

@f(x)

Deutsch’s problem seems to be special: because of it's
simplicity, the operation |b) —» |b®&f({x)) can be analysed in a
useful eigenbasis, namely {|0)+|1), ¥

But for more general problems, like period-finding {(and the
general hidden subgroup problem), we introduce the shift
operation, Ug,g:

Uyt 1F0X)) > [F(x+1))

For general f, U, may not be implementable, because f is
not necessarily one-to-one

However, U, Is a powerful analysis tool...



Change of controlled gate in Deutsch with
Controlled-Ushift gate

Deutsch’s problem (8)

|0) H ’ H X
10)-11) of(x) 10)-]1

Instead of the controlled-&f(x) gate (above), assume we have
a controlled-Ug,, gate which maps

|0} f(x)) — |0}|F(x))
|1} 1f(x)) — |0 |f(x+1)}
|0) H H X




Now we deal with new types of
eigenvalues and eigenvectors

Deutsch’'s problem (9)
|0) H T H s X

Ushiny

Note: f(0)=f(1) implies U, = I
f(0)#f(1) implies U, = X

Both I and X have eigenvectors {|0)+|1),/0,-11)}, but I has
eigenvalues {1, } whereas X has eigenvalues {1,-1}

So, U,,;, has eigenvectors {|0)+|1),|0)-| 1)} with eigenvalues
{1, (-1)fern}

or, writing the eigenvalues another way,

{1, eif(0)ef(1)}



The general concept of the answer
encoded in phase

Deutsch’s problem (10)

H T H

U.hin

Eigenvalues of U, are {1, e f(0)Ei1)}

Thus, the answer f{0)&f(1) is encoded in the "phase” of an
eigenvalue of the shift operator!

We know that if we input the eigenvector - 1) in the
bottom register, the controlled-shift gate will kick back this
relative phase into the top qubit; the phase o=«f(0)&f(1) is
either O or n

From our interferometry experiment, we know we can
distinguish the two cases ¢=0 or p=n...



Shift operator allows to solve
Deutsch’s problem with certainty

Deutsch’s problem (11)

|0) H T H s X

|0}-]1 U.hin 10)-]1

The above network thus solves Deutsch’s problem with
probability 1



Controlling amplitude versus
controlling phase

10) H ’ H X
/TEJ--_I-;\ Ui 10)-11;

In most cases, the desired eigenvector is not known

However |O)=(|0+|1))+ (10-11))
1) = (10)+]1)) - (10)-11))

It turns out we can always resort to inputting an equal
superposition of eigenvectors of the shift operator, which will

give the desired eigenvalue kick back in the top qubit with
some reasonable probability (in this case )

(We actually already saw this effect in the controlled-&f{x)
solution to Deutsch’s problem)



Controlling amplitude versus
controlling phase

Thus, the following network solves Deutsch’s problem with
probability 1/2

|0} H ' H 7 X

1) Uiy

Suppose we were given the state |[f(0)} , which is a uniform
superposition of the eigenvectors of U, (in general, as we'll see later!)

Then, the following network solves Deutsch’s problem with
probability 1/2

10) H ’ H SR

|£(0)) U.hiny




Exercise for
students



Exercise for students

Controlled-&f(x) v. Cuntrnlled-uihm (3)

Exercise: Compare the states produced by the following
networks

|0) H T

[£(0)) Uiy |——
|10} H T
|0} ef(x) ——

The equivalence of these two states is the fundamental link
between the shift operator (eigenvalue-estimation approach
to quantum algorithms) and the controlled-&f(x) operator
(standard approach)
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