
Chapter 1

Genetic Algorithm for Logic
Synthesis of Combinatorial
Quantum Circuits

1.1 Introduction

A Genetic Algorithm (GA) is an evolutionary model of search and learning based
on observed and simplified principles from natural phenomena; the evolution of
species in Nature. It was originally proposed by Holland [Hol75] but it was later
extended to various alternatives allowing the evolutionary approach to formulate and
possibly solve problems from various domains [Hol75,MT78,Gol89,Rai96,LPMP02,
Yen05]. The whole research area of evolutionary computation can be separated into
three main subareas: Genetic Programming (GP), Evolutionary Strategies (ES) and
Genetic Algorithms. The main differences reside in the problem representation (GP
- represents the problem as logical trees like structure (Figure 1.1(a)), GA as a string
of bits (Figure 1.1(b)), ES - string of real numbers (Figure 1.1(d))), in the employed
evolutionary operators (Mutation, Cross-Over, Adaptive Mutation) and finally in
the way of generating and selecting solutions.

From the computational point of view, the class of GA’s is well suited to solve
the constraint-satisfaction problems (CSP) because it offers certain advantages in
problems with a high number of local maxima and when the problem definition is
noisy. Some instances of the CSP problems that GA was applied to are the Traveling-
Salesman Problem, the Eight-Queen problem, the Satisfiability problem, the Map
Coloring, etc. Also, quantum logic synthesis is a CSP problem when viewed as a
method to synthesize a quantum circuit for a specified function given some structural
constraints such as the width of the circuit (number of qubits), the possible types
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Figure 1.1: solution representation in Evolutionary Algorithms: (a) Logical Tree,
(b) Binary String, (c) Integer String, (d) String of Floats

of gates to be used, or the total number of gates to use.

The reasons to use a GA in this book are multiple. The most pertinent are:

• GA is very well situated to explore large problem spaces with small amount
of solutions

• GA is well situated to solve problems where only small amount or none infor-
mation is available about the structure of the problem space

• GA is easily adapted to various rquirements and computational models

• GA allows to synthesize and optimize quantum circuits algorithms, games and
automata and is thus a versatile synthesis tool.

• GA concepts can be realized both in a classical and quantum computer [], thus
leading to a new concept of Quantum Evolutionary Hardware.

Thus the GA used in this work is merely a tool to obtain examples or results, explore
the possibilities of QLS and demonstrate the introduced principles.

The approach adopted by the evolutionary computation represents a metaphore to
the evolutionary process in Nature described at best by a natural selection, sexual
reproduction and random mutation seen as a process of computation.

First, these concepts mean that a GA uses chromosomes (strings of elements) to
represent the problem; each chromosome can be a possible solution to the problem.
For a population of such individuals, a large problem space can be covered by the
evolutionary search as well as multiple local minima can be explored. Second, a pop-
ulation of individuals together with the fitness function represents the information
about the problem that is available to the evolutionary algorithm. Third, the com-
putation is represented by a computational cycle that consists of: random mutations
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Figure 1.2: Example of an individual in a GA solving the TSP problem. the numbers
correspond to towns in order from left to right. Each individual is a permutation
on the set of all possible towns to visit

(introducing noise and novelty into the system - randomly altering the individuals),
information exchange between individuals (local solutions) represented in the cross-
over operation and a simulated survival-of-the-fittest mechanism of selection and
replication. These are the only operations allowed on the set of individuals. Fourth,
the method of evaluation of each individual contains all of the knowledge required
to determine whether or not a solution was found.

This brief description can be illustrated by the following points describing the process
of designing a GA for a given problem.

• Assuming the problem is formalized as a CSP, select the appropriate informa-
tion encoding. For instance, a n-vertices Traveling Salesman Problem (TSP)
can be encoded as strings of length n, representing by an integer number each
vertex from the graph. This can be seen in Figure 1.2

• Select appropriate evolutionary operators, in general the standard mutation
modified for the problem is enough to introduce noise, however self-adaptive
mutation operator is also a well known tool in ES approach. In particular
for the TSP problem one must preserve the property of chromosomes such
that each chromosome represents a valid path in a graph (each vertex must be
present in the path and it can appear only once). Thus the mutation operation
can be a 2-vertices random position swap.

• Select a cross-over operator such as single-point cross-over, two-points cross-
over or multi-parent crossover [EvKK95]. For certain problems, when the
chromosome is ordered, the crossover must be able to preserve the overall
validity of the individual similarly as in the case of mutation. Again, in the
case of TSP, Figure 1.3 explains the crossover.

• Select or create a fitness function - the function that will evaluate each indi-
vidual solution and generate fitness value for each solution. This means that
for the TSP problem, such a function evaluates the total path length that each
individual’s chromosome encodes for.

• Select a selection scheme such as Roulette Wheel (RW) or Stochastic Universal
Sampling (SUS). This process simulates the survival-of-the-fittest rule, as it is
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Figure 1.3: Example of cross-over operation for the TSP problem.

biased to select preferably chromosomes/individuals with a higher value of
fitness. In this step it is also possible to tune the selection process to various
forms of elitism (These concepts are explained in details below).

In this chapter a GA is presented and its mechanisms are explained in details. The
various functions and objects are specified with respect to the problem of quantum
logic synthesis (synthesis of quantum circuits). More general ideas are also intro-
duced below in order to cover the potentials of the evolutionary computation in
quantum circuit (automata, games, algorithms, etc) design. The description also
extends to the mechanism of the combined approach called the GAEX genetic algo-
rithm for quantum circuit synthesis [LPG+03,LP02,LP05b].

1.2 Genetic algorithm

A Genetic algorithm is a set of directed random processes that make probabilistic
decisions - simulated evolution. Table 1.1 shows the general structure of a GA algo-
rithm and this section follows this structure with each step explained in individual
sub-section.

1.2.1 Encoding/Representation

For quantum logic synthesis the representation that we use is based on the encoding
introduced in [LPMP02]. This representation allows to describe any Quantum or
Reversible circuit [LPG+03,LP02]. All individuals in the GA are strings of ordered
characters (each character representing a quantum gate) partitioned into parallel
blocks. This partitioning of the circuit was in our case induced from the repre-
sentation of any QC such as one in Figure 1.4. Each block has as many inputs
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Table 1.1: Structure of a Genetic Algorithm

01: t← 0;
02: initialize(P(t)); /* initial population */
03: evaluate(P(t)); /* evaluate fitness */
04: while (not termination-condition) do
05: t← t+ 1;
06: Qs(t)← select(P (t← 1)); /* selection operator */
07: Qr(t)← recombine(Qs(t)); /* crossover operator */
08: P (t)← mutate(Qr(t)); /* mutation operator */
09: evaluate(P(t)); /* evaluate fitness */
10: end while

and outputs as the width of the quantum array (five in the case of Figure 1.4).
The chromosome of each individual is a string of characters with two types of tags.
First a group of characters is used to represent the set of possible gates that can be
used in the individual string representation. Second, a single character ’p’ is used
as a separator between parallel blocks of quantum gates. An example of a chro-
mosome can be seen in Figure 1.4. In this particular encoding each space (empty
wire or a gate) is represented by a character with appropriate decoding shown. Our
problem-specific encoding was applied to allow the construction of as simple genetic
operators as possible. The advantage of these strings is that they allow encoding
of an arbitrary QL or RL circuit without any additional parameters. Several such
parameters were used in previous research [LPG+03,LP05a] and using them made
the genetic algorithm more complicated. Please note that only the possibility to
move gate characters, remove and add them to the chromosome consequently make
it possible to construct an arbitrary circuit and also to modify this circuit in order
to optimize it.

1.2.2 Initialization steps of GA

The GA requires an input file (c.f. Pseudo-Code 1.1 and Pseudo-Code 1.2) which
specifies all input parameters and required settings.
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Figure 1.4: Transformation of a QC from the chromosome (on the top) encoded
string, to a final quantum circuit notation representation of this QC (on the right).
Here SW is a Swap gate, H is a Hadamard gate and I is a Identity. In the middle
there is one CCNOT (Toffoli) gate.

01 :Population Size:80

02 :Segment MaxNumber:20

03 :Segment MinNumber:2

04 :Local Search generational switch:100000

05 :Mutation Probability:10

06 :Crossover Probability:85

07 :Alpha:0.99

08 :Beta:0.01

09 :Cost divider:10

10 :Type of GA (normal=0; Baldwinian=1) : 0

11 :Type of Mutation(normal=0; bitwise=1) : 1

12 :Type of Crossover(1-point = 0;2-point=1) : 0

13 :Replication(0− Roulette Wheel, 1− Stochastic Universal Sampling,

2− Tournament) : 1

14 :Type of Fitness(0− simple linear only error, 1− simple square only error,

2− complex linear, 3 - complex) :0

15 :Type of fitness calculation (0 - individual, 1 - grouped) :0

16 :Pareto optimization (0 - no, 1 - yes) :0

17 :Threshold replication (0 - no, other - threshold) :0

18 :Elitism (0-disabled, 1-enabled) :0

19 :Tournament parameter(amount of individuals chosen randomly) :5

20 :Measurement :1

21 :Measured qubits indexes:0

22 :(1, 0)(0, 1)(1, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)

23 :(0, 0)(0, 1)(0, 0)(1, 0)(0, 0)(1, 0)(1, 0)(1, 0)

(1.1)
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The lines (01-23) within the file specifies the parameters defining the overall behavior
of the GA. The number of individuals in the population is given first in line 01.
The size (length) of the circuit specified by a maximal (tmax) and minimal number
of segments (tmin) in each individual (chromosome) is given in lines 02 and 03
respectively.

The initial circuits are created with a random size within the interval specified by
these two parameters. The size of the chromosome is not limited during the lifetime
of an individual. Rather, two other parameters allow to specify the minimal and
maximal sizes of every circuit. Each individual has a dynamically changing genome
and the GA is a subclass of the Messy GA [GKD89].

Line 04 specifies the number of generations of the evolutionary search after which the
GA will switch to a local search. Lines 05-06 specify the probability of mutation and
crossover, and lines 07 and 08 specify the parameters α and β when fitness function
from eq. 1.16 and 1.17 is used. Line 09 represents the minimal cost MinCost1 used
in the cost function described in section 1.4.2.

Line 10 specifies the type of GA that is run; two possibilities are available: a standard
GA and a Baldwinian model, line 11 specifies whether bitwise mutation or standard
mutation is used, line 12 determines if single-point or two-point crossover is used and
line 13 allows to select the replication mechanism: either the Stochastic Universal
Sampling (SUS), the Roulette Wheel (RW) or the Tournament Selection can be
used. Line 14 specifies the type of the fitness function (Section 1.4) and the line
15 allows to share the fitness among individuals (fitness scaling). Line 16 allows
to turn the GA into a Pareto-optimizing (multi-objective) evolutionary search and
line 17 allows to force the GA to limit the selection and replication process by a
threshold. Line 18 allows to use the Elitism and line 19 allows to choose the number
of individuals used in the tournament replication procedure. Finally lines 20 to 23
specify if the measurement is used, how many qubits are measured as well as the
expectation values of the measurement.

1In this book this parameter will be referred to as either minimal cost, desired cost or optimal

cost during the process of synthesis
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23 :21

24 :1

25 :1

26 :wire

27 :(1, 0)(0, 0)

28 :(0, 0)(1, 0)

...

44 :3

45 :1

46 :Controlled wire V

46 :(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

47 :(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

48 :(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

49 :(0, 0)(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)

50 :(0, 0)(0, 0)(0, 0)(0, 0)(0.5, 0.5)(0.5,−0.5)(0, 0)(0, 0)

51 :(0, 0)(0, 0)(0, 0)(0, 0)(0.5,−0.5)(0.5, 0.5)(0, 0)(0, 0)

52 :(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0.5, 0.5)(0.5,−0.5)

53 :(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0.5,−0.5)(0.5, 0.5)

(1.2)

The input file also lists the elementary quantum gates to be used as components,
like the single qubit H, X, Y, Z or V gates and two qubit operations such as CNOT
or CV , which are the building blocks of the quantum circuits to be found. The
quantum gates are represented as quantum unitary (and Hermitian) matrices with
the cost specified for each gate.

On line 23 the total number of component input gates is given. Then the unitary
matrices of the gates, their number of input/output and their cost are given. From
lines 23 to 27 the truth table of the single qubit operation ”Wire” is presented.
Another quantum gate is depicted as a quantum truth table (in a form of a unitary
matrix) from lines 44 to 53. This gate is a 3*3 Controlled-V (CV) gate [BBC+95]
on qubits 0 and 2. Observe that each input gate is specified by a unitary matrix
that describes each complex coefficient by the real and imaginary components. For
instance (1, 0) represents the real state, while (0.5, 0.5) represents a complex state
with coefficient 1+i

2
.

The above described features of the GA are described later on in this chapter and
in the next chapter.
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1.3 Evaluation of Synthesis Errors

The GA used in this book has two possible evaluation methods for designed circuits
that have been developed in order to accommodate both completely and incom-
pletely specified quantum-reversible functions. These methods are called ME and
EE.

1.3.1 Element Error Evaluation method (EE)

To represent a completely specified functions (in particular, the deterministic per-
mutative reversible functions such as the universal gates Fredkin or Toffoli) a matrix
is used. It can be seen that as long as the function is easily specified in this manner,
it is possible to evaluate the Unitary matrix of the synthesized circuit directly. This
matrix represents the desired matrix that the circuit must satisfy by comparison of
each matrix coefficient. For instance, to specify the Fredkin gate, the number of
the qubits of the result and the matrix specifying the target circuit can be added
at the end of the input file (eq. 1.3). Observe that each coefficient in the matrix is
represented by a pair of floats. For instance (1,0) represents the number 1 + 0i and
(0,0) represents 0 + 0i.

54 :3

55 :(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

56 :(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

57 :(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

58 :(0, 0)(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)(0, 0)

59 :(0, 0)(0, 0)(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)(0, 0)

60 :(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(1, 0)(0, 0)

61 :(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(1, 0)(0, 0)(0, 0)

62 :(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(1, 0)

(1.3)

This method is computationally intensive. However, it allows to directly alter and
analyze the circuit matrix representation; changes on individual gates can be directly
observed on the unitary matrix. The evaluation of the error is done in this case by
formula ek =

∑

j(oj − sj)
2 (i.e. by comparing the resulting and the desired matrices

coefficient-by-coefficient) in order to obtain the overall error (before measurement).
This evaluation method is referred to as the Elements Error (EE) method.
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1.3.2 Measurement Evaluation method (ME)

When the desired circuit is to represent an incompletely specified function repre-
sented as f = [00,−−,−−, 10] or as f = [0−,−1,−−, 0−] (Definition ??), the
matrix representation is not convenient and designing a unitary quantum-realizable
incompletely specified function might not even be possible for large functions. Also,
representing such circuit as a unitary matrix would require to specify all elements
either as cares or as don’t cares. In general, the number of don’t cares for machine
learning will be much higher than the number of cares. Thus representing machine
learning problems as matrices would be wasteful.

Thus, in cases when the function is incompletely specified (or the output function
is defined on less bits than the input), it is better to represent the solution only by
the obtainable information. This is done by using the after-measurement evaluation
of the circuit. The GA generates the set of measurement operators for each desired
qubit. For each output state of the circuit under evaluation the algorithm measures
the state for the desired imulti-qubit measured state (Section ??). In the case of a
don’t care the GA skips the given measurement and the value of the output remains
unknown. This method is referred to as the Measurement Evaluation (ME) method.

1.3.2.1 Measurement Evaluation Input-Data Specification

The specification of the problem for ME method is shown in lines 19 to 22. In
this case, there is one qubit that is going to be measured (line 19) on the first
wire (indexed as 0: line 20). The measurement expectation values are in lines 21
for the expected state |0〉 and line 22 for the expected state |1〉. Note that the
measurement for state |001〉 (line 21 and line 22) has expected complex value 0 + i1
represented as (0, 1) for both possible outcomes |0〉 and |1〉. This artificial notation
means that the outcome is considered as a don’t care. The error evaluation becomes
ek =

∑

j(oj − sj), ∀j ∈ O, with O the set of all defined expected values.

For example, assume the output state from the circuit under evaluation is |ψ〉 =








1√
2

0
1√
2

0









and the expected result is the state |00〉. The error with respect to the

measured qubit (assume indexed at 0) will now be e0 = 0 and for the second qubit
e1 = 0.5. This means that if the output is taking into account only the zero-
th qubit, the state |ψ〉 is a valid solution. However, if also the second qubit is
used, the state |ψ〉 is not a solution, because the expectation value for the output
state |00〉 is 0.5. In general, the error is summed over all measured qubits and
normalized in order to be directly used in the calculation of the fitness function. The
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Table 1.2: Example of the Majority gate encoding for the GA. Observe that each
input minterm with qubit |q3〉 = |1〉 is a don’t care.

q0q1q2q3 m0 m1 q0q1q2q3 m0 m1

0000
M−→ (1,0) (0,0) 1000

M−→ (1,0) (0,0)

0001
M−→ (0,1) (0,1) 1001

M−→ (0,1) (0,1)

0010
M−→ (1,0) (0,0) 1010

M−→ (0,0) (1,0)

0011
M−→ (0,1) (0,1) 1011

M−→ (0,1) (0,1)

0100
M−→ (1,0) (0,0) 1100

M−→ (0,0) (1,0)

0101
M−→ (0,1) (0,1) 1101

M−→ (0,1) (0,1)

0110
M−→ (0,0) (1,0) 1110

M−→ (0,0) (1,0)

0111
M−→ (0,1) (0,1) 1111

M−→ (0,1) (0,1)

particular function, shown in lines (21-23) (eq. 1.1), is the majority (3x1) function
with the measured output on the 0-th qubit. To synthesize circuits using an ancilla
bit constant such as in [HSY+06], the input is modified to represent the whole
information after measurement with using don’t cares for all values of the ancilla
bit/constant that are not required. For example to represent the majority function
as a three-input and single-output function (using a dedicated output qubit q0 set
to |0〉), the measurement is specified in Table 1.2. This table corresponds directly
to relational specifications with inputs q0, q1, q2 and q3 from the function from the
K-map in Figure 1.5a.

The topmost line shows the input state q3q2q1q0 in the first column, columns labeled
m0 and m1 represent the encoded probability of observing the state |0〉〈0| and |1〉〈1|
respectively (single qubit output specified by a pair of numbers (1, 0)(0, 0) represent-

ing the complex coefficients for the state |0〉 and |1〉). The
M−→ operation represents

the whole state being measured using projective measurement on orthonormal bases
|0〉 and |1〉. The don’t care is represented as a complex expectation value (0, 1) (0, 1).
The corresponding standard K-map with inputs q0, q1, q2 and output q3 is given in
Figure 1.5b.

1.3.3 Comparison of EE and ME

The error for each individual is calculated by comparing each user-specified output
care with the value obtained from the simulation of the quantum circuit behavior.

If the ME model is used, the desired outputs are specified as the state of the system
after the measurement. The desired output is defined by the state that has the
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Figure 1.5: Majority gate function: (a) the relational K-map, (b) the standard
K-map withou output q3, (c) the schematic circuit representation.

highest probability of observation for a given input state. For permutative circuit
this means that for each input state the GA will be evaluating the probability of
observing two states: the desired and the undesired state. For instance, if the desired
output state is |001〉, the GA will also evaluate the probability of observing the most
undesirable state to |001〉 which is |110〉.
The state |110〉 is called the undesired state and it represents the bit-by-bit negation
of the desired state. This means that a given function to be synthesized as a circuit
is specified by the user using a set of desired states. The undesired states are used
to provide additional information during the evaluation and the evolutionary search
for the solution circuit.

Each desired output is calculated for each measured value individually. For a two
valued output, the error with respect to the state after measurement of 0 and 1, can

be written as (ok(0)−p)2+(ok(1)−(1−p)2)
2

, with p being the desired probability of obtaining
a 0 and q = 1−p being the probability of obtaining a 1. For a complete set of inputs
the overall error for a given individual is given by

error =
∑

k

ek =
1

k

2n−1
∑

k=1

m−1
∑

j=0

(ok − 〈ψ′
k|M∗

j Mj |ψ′
k〉)2

=
1

k

2n−1
∑

k=1

m−1
∑

j=0

(ok − pk)
2

(1.4)

with |ψ′
k〉 = U |ψk〉, m being the number of possible outcomes of the measurement,



1.3. EVALUATION OF SYNTHESIS ERRORS 13

〈ψ|M∗
0M0|ψ〉 = p and 〈ψ|M∗

1M1|ψ〉 = 1− p.
For a 1

2
-spin quantum system (Boolean observable), j = 2, the equation 1.4 can be

rewritten as

(1.5) error =
1

k

∑

k

(ok(0)− pk)
2 + (ok(1)− (1− pk)

2)

2

Thus for an incompletely specified permutative function defined on three qubits, the
measurement is designed as MJ = m⊗

0|1n and represents the Kronecker product of
single qubit measurements on j qubits. Each single qubit measurement is selected
according to the preference given by the GA software user. For instance the desired
two-qubit measured state given as (1, 0)(0, 0)(0, 0)(1, 0) corresponds to a measured

state |01〉 =









0
1
0
0









. To obtain this state, the measurement operators from eq. 1.6 will

be used during the evaluation process.

(1.6) M2 = m1
1 ⊗m0

0 =

(

0 0
0 1

)

⊗
(

1 0
0 0

)

⊗ =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









A further constraint on the ME evaluation method is that for each function the
number of measured qubits must remain constant. This requirement insures that
each measurement result has the same weight in the overall error (error is directly
proportional to the number of measured qubits).

Observe that using the ME error is much less precise than using the EE error. For
a three qubit function, the matrix based method compares all 64 coefficients of the
matrix while the ME evaluates only 16 output states. The implication is that the
error obtained in ME has less information about the system.

When the desired state is deterministic (reversible permutative function), the correct
output state can be obtained exactly up to the phase of the unmeasured state. In the
case, when the desired single-qubit state observation probability is not deterministic,
both states are detected by the single-qubit measurement operator. For instance eq
1.7 shows how to interpret the encoding of a single qubit superposed quantum state.
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(0.5, 0)(0.5, 0)(0, 0)(1, 0)(0, 0)(1, 0) =
1√
2
(|011〉 ± |111〉)

=
1√
2
(|0〉 ± |1〉)|11〉

(1.7)

The first qubit’s is described by (1
2
, 0)(1

2
, 0) which means that it is to be observed

with a probability of 1
2

in the |0〉 state and with the probability 1
2

in the |1〉 state.
The second and the third qubits are described by (0, 0)(1, 0) which means that both
qubits are to be in the |1〉 state with probability 1 after the measurement process.
Thus the state can be factored with respect to the first qubit as shown in eq 1.7.

For multi qubit measurement the probability of a desired output state is the product
of probabilities of observation for all individual qubits; various multi-qubit states
observed under two measurements of maximally opposed observables can be indis-
tinguishable.

The GA always builds only two measurement operators. From the external observer
point of view, this measurement process looses information proportionally to the
number of simultaneously measured qubits. For instance the desired states in eq.
1.8 and 1.9 are not distinguishable under this incomplete measurement.
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Observe that the desired state is |111〉 (with observation probability 2
3
∗ 9

10
= 3

5
)

and the undesired state is |001〉 (with observation probability 1
10
∗ 1

3
= 1

30
) have

similar probabilities of observation in both cases (eq. 1.8 and 1.9) are same despite
the single qubit probabilities are different. Also observe that when specifying the a
single desired and singel undesired output observable state (as in eq. 1.8 and 1.9)
the unspecified terms (in this case |100〉 and |010〉) represent the lost information
because during the evaluation process these states are not being probed for. Thus the
encoded state in eq. 1.9 is not a complete quantum state. The described encoding
is sufficient, however, to encode problems presented in this book.

The measurement of multi-qubit entangled states is also possible by specifying equal
probabilities of observation for each possible output state (eq. 1.10). The complete
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state given by the specification in eq. 1.10 is shown in the right side of the same
equation. However, the desired and the undesired states are generated in such
manner by the GA algorithm that allows to select two out of all equiprobable states.
Th8us in this case the desired and undesired states are the states |001〉 and |111〉.
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The purpose of using two different evaluation methodologies was to allow more
control over the evolutionary search. In general the measurement evaluation is
used for the exploration; searching for novel functions or for incompletely specified
function synthesis. The EE approach is more useful to describe completely specified
permutative functions for the cost optimization and for the circuit size optimization.

Observe that because the EE method is a difference of squares between the outputs
of the target and the synthesized quantum circuit, the obtained unitary matrix of
a circuit can differ from the target circuit by complex phase. This is illustrated
in section 2.4.3. Also, because when using the ME method the GA generates two
measurements for each possible output, the algorithm can search for the target
circuit or for the negation of the target circuit. The synthesis of negated circuits
is interesting because the desired circuit can be easily generated from such circuit
simply by negating all qubits. Synthesis of a negated circuit is illustrated in section
2.3.2.

1.4 Fitness functions of the GA

The error defining the correctness of a (potential) solution is used in the fitness
function to shape the landscape of the solutions in order to find the global optimum.
The fitness function quantifies how good the individuals (candidate solutions) are.
As already mentioned, the fitness function is the mechanism allowing to determine
the correctness of a given individual. In order for the fitness function f to correctly
approximate the problem space:

• ∀ci ∈ G, ∃f(ci) , i.e. f must be differentiable

• f(ci) ≥ 0, i.e. f must exists for every individual problem representation.

The fitness function evaluates, during each generation, all the individuals of a pop-
ulation and it determines which individuals are more likely to ”survive” and which
will be possibly discarded. The fitness value of each individual should represent how
close the individual is to the optimal solution represented by the fitness value 1.
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The evaluation of usefulness of each individual is based on the value of its fitness
function. The method requires sometimes various degrees of adjustment of the
fitness value. One of such parameterizations used in adjustment is the penalty
function. The penalty function represents a negative component (lowering the fitness
value of individuals) in cases where an individual ci gets outside of the validity of
its phenotype - the individual hits the boundary constraints. Thus the general form
of an evaluation function e(c) is shown in eq. 1.11.

(1.11) e(c) = f(c) + p(c)

where f(c) is the fitness function and p(c) is the penalty function. A simple penalty
function is equal to zero for valid individuals (p(S) = 0, ∀S ∈ F ) and strongly
non zero for invalid individuals. There are several variants of penalty functions e.g.
Death Penalty, Static Penalties, Dynamic Penalties, Annealing Penalties, Adaptive
Penalties, Segregated GA and Co-evolutionary Penalties [Yen05].

1.4.1 Simple Fitness Functions

Four different fitness functions f1, f2, f3 and f4 are implemented and can be chosen
by declaring them in the input file.

(1.12) f1 = 1− Error

Em

= 1− e

The first fitness function, eq. 1.12 is the simplest and it represents the fitness that
is inversely dependent on the overall error. The maximal error Em is calculated as

(1.13) Em = 22n

with n being the number of wires/qubits. This error can be normalized using the
equation 1.5.

The second fitness function is described in equation 1.14.

(1.14) f2 =
1

Error + 1

The fitness function f2 preserves a small probability for the less fit individuals due
to its exponential character. Using f2 allows individuals with very small fitness to
be selected during replication with a higher probability than using fitness f1. These
two fitness functions are graphically represented by the bold lines in Figure 1.6. The
overall error is calculated for an example of a 3-qubit circuit (the maximal error is
223

= 64).
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Figure 1.6: Schematic representation of the four available fitness functions. The
solid lines represent respectively the fitness functions f1 and f2 and the dashed lines
represent the fitness functions f3 and f4.

1.4.2 Cost Based Fitness Functions

The cost function is based on a parameter known as the minimum cost that is
provided by the user and that permits to estimate a normalization constant. This
means that the cost function acts as a bonus inversely proportional to the size of
the circuit to the fitness function for a given estimated and unreachable minimum.
In this book the cost function is defined by

(1.15) G(c) = exp
− (MinCost−Cost)2

Cost
2

2

where Mincost is the parameter given by the user (line 09 eq. 1.1) and Cost,
given by

∑k

j=1 cj , is the sum of costs of all gates in the evolved circuit. Equation
1.15 was experimentally determined to be sensitive enough to influence circuits that
are both far and close to the optimal cost.

The two weighted fitness functions (eqs. 1.16 and 1.17) calculate the fitness value
using the fitness function and the cost function together. In this case, the fitness is
dependent on the error of the gate with respect to the truth table of the specification
as well as on the cost of the circuit. Each component of these weighted functions
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can be adjusted by the values of parameters Alpha (α) and Beta (β) (line 6+7 in
pseudo-code 1.1). The two weighted fitness functions are given in equations 1.16
and 1.17, respectively.

(1.16) f3 = α (1− e) + βG(c)

(1.17) f4 = α

(

1

Error + 1

)

+ βG(c)

In Figure 1.6 the dotted lines which represent the weighted fitness functions are
shown assuming that the cost function is constant for all the error values. The
second term from eqs. 1.16 and 1.17 - the cost - was set to −0.05 to represent the
worst case for settings α = 0.95 and β = 0.05. This corresponds to a circuit that is
so long that for the user-defined minimum its cost is very large, thus its fitness is
penalized by f(s) = 0.95 ∗ E + 0.05 ∗ 0 = E − 0.05.

In other words, in the two weighted fitness functions from eqs. 1.16 and 1.17,
the term β ∗ Cost lowers the fitness functions f3 and f4 by a constant number in
comparison with the fitness functions f1 and f2. This formulation of a weighted
fitness function allows the selection process to explore solutions not only related to
the correctness of the circuit itself but also to explore the problem space in a different
cost-based neighborhood of solutions. This is because each individual would be
affected in a similar manner and the overall length of the individual strings allows
the GA to overcome local minima such as fαi,βi

(sk) > fαj ,βj
(sl), ek < el. On one

hand the α and β coefficients allow individuals with lower circuit cost and higher
error to reproduce and on the other hand they allow to progressively adjust the
overall cost of the pool of individuals.

The reasons for these various fitness functions are the following:

• to allow different selection pressures during the individual selection process
this will be discussed in Section 1.5,

• by calibrating the cost to always underestimate the minimal possible size of
the desired circuit allows the user to further manipulate the selection process.

For instance the fitness function f3 is not equal to one, unless both the cost of the
circuit and the error are minimal. Thus a GA using such a weighted function has
more freedom for searching a solution, because the fitness function is now optimizing
the circuit for two parameters. Similarly in the case of the fitness function f4 this
type of fitness function lowers the fitness function values of longer circuits, therefore
preferring the shorter ones. Thus individuals with different circuit properties will
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have equal fitness value. Let two individuals s0 and s1 have the fitness calculated
according to eq. 1.18 and eq. 1.19.

(1.18) f(s0) = αE0 + βC0

(1.19) f(s1) = αE1 + βC1

Then it is obvious that if f(s0) = f(s1) for E0 < E1 and C0 > C1 then for ∆C =
C0−C1,∆E = E1−E0 we can write E0 = E1−∆C. This means that two circuits, one
with larger error but shorter in size than the other one will have more chances to get
selected for replication. The method thus preserves the diversity of the population
to a larger extent. As will be seen later in Chapter 2, this property is an important
requirement for successfully synthesizing larger quantum circuits.

The general expression for the cost of a circuit is given by eq. 1.20,

(1.20) CCi
=
CMin

Costi

where Costi ≥ CMin > 0 and Costi is the cost of the given solution (circuit)
calculated from the individual compoenent gates cost used in the circuit and CCi

is
the cost of the circuit calculated with respect to a underestimated cost of the ideal
circuit given by CMIN . This function requires that the minimum (CMin) value given
by the user is not realizable for the given circuit with cost Costi.

In the case where the estimated minimum CMIN is not well known ( a smaller
circuit implementing desired function might exist), an exponential Cost function can
be used, as in eq. 1.21.

(1.21) Cci
= e−|(CMin−Costi)|

This exponential cost function is less sensitive to variations in size of larger circuits
and at the same time the distinct cost advantage to the smaller circuits. Thus this
cost function is good for hard problems where a premature convergence occurs often.

1.5 The Selection Process

The process of selection chooses the best individuals for reproduction. Two (or more)
parent individuals from the current population are chosen for the reproduction. The
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selection process simulates the principle of the natural selection by preferring the
more fit individuals to the less fit ones. Thus individuals with higher value of
fitness are selected more often (with a higher probability) than those with lower
fitness values. With each individual being a potential solution or carrying a piece
of its genotype required to find the solution, an appropriate selection method of
individuals must be applied to find the problem solution. This means that for a
successful search one requires that the selection pressure is low at the beginning of
the search and the selection pressure becomes high towards the end of the search.
The idea behind the selection pressure is the following: from an initial random
population of individuals, the solution will be found if the selection process preserves
enough of variety in the genetic pool of the population to allow overcome the local
fitness maxima. This means that if the selection picks only individuals with the
highest fitness (the high selection pressure case), the global solution might not be
found because the individuals do not have enough genetic material to generate the
solution. On the other hand, if the selection is too relaxed (the low selection pressure
case ) the search process will take too long and might not converge at all. The
selection of individuals will become independent of their fitness values which reduce
the evolutionary process to a random search.

In general, the initial population generation is very important to the success of the
evolutionary computation. This is because during a GA computation the infor-
mation that is contained in the population of the individuals decreases with every
generation as the main computational operation is the recombination or crossover
of individuals. The replication and crossover do not bring any new information into
the genetic pool. The mutation operator does bring external (random) changes in
the population, but in general it is used only to perturb the system, rather than in-
sert large amounts of random data. A mutation process inserting too much random
elements will again reduce the evolutionary process to a random search. In this case
the selection process will pick individuals proportionally to their fitness value, but
when each generation is highly modified by the mutation operator does not allow
any predictable convergence to the global optimum solution is not possible.

This GA uses the fitness proportional selection (eq. 1.22). This approach is mainly
known from the Roulette Wheel and the Stochastic Universal Sampling methods.
The Roulette Wheel is the simplest of the selection methods, it allows to randomly
select two individuals with probabilities p(ci) of selection proportional to the fitness
values of these individuals. This is shown in equation 1.22.

(1.22) p(ci) =
f(ci)

∑n

j=1 f(cj)
with

n
∑

j=1

f(ci) > 0

p(ci) is the probability with which an individual ci is chosen in the selection process
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Figure 1.7: The fitness normalization represented on a line (a roulette wheel). Each
individual has a segment allocated proportional to its fitness

0.25 0.50 0.750.0 1.0

rand(1)

c9c5 c11c10c1 c2 c3 c4 c6 c7 c8

Figure 1.8: The Roulette Wheel Selection - a random number generator picks the
individuals one by one located on the equi-distant points over the individuals fitness-
sum representation. Here, p ≈ 0.45 selects individual c4.

with n being the population size. Every individual is represented by a section of
a circle proportional to its p(ci) (eq. 1.23). This proportional scaling is shown in
Figure 1.7. Thus the whole population can be represented as a roulette wheel with
sections proportional to p(ci).

(1.23)
n
∑

i=1

p(ci) = 1

The ”ball” inside the roulette wheel represents a random number in the interval [0,
1]. The individual, which section is ”hit” by the roulette ball is selected (Figure
1.8). Here it is c4.

The Stochastic Universal Sampling (SUS) is similar to the Roulette Wheel selection
method. Every individual obtains again a section on the roulette wheel proportional
in size to the fitness value. A fixed number of individuals l ≥ 2 is chosen, this is the
number of individuals that a single step of the SUS selection procedure will select for
recombination (in Figure 1.9 it is c4). Now create another ruler with l equi-distant
points on it and of the same length as the roulette wheel. Finally a random number
is generated in the interval [0, 1

l
] that indicates the location of the first point on the

ruler on the roulette wheel. This can be equally obtained, by wrapping the ends
of the roulette wheel (to create a circle) and then generating a random number in
the interval [0, 1] and allocating the remaining l − 1 points on the roulette wheel
accordingly.

In our implementation two individuals are selected for replication when using the
SUS selection. Therefore a random number in the interval [0, 1] is produced and
multiplied by the fitness sum of all individuals. Since only two individuals should



22 CHAPTER 1. GENETIC ALGORITHM FOR QLS

rand(1)

0.25 0.50 0.750.0 1.0

c9c5 c11c10c1 c2 c3 c4 c6 c7 c8

Figure 1.9: For N given individuals to select, pick a random number, and from
its location pick N-1 equidistant points on the fitness landscape. In this case the
selected individuals are c2, c4, c7 and c10.

be combined, the second individual is determined by adding 1
2

mod 1 to the first
generated random number and the result is multiplied by the fitness sum of all
individuals.

Another selection mechanism is the Tournament Selection, that allows to overcome
some disadvantages of the fitness proportional selection methods. In this case to
select an individual c, one chooses randomly k individuals (uniformly distributed)
from the population and takes the best individual (one with the highest fitness). The
selection pressure is in this case controlled by the parameter k. If k is increased, the
selection pressure will be raised as well. The probability of an individual of being
selected using this method is calculated from equation 1.24.

(1.24) ps(ci) =

(

1−
(

1− 1

n

)k
)

×
(

1− i

n

)k−1

The Tournament Selection is the last selection method that is implemented within
the presented GA for QLS. The number of individuals which are randomly chosen
can be controlled via a parameter in the input file. In Table 1.1 line 16 the number
of the tournament participants was set to 5.

1.6 Crossover and Mutation

The crossover is the primary operator of a GA. With the crossover, new individu-
als are produced out of selected parents by exchanging information (piece of their
genome) between parents and creating new recombined offsprings. The crossover
is applied to all individuals with a probability p > 0. There are various types of
crossover operators, [Rai96].

The simplest crossover method is the single-point crossover. After the selection, a
random number is generated such that p0 = rand(length(c1)), p0 < length(c1), p0 <
length(c2), with length(ci) is the length of the genome of the ith individual. This
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Parent 1
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Individual 1

Individual 2

Parent 2

Individual 1

Individual 2

pICWVp pGHGp pHIEp pISWIp

Figure 1.10: single-point crossover

random number marks the position where the crossover should take place for both
individuals. This is shown in Figure 1.10 for the encoding introduced in Section
1.2.1. The single-point crossover can also be implemented. A random location of
crossover is selected for each of the individuals participating in the exchange. This
is shown in Figure 1.10.

The two-point crossover is the second crossover method. At the beginning, two
random numbers are created for each individual selected for the recombination pro-
cess. These numbers select the two positions within the first individual where the
recombination is applied. Both numbers may not exceed the length of the first in-
dividual. The same is done for the second individual. This is illustrated in Figure
1.11.

The Uniform Crossover is a generalization of the n-point strategy such that for
every genome it is decided by a random choice from which parent-individual it is
taken. A random number on the unit interval is generated for each gene. If r < 0.5
the gene is taken from the first parent individual, otherwise it is taken from the
second parent individual.

1.6.1 Mutation

After the Evaluation, Selection and Crossover a mutation is applied with a given
probability (Table 1.1 in line 3). If a generated random number is below the specified
mutation probability, then a mutation is applied. The mutation is a secondary
operator and serves to insert new or lost gene material into the population, in
general with a very small probability p < 0.1. If mutation is performed too often,
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pXJIp pGHGp pHIEp

Child 1

Parent 2

Figure 1.11: Two point crossover: in both parents, two random points are selected
and the segments between such points from each parent are exchanged.

the search process degenerates to a complete random search. If the mutation is
applied too rarely it does not create jumps large enough in the genomes and thus
does not help to overcome some local maxima (Section 1.5).

Various mutation operators are available [Rai96], here we will describe some of them.
The simplest mutation operator is a single bit flip (a random change) represented
using our encoding in Figure 1.12a. This operation is naturally extended to a bitwise
mutation, where the mutation operator is applied on each bit (gate) in the genome.
By using the Swap Mutation (Fig. 1.12b), also called the Exchange-Based Mutation,
the contents of the random selected genes is exchanged (Figure 1.12a).

E - CCNOT
D - CNOT
F - CV
G - NOTC
J - CWV
S - Swap

pICWVp pGEp pIIIGp pISFHp

Single bit Mutation

Bitwise Mutation

pHGIIp pFFIp pIIIGp pXIJp

Position Swap Mutation

pICWVp pISFHp pGHGp

Mutation

pICWVp pGHGp pISFHp

Parent 1

a)

b)

c)

Figure 1.12: Flip mutation a) bitwise Flip mutation b) and Swap mutation c)

In a more detailed mutation variant, the mutation operator can be separated into
three distinct actions on the genome. First, a random number selects a position
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within the individual and the chosen segment will be replaced (Fig. 1.13).

pISWIp pHIEp pISWIp

Individual 1 Individual 1

pISWIp pHIEp pISWIp

pIEWp pHIEp pISWIp

E - CCNOT
D - CNOT
F - CV
G - NOTC
J - CWV
S - Swap

Gate-level mutation

pISWIp pHIDIp pISWIp

Block-level mutation

Individual 1

pISWIp pHIEp pISWIp

pISWIp pJFp pISWIp

Figure 1.13: Replacement of a segment - the first mutation method

The second mutation performs an erasure of one segment somewhere within the
individual on a given random position (Fig. 1.14).

Block-level mutation

Individual 1

pISWIp pHIEp pISWIp

pISWIp pISWIp

E - CCNOT
D - CNOT
F - CV
G - NOTC
J - CWV
S - Swap

Gate-level mutation

pISWIp pHIEp pISWIp

Individual 1

pISWIp pHIIIIp pISWIp

Figure 1.14: Erasure of a segment - the second mutation method

The last mutation type adds one segment to the end of an individual (Fig. 1.15).

E - CCNOT
D - CNOT
F - CV
G - NOTC
J - CWV
S - Swap

Block-level mutation

Individual 1

pISWIp pHIEp pISWIp

pISWIp pSJp pHIEp pISWIp

Figure 1.15: Adding of a segment - third mutation method

The ratio of how often each of these mutation types are applied in the GA is a
distribution of choices over a uniform random distribution. This is because the
mutation operator is applied to the full-width circuit blocks. For example, for a
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circuit that is built as [H ] ⊗ [CNOT ] ∗ [W ] ⊗ [X] ⊗ [Z] assume that the [X] gate
was selected for mutation. If the replacement gate is of the same size (in this case
one qubit), the gate is just replaced, and the circuit remains otherwise unchanged.
In the case when the dimension of the replacement gate is greater than the size
of the original gate, the whole segment containing [W ] ⊗ [X] ⊗ [Z] is deleted and
regenerated so as to contain the replacement gate. Similarly, in the case when the
gate selected as the replacement has less qubits than the original gate, the segment
is completed by empty strings so that the width of the segment remains constant.

1.6.2 Additional GA tuning strategies

1.6.2.1 Replacement Strategies

The replacement strategy represents the method by which old individuals (parents)
are replaced with the new ones (offsprings). There are various approaches to the
replacement; the most common are: generational GA , Steady-State GA and Elitistic
GA [Gol89].

1.6.2.2 Generational GA

In the generational GA, the population of offspring individuals completely replaces
the population of their parents. Thus all information transmitted from generation to
generation is completely contained in the offsprings and all information contained
in the parent generation is discarded. This approach can generate such an offspring
population that the best individual of the offspring generation is worse with respect
to the best parent individual.

1.6.2.3 Elitism

To solve the problem of loosing information just by the selection problem the Elitism
strategy is one of the best known to choose. The Elitism allows to preserve the best
individuals from the parent population to be saved in the children population. Thus
no matter the results of the selection process or the average fitness, the n-best indi-
viduals from the parent population are copied into the offspring population. When
using Elitism, the GA copies only one best individual from the parent population to
the new generation in order not to loose the best individual during the replication
process.
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1.6.2.4 Steady-State GA

Another approach to the problem of premature convergence, is the so-called Steady-
State GA . Similarly to Elitism, the Steady State GA also preserves some individuals
from the parent population and copies them to the offspring population; however
proportions in the overall mechanism are inverted. This time most of the population
is kept unchanged and only a small number of individuals is changed. The Steady
State GA evaluates both populations (parent and offspring) together, and only the
best individuals from both the parent and offspring populations are taken into the
next generation. Unlike Elitism, however, the Steady State GA is based on the
principle of overlapping population and the fact that for finding the solution only
small and more controlled steps can be used. Genetic algorithms which are based on
this strategy tend to converge faster. Higher mutation and crossover probabilities
can be used with the Steady-State-GA, because good population members are pro-
tected through the selected replacement strategy (replacement of individuals with
lower fitness values).

1.6.2.5 Boundary-Constraints

Another type of general restrictions imposed on the GA are the Boundary con-
straints. These constraints can be simple bounds (specification of minimum and
maximum) or a linear coupling of parameter values (max or min of a function de-
fined over the set of all elements of the individual encoding). They can be related
to the feasibility or to the quality of the solution. A genetic algorithm achieves
the best solution, if the encoding, the initialization and the operators of a problem
are chosen, such that all possible individuals are valid solutions. That means that
all boundary constraints are always satisfied and thus no mechanism needs to be
considered to repair the potentially invalid individuals. However, it is possible that
such an integrity of the genome cannot be assured and thus illegal genomes may be
created. Therefore, these invalid individuals should get a worse evaluation, so that
they won’t be reproduced in the next generation.

1.6.2.6 Repair Mechanism

Beside avoiding the violation of the Boundary constraints by designing such a GA
that does not generate invalid offsprings, a repair mechanism can be used. In our
approach, all generated circuits are valid circuits. However the recombination can
generate individuals that have very long genomes and mutation can generate com-
pletely (temporarily) invalid individuals. Individuals that are too long are not de-
sired because they are out of the initial specifications and thus a repair mechanism
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is able to shorten the genome. Individuals that undergo mutation as in Figure 1.13
can be modified so that the circuits represented by them would be invalid. As can
be seen on the top-right of the Figure 1.13, the genome is mutated within one par-
allel segment: pISWIp→ pIEWp. If mutation only is applied the result would be
pISWIp→ pIEWIp, which is an invalid circuit. Thus a repair mechanism has been
implemented so that the final chromosomes in every population are valid circuits.
This repair is shown schematically in Figure 1.16.

pISWIp pHIEp pISWIp

pIEWp pHIEp pISWIp

E - CCNOT
D - CNOT
F - CV
G - NOTC
J - CWV
S - Swap

Individual 1

pIEWIp pHIEp pISWIp

Mutation

Repair/Minimization pIEWp pIIIIIp pHIEp pISWIp

Figure 1.16: Example of the repair process. The repair mechanism is able to break
down individual segments of gates and reconstruct them so as the circuit remains
structurally valid.

1.6.2.7 Termination Condition

The term termination condition represents a set of rules that will terminate the
evolutionary computation. In the simplest case, this condition terminates the com-
putation if one of the following happens:

• A pre-specified maximum number of iterations (generations) was reached (ab-
solute termination),

• an optimal or a sub-optimal solution was found.

In our GA the termination condition is reached if one of the individuals of the
population has no error with respect to the specified gate. The information about
this search including the used quantum gates with all information (truth table etc.)
is printed, as well as the result with the truth table, the cost and the genotype of the
individual. Also, since there is no guarantee to find a solution, the GA terminates
after 10000 generations.
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1.7 Conclusion

This Chapter presented the evolutionary algorithm used in this Book for the design
and synthesis of permutative circuits as well as for some of th eintroduced models
of sequential devices. The algorithm used is a result of both theoretical as well as
empirical (experimental) knowledge that was gained during the various experiments
performed. The knowledge gained during the performed taks of automated QLS
was used to upgrade the GA and optimize most of its componenets for fast circuit
evaluation and implementation of the GA on parallel devices such as GPU. The
describes results in this book are thus selected from the most significant for the
topic at hand as wll as such results are presented that shows that the GA is capable
to succesfgully design the desired quantum circuits.
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Chapter 2

Examples of Evolutionary Search
for Quantum Logic Synthesis of
Quantum Combinatorial Circuits

2.1 Synthesis of Quantum Circuits with Evolu-

tionary Search

In this chapter we present the experimental settings, results, extensions and observa-
tions of the basic evolutionary approach to Quantum Logic Synthesis. In particular,
this chapter describes how by using the GA from Chapter 1 we were able to re-
synthesize some already known universal gates and minimize them in some cases as
well as find novel realizations of some of the gates.

Although our methods are aimed to discover a logic circuit representing a desired
function, in order to be more technology specific we assume in some search variants
the use of quantum gates representing the Nuclear Magnetic Resonance (NMR)
quantum computers [YSPH05,ZLSD02,?]. Also, as shown in chapters ?? and 1, we
assume that the cost of every gate is calculated using some quantum cost function
which may change from experiment to experiment. Finally the goal of this Chapter 2
is also to demonstrate the methodology used to find the least costly (in number of
gates) realizations of well-known Toffoli, Fredkin, Miller, Peres and Peres family
gates as well as to design new quantum gates given their specifications.

The Evolutionary Quantum Logic Synthesis (EQLS) has been explored from
various points of view in the last decade. On one hand the Genetic Programming has
been widely used to synthesize quantum circuits and logic functions [Rub01,Lei04,
MCS04,MCS05,Spe04,SBS08,LPK10]. On the other hand GA based methods have

31
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been applied to various quantum circuits as well [Yab00,LPMP02,LPG+03,Luk09,
LP08, LPK10]. In general the focus of these approaches is either on a particular
function (Reversible, quantum-permutative) or a general approach is used to see
how well the evolutionary approach deals with this difficult problem. Several prob-
lems in EQLS have already been studied and analyzed, some of them are complexity
of the quantum search space, high dimensionality of the quantum space, large num-
ber of quantum gates, etc. From these previous studies, it can be concluded that
Evolutionary methods are well suited for research aimed to discover novel princi-
ples and novel quantum gate realizations of moderate size [Luk09]. Following this
reasoning, in this book the focus is on the discovery and a deeper understanding
of dynamics of the EQLS under various experimental conditions. In particular we
are searching for novel ways of synthesizing quantum algorithms and circuits using
classical evolutionary methods.

The synthesis of quantum logic circuits using evolutionary approaches has two fun-
damental aspects:

• First, it is necessary to find the circuit that: either (A) exactly corresponds
to the specification, or (B) differs only slightly from the specification. Case
(A) is verified by a tautology of the specification function and the solution
function. In case of a truly quantum circuit this is done by a comparison of
unitary matrices or by the comparison of the observable results after the mea-
surement operation. In case of permutation functions this can be also done
by comparing the truth tables. Observe that non-permutative matrices can-
not be represented by truth tables which leaves the representation of unitary
matrices as the only canonical function representation. This representation is
responsible for less efficient tautology verification during fitness function cal-
culations, which considerably slows down the software execution time. Case
(B) calculations for permutation circuits are verified by an incomplete tau-
tology (tautology with accuracy to all combinations of input values and with
arbitrary logic values for don’t care combinations). In some applications such
as robot control or Machine Learning it is sufficient that the specification and
the solution are close, like, for instance, differing only in a small percent of
input value combinations (Chapter ??).

• Second, fundamental aspect of quantum logic synthesis is that the cost of the
circuit has to be as close as possible to the known (or expected) minimum
cost, in order to allow the least expensive possible quantum hardware im-
plementation (like the minimum number of electromagnetic pulses in NMR
technology).

Both of the above introduced problems are adressed in this chapter using a
Genetic Algorithm. GA is well suited to search a relatively large problem space
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where no global cost or objective function can be defined and where there is a
little knowledge about the structure of the problem space. The use of GA does
not guarantee a succes in the synthesis process but it is a great starting point and
tool for exploration and principles extraction from otherwise a too large problem
space. As such the GA is extensively used for circuit synthesis in this chapter
and various heuristics improving its performance are demonstrated. Also, hardware
description (GPU computing) used to accelerate the circuit computation is presented
and described.

To cover experimentally the two aspects mentioned above, the presented experimen-
tations cover benchmarks that can be separated into the following sub-categories:

• Exact Synthesis problems of completely specified functions

– Evolutionary synthesis of permutative universal gates such as Fredkin,
Toffoli, Majority and Miller gate using exact measurement based evalua-
tion of costs (single and multi-qubit measurement)(ME evaluation, Sec-
tion 2.3).

– Evolutionary synthesis of permutative universal gates such as Fredkin,
Toffoli and the Entanglement quantum gates using exact matrix evalua-
tion based evaluation of costs (EE evaluation, Section 2.4).

• Approximate Synthesis problems of incompletely specified functions

– Evolutionary Synthesis of permutative universal gates such as Fredkin,
Toffoli and some additional benchmark functions (Section 2.3, 2.4 and
Chapter ??).

– Algorithmic, user-driven pseudo-random exhaustive search for permuta-
tive circuit structure-based quantum logic synthesis using the GAEX and
EX algorithm (Chapter ??).

• Approximate Synthesis problems of incompletely specified functions for Ma-
chine Learning (Chapter ??)

– The synthesis of quantum circuits with quantum output states for novel
robotic behaviors (Chapter ??).

– The synthesis of FSM represented as quantum circuits (Chapter ??).

This Chapter is organized as follows. Section 2.2 discusses the experimental set-
tings and conditions of the GA. Section 2.3 discusses the obtained results of the
evolutionary search using the ME evaluation methodology and section 2.4 analyzes
the results of the evolutionary search using the EE evaluation. Finally section 2.5
concludes this chapter and discusses all the benchmarks and obtained results.
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2.2 Experimental setup of GA

2.2.1 Input Sets of Quantum Primitives

Chapter ?? presented a general approach to the calculation of the cost using single
and two-qubit quantum gates or pulses as unit components of the total circuit cost.
For higher level gates (such as CCNOT, Fredkin, etc.), we assume that each gate has
a cost equal to the sum of its component gates in a given model. For instance, the
single-qubit gates have a unit cost 1 (including Identity). The two-qubit operations
have the cost either given along with the definition of the gate (by the user) or they
must be realized by synthesis algorithm from smaller primitives. In such a case the
cost of the used universal gates is equivalent to the realization that the algorithm
has built; all gates are either derived from the initial gate set or are in the initial
set. Other costs, such as those presented earlier can be used as well.

Note that in the classical reversible logic synthesis such as [MMD06,MDM05,
WGMD09,?] the quantum cost is given as follows: single qubit gates have no cost
and two qubit gates have a cost of 1. Thus a Toffoli gate realized using the Cv and
CNOT quantum gates has a cost of 5 and Fredkin has a cost of 7. The general cost
function we adopt here is the cost of 1 for single and two qubit gates. This cost is
more accurate than assuming that single qubit gates are for free and allows to easily
make the comparison between our cost and the one used in reversible logic synthesis
literature.

As introduced in Chapter ??, the used gates are separated into sets. The experiments
described in this chapter use three sets. Each input-gate set contains a small set
of single-qubit unitary transformations that, in general are selected from the set
S1 = {Wire, X (Rx(π)), Y (iRy(π)), Z (iRz(π))}.
The three input gate sets categories are:

1. Limited angle rotations: Slr = S1 ∪ {Rx(θ),Ry(θ),Rz(θ),Izz(θ)} (with angles
θ = ±π,±π

2
,±π

3
),

2. Full: Sf = S1 ∪ { H, CNOT, CCNOT (Toffoli), SWAP, C SWAP (Fredkin),
Majority}.

3. Partial: Sp = S1 ∪ {SWAP, V, V †.C V, C V†},

The Slr set represents one of the most general units of quantum computing - single-
qubit rotations and the two-qubit interaction gate. All four operators in Slr are
parameterized by θ and thus the set size depends on the desired and allowed pre-
cision. This input gate set was used to verify results from [LKBP06] by searching
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the underlying problem space. However, because each logic operation in a system
built from these smallest segments (NOT is a single pulse, Hadamard is two pulses,
CNOT five pulses, CV five pulses, etc) it is very difficult for the GA to keep so many
small component gates together and thus the synthesis using this set is one of the
most difficult but potentially provides the smallest possible quantum gate cost.

The set Sf represents the full set of gates (using universal gates as input) and was
used to determine the functionality of the GA. In particular, the full set was used
to verify the GA capacity to re-synthesize a gate. Naturally when the target gate is
an element of the full set, this gate is removed from the set of input gates. This set
is also used when searching for more difficult permutative functions.

The third set Sp is one of possible partial sets used to search for smaller universal
gates and for novel realizations of universal gates. In general, the set Sp contains
a small subset of quantum gates. For instance most common partial input-gate
sets are {I,H, CNOT}, {I, V, V †, CV, CV †, CNOT}, {I,X, Y, Z, Phase, CNOT},
{X,H,Z, CZ,CH} and so on.

The results are separated into two categories based on the ME and the EE error
evaluation methods. In both cases, the results of synthesis of Toffoli, Fredkin and
Miller gates were are analyzed in details for both ME and EE evaluations.

2.3 Discussion of the Results of the Evolutionary

Quantum Logic Synthesis using ME evalua-

tion

2.3.1 Toffoli Gate

Table 2.1: Fixed parameters during search for Toffoli gate

Population 100 Generations 200
Mutation 0.05 Crossover 0.8
tmin 7 tmax 12
σ 6

input gate set {I,X, V, V †, CNOT,CV, CV †}

The Toffoli gate was successfully reinvented by our GA as well as novel implemen-
tations have been found. In this section, the GA performance is analyzed with the
focus on the multi-qubit measurement and the single qubit measurement. The ex-
periments are presented and analyzed with respect to fixed parameters shown in
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Table 2.1.

Table 2.1 shows parameters tmin and tmax (they represent the approximate size limits
of the circuits analyzed) that limit the problem space to circuits between seven and
twelve segments and with a user-given minimal cost of 6. This cost is suboptimal,
despite the fact that as already shown, the Toffoli gate can be synthesized using the
Sp set of gates with 5 two-qubit gates. Thus the default cost is 5, but because there
are four single qubit Identities in a Toffoli gate the minimal cost of the Toffoli gate
is Ctoffoli = 5 + 4 = 9.

The reason that all gates (including Identity) have to have a cost, is the fact that
if there were gates with cost 0, the synthesizer would prefer 0-cost gates over other
gates that could be useful in the synthesis process. Consequently gates with no cost
could lead to erroneous circuits creating a local minimum leading the evolutionary
process to less successful searches (the GA is stuck in some local optimal fitness).
This means that circuits with a high error and low cost will have the same fitness
as circuits with lower error and higher cost.

Figures 2.1 and 2.2 represent the averages of the fitness value over 50 runs, the
current best fitness value, the cost and the average error per generation as well as
the fitness, the error and the cost for the currently best solution.

2.3.1.1 Single-qubit ME model

Figure 2.1 shows the results of the evolutionary synthesis of Toffoli gate using single-
qubit measurement (measuring only single qubit) and Figure 2.2 illustrates the
multi-qubit measurement (measuring all output qubits). Figures 2.1a and 2.1b rep-
resent the results of the search for Toffoli gate using single qubit ME evaluation and
using between 10 and 20, and between 20 and 40 segments, respectively.

Observe that the single qubit measurement is statistically successful when the GA
is exploring the problem subspace of a circuit size where the solutions can be found
quickly. This can be seen on Figure 2.1a: the cost decrease over the evolution of the
population of the solutions and the overall increase of the fitness value indicate the
algorithm convergence.

However, such convergence is only observed when the parameterization of the GA
corresponds to an easily found global minimum. Such parameterization is generally
unknown but can be determined:

• experimentally - by combining parameters and observing results from per-
formed experiments

or
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(a) Single-qubit measurement, tmin = 10, tmax = 20

(b) Single-qubit measurement tmin = 20, tmax = 40

Figure 2.1: Results of Toffoli gate using the single-qubit measurement for two dif-
ferent settings of tmin and tmax. Observe the overall convergence of the evolutionary
search in (a) and compare to relative non-convergence in (b) due to over-estimated
parameter values tmin and tmax
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• theoretically - by specifying parameters closest to a known minimal realization
of a gate.

Observe that in Figure 2.1b the size of the circuit given by tmin and tmax is too large
and the evolutionary process is less successful.

2.3.1.2 Multi-qubit ME model

Figures 2.2a and 2.2b represent the results of searching for Toffoli gate using multi-
qubit ME evaluation for fitness function calculation and using between 10 and 20
circuit segments and between 20 and 40 circuit segments; respectively. In all these
experiments the fitness function from eq. 1.14 is used.

When using the multi-qubit measurement, the output is a 3× 3 reversible function
and as can be seen the evolutionary process is less successful (Figure 2.2a and 2.2b).
This is due to the fact that in the alloted number of generation cycles, either only
an approximate solution was found or most of the GA runs did not converge in
the allocated time. In order to find an exact solution in general it is required to
either provide more computational time or restrict the problem space of the GA by
reducing the number of input gates or the number of the allowed segment gates for
instance.

Figures 2.2a and 2.2b can be commented by the following observations.

• The first set of curves represents the averages of the population (fitness value,
the current best fitness value, the cost and the average error). This set of
curves also shows the trend of the evolutionary process. The shape of these
curves is in most graphs slowly increasing as more and more solutions are
found. Observe that the average values can be almost constant when the
solutions are rare due to the time constraint.

• The second group (the fitness, the error and the cost for the currently best
solution) represents the average fitness of the best individual and the bottom
line represents the associated error for the best individual. The fitness is the
topmost curve mapped on the primary axis. The error curve is symmetric to
the fitness curve with respect to the line fitness = 0.5 and the cost curve has
the same shape as when using the disproportionate fitness (mapped on the
secondary y axis on the right)

Observe that the GA convergence is not seen here, despite that the algorithm found
the correct solutions (Example of this can be seen in Figure 2.3 where a success-
ful search for a Toffoli gate is shown despite the overall non-convergence of the



2.3. EQLS RESULTS DISCUSSION 39

(a) Three-qubit measurement tmin = 10, tmax = 20

(b) Three-qubit measurement tmin = 20, tmax = 40

Figure 2.2: Results for Toffoli gate using the multiple-qubit measurement for two
different settings of tmin and tmax
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Figure 2.3: Example of successful synthesis of the Toffoli gate using a partial input
gate-set Sp and a single-qubit ME method.

evolutionary search). The lower convergence rate results from the fact that while
synthesizing with multiple single qubit measurements, the solution matrix must
match three disjoint observations (measurements). Naturally this is more difficult
than when using a single measurement. Also, similarly to the single-qubit mea-
surement case, increasing the parameters tmin and tmax generates worse results if
these parameters overestimate the sizes of possible solution circuits. Finally, the
main differences between Figures 2.2a and 2.2b are the circuit cost (observe that in
Figure 2.2b the cost of circuits is much higher as a consequence of synthesizing a
larger circuits) and the circuit fitness (in Figure 2.2b the fitness is lower, again as a
result of an overestimation of the circuit size).

2.3.1.3 Comparison of Single-qubit and Multi-qubit ME methods

Figure 2.4 shows several Toffoli gates that were discovered using our GA with the
single-qubit ME error model. Observe, that despite all these circuits represent cor-
rectly the single output function, the other qubits in the whole state can be still in a
superposition; for instance eq. 2.1 shows the unitary matrix of the circuit in Figure
2.4c representing the single-output Toffoli function, that is built from controlled-V
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a) b)

c) d)
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Figure 2.4: Circuits discovered by the GA as a single output Toffoli Gate using the
single-qubit ME evaluation. (Unitary matrix representing the Toffoli gate is given
in eq. 2.1)

and controlled-V† gates only.
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Observe that for any three qubit logic input, the operator from eq. 2.1 generates a
3× 3 quantum probabilistic logic function; the whole output state U |ψ〉 can be in a
superposition (eq. 2.2),

U |001〉 =
1 + i

2
(−i |001〉+ |101〉

Measurement(
1 + i

2
(−i |001〉+ |101〉) =

1

2
|001〉 〈001|+ 1

2
|101〉 〈101|

(2.2)

while the measurement of only the output qubit generates a deterministic value
corresponding correctly to the third qubit of the Toffoli gate. Both of the possible
outputs are shown in Table 2.2.

Thus using single-qubit measurement for quantum circuit synthesis, a n×1 reversible
logic function can be easily synthesized but at the cost of losing the permutative
reversibility on other qubits. In this case, the Toffoli gate was synthesized using
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Table 2.2: Truth table of a 3 × 3 quantum probabilistic and a 3 × 1 deterministic
functions generated by the circuit from Figure 2.4c.

All Measured Single Measure
q2q1q0 q2q1q0 q0
000 |000〉〈000| |0〉〈0|
001 1

2
|001〉〈001|+ 1

2
|101〉〈101| |1〉〈1|

010 |110〉〈110| |0〉〈0|
011 1

2
|011〉〈011|+ 1

2
|111〉〈111| |1〉〈1|

100 |100〉〈100| |0〉〈0|
101 1

2
|001〉〈001|+ 1

2
|101〉〈101| |1〉〈1|

110 1
2
|011〉〈011|+ 1

2
|111〉〈111| |1〉〈1|

111 |010〉〈010| |0〉〈0|

the single-qubit ME error model, which generates the single-output reversible logic
function on the output target but the control qubits are either not restored to the
original input values or can even remain in some quantum superposed or entangled
state (Table 2.2).

2.3.2 Synthesis of Fredkin Gate

Table 2.3: Parameter values used during search for Fredkin gate

Population 100 Generations 200
Mutation 0.05 Crossover 0.8
tmin 10 tmax 20
σ 10

input gate set {I,X, V, V †, CV, CV †, CNOT}

Similarly to Toffoli, the Fredkin gate was successfully re-synthesized and novel circuit
implementations have been found for it with our GA.

2.3.2.1 Single-qubit ME model

The experiment was started with the single measurement synthesis method that
resulted in some interesting gates. One of synthesized Fredkin gates is shown (with
minimization) in Figure 2.5; the blocks named C0 and C1 are the aggregated logic
blocks resulting from the concatenations of gates following the rules introduced in
Chapter ??. Again the minimization allows to note that this gate is not minimal.
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Figure 2.5: Example of realization (with minimization) Fredkin gate using single
qubit ME model.

The gate is however still interesting because it provides the bottom two qubits with
correct function while the top qubit remains in a superposed state.

Observe that the gate (Figure 2.5) is not Fredkin but negated Fredkin. This means
that while Fredkin gate defined as single output function is given by fFredkin =
[0, 1, 0, 1, 0, 0, 1, 1] the discovered circuits implements fFredkin = [1, 0, 1, 0, 1, 1, 0, 0].
Such circuits can be generated during the synthesis process, but as it is not guaran-
teed that potential solutions will lead to actual solutions, the evolutionary process
might not find a solution at all. The synthesis of such negated gate is interesting
because it is easy to obtain the correct gate from it by simply negating the output
value.

Because the Fredkin gate is essentially a single-controlled-qubit two-qubit-target
unitary gate, the ME error model can be specified for two measured qubits. Some of
the results using the full input-gate set Sf are shown in Figure 2.6. As can be seen
the synthesized gates can be minimized to the well known Fredkin circuit realization
but as only two qubits are measured, the third qubit is modified by an additional
gate. This additional gate can be removed without changing the output of the
target two qubits. Moreover, naturally because Fredkin use only a single qubit to
control no superposition can be obtained on the control qubit and thus two qubit
measurement is sufficient to obtain the classical fully reversible gate.
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Figure 2.6: Example of realization (with minimization) of Fredkin gate using the
two-qubit ME error model and the Sf input-gate set. Observe that all presented
gates contain the well known realization of Fredkin ([NOTC][TOFFOLI][NOTC])
on qubits b and c, but with additional gates changing the value on the third, un-
measured qubit a.

2.3.2.2 Analysis of using Partial vs. Complete input-gate set.

The GA performance is analyzed with the focus on the effect of the size of the
input gate-set; the convergence of the algorithm is compared with different sizes of
th einput gate set. Table 2.3 shows the parameters that have been used for the
following experiments as constants. In this case, the tmin and tmax parameters were
increased in order to give the GA enough space for the search. The minimal cost
σ remains the same. As in the Toffoli case this cost underestimates the cost of a
minimal Fredkin gate built using the GA.

The synthesis process was more difficult (smaller success rate and longer runs re-
quired) in the case when incomplete sets of gates have been used. Figures 2.7 and
2.8 represent two sets of runs, both using fitness function from eq. 1.14 and the ME
error evaluation evaluation.

Figures 2.7a and 2.7b present the search experiments using the Sf input gate-set
and Figures 2.8a and 2.8b show the results from the same experimental settings but
using the Sp input gate-set.

Observe, that Figures 2.7a and 2.7b illustrate the problem of over-estimation of
the size of the circuits with respect to the given input set. Figures 2.8a and 2.8b
illustrate the problem of under-estimation of the size parameters: observe that in
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(a) Full set Sf , tmin = 3, tmax = 6

(b) Full set Sf , tmin = 13, tmax = 23

Figure 2.7: Comparison of results for Fredkin gate using the full input gate-set Sf

for two different settings of tmin and tmax. Similarly to the case of Toffoli gate, the
overestimation of the size parameters leads to poorer results.
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(a) Partial set Sp, tmin = 3, tmax = 6

(b) Partial set Sp, tmin = 13, tmax = 23

Figure 2.8: Comparison of results for Fredkin gate using the partial input gate-set
Sp and for two different settings of tmax and tmin. (a) - the values of parameters tmax

and tmin are too small for the GA to find a solution and thus the statistical average
is stuck (shown as a straight line on the top) in a locally best solution. (b) - an
increase in size allows the GA to explore larger circuits and also to find solutions,
despite the fact that overall convergence is not observed here.
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Figure 2.8a the GA is stuck in a local minimum while in Figure 2.7b the algorithm
searches larger circuits allowing it to find solutions (Using the Sp input gate-set for
(tmin, tmax) = 3, 6 no solution is found; the best individual fitness average is stuck at
a local minimum as the lower upper bound tmax does not allow the GA to explore
larger circuits.).

Example of successful search for Fredkin gate is shown in Figure 2.9. It illustrates
(as in the case of Toffoli gate) that the evolutionary process finds a solution despite
an overall convergence (averaged over 20 runs of the GA) is not observed. Observe,
that during the evolutionary run, the GA fitness (in each generation) is stuck at 0.8
and when the solution is found the fitness goes to 1 and the error goes to 0 in a
single jump.
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Figure 2.9: Example of successful synthesis of the Fredkin gate using a full input
gate-set Sf and a two-qubit ME method.

These observations confirm that the algorithm behaves according to our expecta-
tions; by increasing the size of the input set the time to find the solution increases
as well. This is natural as the GA can chose from more input component gates and
thus the search space is larger. Moreover these results illustrate that using a uni-
versal gate in the input-gate set naturally reduces the required size of the circuits to
be built compared to the case when such a gate is missing from the input-gate set.
This is because as the GA is an artificial-evolution driven random process, circuits
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may carry a lot of unminimized gates. Thus to create such gates more efficiently, a
logic minimizer or some additional heuristics can be added to the GA in order to
provide the desired boost.

2.3.3 Synthesis of a Majority Gate

V
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Figure 2.10: Example of the synthesized Majority circuit with the consequent min-
imization and final result (using the ME error model evaluation).

The synthesis process of Majority gate which was first realized in [Mil02] (as one
output of a permutative 3× 3 reversible function) is presented in this section. Here
our interest is only in single-qubit output Majority Gate. The Figure 2.10 shows a
realization of the Majority gate found by the GA as well as the final circuit after
minimization. The blocks denoted by numbers 1,2,3,4,5 can be each combined into
a simpler gate. This is shown by transforming for instance the block 1 to the
compound gate C0. The gates denoted by C0, C1, C2 and C3 are compound gates
created by concatenating (collapsing) two or more gates that occupy the same wires
and that do not have any other gate between each other. For instance, the block 4
that is composed of [CINOT ][NOTIC][V IC] is transformed into a single quantum
gate because all gates in it occupy the same qubits and no other gate exists between
them.

Observe that each step of the minimization first minimizes the gates (V ⊙ V =
NOT ), and only then minimizes the final gate concatenation is done. Thus at
the end of the process, there are four blocks C0, C1, C2, C3. Each block is created
from [NOTV †][NOTC] (on top two wires), [CIV][CIV †][CIV †] → [CIV][CINOT],
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Figure 2.11: Synthesis of Majority gate using single-qubit ME with partial input
gate set Sp and tmin = 5, tmax = 11.

[NOTIC][CINOT][VIC] and [CNOT][NOTC][VC] (on top two wires) respectively.
Note that the block 5 ([NOTIC][V †⊗ I]) was removed because the gates it contains
are irrelevant to the single output function realized on the bottom wire.

2.3.3.1 Influence of tmax and tmin on the Evolutionary QLS

The Majority gate was successfully synthesized using the GA with solutions close to
the cost-optimal circuits. Similarly to the Fredkin gate synthesis, the Majority gate
synthesis requires longer time (and is less successful) than in the case of the Toffoli
gate because the GA had more troubles to keep larger groups of gates together
allowing to generate universal gates such as Toffoli or Fredkin which are required to
build the Majority gate.

Figures 2.11, 2.12 and 2.13 illustrate the Evolutionary Synthesis process of the Ma-
jority gate for various settings for the minimal and maximal sizes of the synthesized
circuit; tmin, tmax respectively. Observe, that as expected (and as already observed
in the cases of Toffoli and Fredkin), the prior knowledge about the desired circuit
size directly affects the results: for larger circuits the precise settings of the same
cost and tmin, tmax parameters are much more important than for smaller circuits.
Also observe, that the problem space represented by the bounds given by the min-
imal tmin and maximal tmax numbers of segments must contain circuits with the
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Figure 2.12: Synthesis of Majority gate using single-qubit ME with partial input
gate set Sp and tmin = 7, tmax = 15.

desired minimal cost.

From an experimental point of view, the size of the problem space given by the
tmin, tmax parameters was observed to be inversely proportional to the number of
solutions found. This can be seen for instance in Figure 2.7 which shows that for a
given cost, the GA will generates circuit solutions when the relations between the
desired minimal cost and the bounds tmin, tmax are both such that for a minimal
cost cm there is at least one global solution (circuit) with a cost c ≥ cm and its size
is tmin ≥ t ≥ tmax.

In the presented experiment, the evolutionary search using (tmin, tmax) = (5, 11)
(Figure 2.11) and (tmin, tmax) = (13, 29) (Figure 2.13) respectively under- and over-
estimates the appropriate circuit size, while the search using (tmin, tmax) = (7, 15)
(Figure 2.11) was successful.

The goal of manipulating the tmin, tmax parameters was to restrict the problem space
size in order to make the search computationally tractable. Another parameter that
was used is the size of the circuit; i.e. the maximum number of parallel segments
in an Individual. For instance, the GA starts with the minimal number of segments
set up to 2 and the maximal number of segments set up to 5. Note that in order
to successfully design a gate the desired minimal cost must be below the optimum
minimal cost.
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Figure 2.13: Synthesis of Majority gate using single-qubit ME with partial input
gate set Sp and tmin = 13, tmax = 23.

The range of the size of the acceptable circuit size (defined by l = tmax − tmin)
was also considered as a factor during the evolutionary process. This is because
when l is small (l < ǫ), then many circuits have to be repaired after crossower,
thus information is lost too early in the evolutionary process (any repair mechanism
naturally entails information loss). On the other hand, a large value of parameter
l has an opposite effect and of searching circuits with larger cost, despite that the
solution may be much less expensive.

The importance of the tmin, tmax parameters (as well as of l) on the synthesis process
is clearly observable during the evolutionary search. When looking for a circuit of a
known size n (and assuming this size is minimal) it is required to allow the GA to
search spaces with chromosome length above and below the user specified circuit size.
From previous work in this area [LPMP02,LPG+04,LP08] it was shown that a messy
algorithm (with random size of the individual circuit (gene)) was not successful. In
the here studied evolutionary synthesis method, the size of the circuit is much more
controlled, however it is required that the initial estimate of the maximal size of the
circuit appropriately over-estimates the minimal size (or the expected minimal size)
of the circuit. This is important because this assumption allows to design given
Boolean functions with various costs allowing different results close to minimum.
Thus, the search space has to be restricted around the expected minimum as close
as possible.
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Figure 2.14: Example Majority circuit found by the GA. The Figure also shows
steps of the minimization process. Observe that the aggregate gate C0 is created by
moving the CV † gate near the CNOT gate (left-to-right arrow in the middle circuit).

Similarly to the synthesis of Toffoli or Fredkin gates, some circuits obtained during
the synthesis of Majority gate have the output qubit deterministic despite the fact
that some other qubits can be still in a probabilistic state. One of such circuits is
shown in Figure 2.14. Observe that again the circuit is minimized by concatenating
neighbor gates defined on the same qubits. For instance on the bottom qubit, the
sequence of single qubit operations [V †][NOT ][V †] reduces to Identity and thus is
removed.

Figure 2.15 shows a successful search for the Majority gate. Observe that similarly
to the synthesis of Fredkin and Toffoli the evolutionary process finds the solution in
one step. This means that the fitness function during the search reaches some local
optimum and then in one step jumps to value one.

2.4 Discussion of the Results of the Evolutionary

Quantum Logic Synthesis using EE evaluation

2.4.1 Toffoli Gate

Figure 2.16 represents typical circuits that have been obtained during the synthesis
process using the Sf and the Sp input gate-sets.
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Figure 2.15: Example of successful synthesis of the Majority gate using a partial
input gate-set Sp and a single-qubit ME method.

The first circuit (2.16a) is the result of a run where fitness from equation 1.14 was
used together with a complete starting set of gates. As can be seen, this result is
very expensive because it includes three Fredkin gates and four Feynman gates. This
circuit can be simplified by removing two of the three subsequent identical Feynman
gates based on the fact that Feynman gate is its own inverse.

The next one, Figure 2.16b, is a result of the same setting as with the previous one
but the starting set was biased. The available gates in this biased set were only those
with the number of inputs smaller or equal to 2 qubits. Similarly to the previous
circuit, the group of gates in dash-squares can be concatenated in order to reduce the
cost of the circuit. Moreover two pairs of consecutive identical Feynman gates (in
dotted groups) can be removed. Thus, the second from left dotted group is removed
entirely and the first from right dotted group is replaced by a single Feynman gate.
The rightmost Feynman gate can be moved before the last Controlled-V gate and
added to the dotted rectangle. Although this circuit is longer than the first one,
its cost is the same. It is composed only from 2-qubit and 1-qubit gates. The first
circuit has cost 67 (5*2 + 19*3) after minimization and the second circuit after
minimization has the cost of 45 (9*5).

The two circuits on the bottom of Figure 2.16 were found using the improved fitness
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Figure 2.16: Various realizations of Toffoli gate obtained from GA before their
optimizing transformations were applied. (a) - three CNOT gates (the dashed box
1) are collapsed into a single one, (b) - the two Z gates on the topmost wire can be
removed as they do not change the observable of the circuit (after measurement),
(c) - the dashed box 1 is collapsed to a single two-qubit gate, frame 2 is removed
as [CNOT ] × [CNOT ] = [I] and frame 3 is collapsed to a single CNOT gate, (d)
- this circuit is minimized to the well known minimal Toffoli gate by removing the
two NOT gates and transforming two CV gates into a single CNOT.

function from equation 1.14 and 1.16. The circuits from Figures 2.16a, b and c were
found using the complete starting set Sf . The circuit from Figure 2.16d was found
using the biased set Sp. The major improvement using the equation 1.16 as the
fitness function is that in a well delimited problem space this fitness function can
speed up the search and possibly find the optimal gate. However as is discussed
in Section 2.5 this improvement is limited to the search for less expensive gates as
in general it results in longer runs of the GA. Observe that by flipping over two
Feynman gates from Figure 2.16c and removing the swap gates a solution with one
Fredkin and two Feynman gates is generated, which is close to the known realization
of Toffoli gate from Fredkin gate. The only difference are two Pauli-Z rotation gates,
which can be removed, as the analysis shows.

The results from Figure 2.16 have been obtained using the EE error model method.
However, some of the exact benchmarks have also been synthesized using the ME
error model evaluation method. In the case of the Toffoli gate, the gate can be
specified by observed values only on desired qubits; a single output function.

Interestingly, using the EE error model method (as well as using the ME error
model) method, our software reinvented also the famous circuit of Smolin [SD96],
since the sequence of two Pauli-X (NOT gates) can be removed, and the sequence
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of two Controlled-V is equivalent to Feynman gate (Figure 2.16d). After these
transformations, our gate is composed from the same basic quantum primitives as
the popular (and used in most designs and papers to realize quantum algorithms)
Smolin’s solution [SD96], but in a different order. The comparison of the unitary
matrices shows however that the circuit invented by our GA and the circuit invented
by Smolin are equivalent. These examples show that not only can our software
”reinvent” the realization of the known gates but it can also create similar minimum
cost realizations of other gates, as will be presented in chapter ??. We were not able
to find a better solution to Toffoli and Fredkin gates from quantum primitives,
because perhaps such realizations do not exist with the primitive used by us. (the
hybrid gates with smaller costs have been found by [LBA+08].

2.4.2 Fredkin Gate

Figure 2.17 presents some of many realizations of Fredkin gate found using the EE
error-model evaluation, the fitness function from eq. 1.14 and the full set of gates
Sf . Figure 2.17a and Figure 2.17b show the result when the full input gate-set Sf

was used. Figure 2.17c and Figure 2.17d present results when we used the input
gate-set defined by Sf − [SWAP ].

S

Z

SZ
Z Z

S

Z Z
a)

c)

b)

d)

Figure 2.17: Results of synthesis of Fredkin gate. a) this circuit is a result of
application of fitness from eq. 1.14 and a complete set, b) this circuit is a result of
fitness from 1.16 and a complete set. Figures c) and d) represent results obtained
using the same settings but without using the SWAP gate in the input gate-set.

Again, observe that most of the obtained circuits can be minimized to the well known
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optimal Fredkin solution. The consecutive Pauli-Z gates can be canceled (Figure
2.17b) since this gate is its own inverse (known as a standard local transformation).
Next, in both Figure 2.17a and Figure 2.17b the swap gates can be removed by
manipulating the circuit: changing the ab controlled Toffoli to ac controlled Tof-
foli (Figure 2.17a), changing to two Feynman gates, by flipping them upside down
(CNOT gates to NOTC (bottom-up CNOT)), removing the SWAP gates. This leads
to the known (minimal) realization of Fredkin gate that uses one Toffoli and two
Feynman gates (Figure 2.17b). Also observe that the gates from Figures 2.17c and
Figure 2.17d are easily transformed into the minimal solution, by simply removing
the single qubit gates [Z] and [S]. This removal does not have any effect on the
resulting function because the [Z] and [S] gates manipulate only the phase of the
quantum state.

V V

H

V

H

V

(b)

(a)

Figure 2.18: Results of Synthesis and Minimization of the Entanglement circuit for
2 qubits.

One of the observations of the obtained results is the mutual presence of Fredkin and
Toffoli gates in the circuits representing Toffoli and Fredkin respectively. In fact,
using one of the two gates does experimentally guarantee finding a result, while not
providing such a universal gate highly reduces the chances of finding the correct
gate. As can be seen in the results of synthesis using the complete starting set,
the Fredkin gate is present in all Toffoli implementations and vice versa. Without
a universal gate in the input gate-set the GA has troubles during the evolutionary
process to form and preserve such segments on multiple qubits. It can be concluded
that providing more complex universal gates allows the GA to overcome a local
functional minimum. This principle should be used to generate quantum algorithms
using large blocks such as circuits for QFFT [].

2.4.3 Entanglement Circuit

Another set of benchmarks were the entanglement circuits for two, three and four
qubits. Figure 2.18 shows the results of synthesis of the two-qubit entanglement
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circuit. Observe that both presented examples can be minimized to the well known
entanglement circuits. Also, as described in chapter 1, two different implementations
of the entanglement circuit can be observed for two and three qubits: using the well
known Hadamard gate and using the V gate (Figure 2.18 and 2.19).
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(c)
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(a)

H

Figure 2.19: Results of Synthesis and Minimization of the Entanglement circuit
for 3 qubits.(a) and (b) represent circuits that simplify to the circuit on the right,
(c) minimizes to circuit representing the same logic function but minimizing to a
different circuit (on the right), (d) another realization of the 3 qubit entanglement
circuit

Figure 2.19d shows an entanglement circuit for three qubits realized with only V and
CNOT gates (the NOT gates can be removed without changing the overall circuit
output). It is interesting to observe that this circuit (as well as the circuit in Figure
2.18a) generates various entangled states. These states will be indistinguishable
under measurement from the Hadamard based circuit generated entangled states.

Observe, that most of the gates synthesized here can be minimized to the well known
entanglement circuit not because the presented results are directly sub-circuits of
such gates, but rather because most of the component gates in the presented circuits
can be removed. Such action will modify the possible entangled output states but
will preserve the entanglement.

Figure 2.20 illustrates the four-qubit entanglement circuits together with the mini-
mization process. Similarly to the case of two and three qubits, half of the circuit
can be thrown away in the case when the goal is to obtain an arbitrary entanglement
circuit. Observe that under such assumption (when the only goal is to obtain any
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type of entanglement), all the circuits from Figure 2.20 have the same cost when
minimized.
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Figure 2.20: Results of Synthesis and Minimization of the Entanglement circuit for
4 qubits. The GA-synthesized circuits are on the left and on the right is the same
circuit after inimization that was performed manually. Observe that circuitf from
(a) and (b) despite having a different intial structure can be minimized in to the
same final circuit.

2.4.4 The level of Synthesis and the Pulse-based synthesis
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Figure 2.21: Example of sub-optimal approximate Toffoli using the Slr input gate
set.

In the case of the pulse-based synthesis (input set Slr) the search was more difficult
both in the case of the Toffoli gate but also for all other benchmarks. In fact as will
be seen, the synthesis using the unitary pulses of arbitrary (user limited) angles was
mostly unsuccessful.

Figures 2.21 and 2.22 represent some of the results using the GA. The rotation was
parameterized by the set {π,−π, π

2
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2
, π

4
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4
}. One of the particular observations
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on the pulse-based synthesis is that the algorithm found during these experiments
mainly only approximate gates in the alloted time.
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Figure 2.22: Example of sub-optimal approximate Toffoli using the Slr input gate
set.

The lack of success when synthesizing using the angle-parameterized unitary rota-
tions can be attributed to the following factors:

• the GA has troubles to keep many small unitary rotations together in order
to preserve higher level gates such as Toffoli or Fredkin

• the input-gate set grows too fast in size and thus to obtain a desired circuit
the GA requires both more time and more computation ressources

2.4.5 The CZ Synthesis

One of the most interesting result was generated by the GA when it was used to
search quantum space using the input gate set {I,H, Z, CZ,CH}. The GA was
searching for the same logic primitives as discussed previously, i.e. Toffoli, Fredkin.
The obtianed gates are unqie in the sense that they are not comonly seen in the
quantum logic synthesis approaches and they provide the lowest cost of both the
Toffoli and Fredkin reversible gates.

HH
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b

c Z

a

ab + āc

b

Figure 2.23: Toffoli gate with cost of 3.

The most interesting feature of the discovered Toffoli and of the Fredkin gates
is the fact that both have the same cost after minimization. The Toffoli gate is shown



60 CHAPTER 2. EXAMPLES OF QLS

in Figure 2.23 and the Fredkin gate - obtained by adding two auxilliary CNOT gates
is shown in Figure 2.24.
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Figure 2.24: Fredkin gate with cost of 3.

Observe that this gate was originally synthesized without the CNOT so the
original design of the Fredking gate has more gates. It is shown in Figure 2.25. This
result is very motivating for the EQLS because it is for the first time that a circuit
with a better cost than previously designed by humans wa obtianed.
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Figure 2.25: Fredkin gate fully expanded.

2.5 Discussion of the results of the Evolutionary

Synthesis

2.5.1 Results Comparison

Table 2.4 presents a summary of the results in QC search for the benchmarks used
in this chapter. The first column is the name of the function searched, the second
column shows if the software solution was found using either the non-optimized
fitness function (eq. 1.12), or the optimized fitness function (eq. 1.16). The third
column shows, for each circuit, the solution times in terms of numbers of generations
necessary to arrive at a solution. Each run was stopped after it reached the maximal
generation count in the cases for which no solution was found previously in the run.
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Table 2.4: Comparison of various fitness functions for all illustrated benchmark
functions

Problem Solution # Generations
Name [Fitness (eq. 1.12)/(eq. 1.16)] [Fitness (eq. 1.12)/(eq. 1.16)]
Toffoli YES/YES < 200/ < 500
Fredkin YES/YES < 200/ < 750
Majority YES/NO < 100/ < 300
Miller YES/NO < 400/ < 800

Entangle2 YES/YES < 100/ < 100
Entangle3 YES/YES < 100/ < 150
Entangle4 YES/YES < 200/ < 400

As can be seen in five cases out of the seven test benchmark problems (Toffoli,
Fredkin, Miller and Entangle4), a significant time increase was observed when using
the fitness function from eq. 1.16 (Table 2.4 rows 1,2,4 and 7). Two arguments
support the use of the improved fitness function (eq. 1.16). First, the solution
was found in all cases and it was found even with a biased set. This argument
implies that the cost function allows the GA to preserve individuals in the population
that would be otherwise discarded. This allows to preserve the diversity in the
population. Second, the obtained results using the fitness function (eq. 1.16) in
general generated shorter circuits as well as circuits either optimal or close to the
known optimal circuits.

2.5.2 Problems Encountered during the Evolutionary QLS

As is described in this chapter, the GA was able to find quickly circuits for two,
three and also for four qubits, but was much slower for larger gates and circuits.
The reason for this lower performance is due to following problems:

• the size of input gate-set

• the allowed size of the circuit to be searched

• the level of the element gates

• the relation between the error evaluation and the cost of the circuit

The size of the input-gate set was already discussed and analyzed in Section 2.3.2
as well as the size of the problem space was analyzed in Section 2.3.3. Next, the
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following two points are discussed; the impact of the level of the synthesis on the
performance of the GA in Section 2.4.4 and the relation between the error evaluation
and the cost function in Section 2.5.2.1.

2.5.2.1 The Cost-Error ratio

Figure 2.26: A comparative chart between two different fitness functions during the
same GA run.

Figure 2.26 shows the recording of one run searching for the Fredkin gate using the
fitness function from eq. 1.14. For illustration the fitness from equation 1.16 is also
drawn. The figure shows the best result of each hundred generations. The first curve
Error shows the evolution of the scaled error as used in the fitness function. Second
curve is the cost (1/Cost) and it is to be maximized to increase the global fitness
function. The larger the circuit the more the cost is reduced. The last three curves
show the values for fitness function from equations 1.14 and 1.16. Fitness function
from eq. 1.16 is illustrated with two curvesthe ; first with parameters α = 0.99 and
β = 0.01 and the second with α = 0.9 and β = 0.1. For more clarity all fitness
functions are mapped on the secondary y-axis on the right.

The Fitness function from eq. 1.16 with α = 0.9 captures mainly the correctness
of the circuit as well as the cost (β = 0.1). Such configuration however requires a
large final jump to the correct solution (≈ 0.1). Such a fitness function can be used
to minimize the size constraints but might not be the best candidate to find circuits
with minimal error.

The best fitness function to capture global properties during a search for a correct
circuit is the fitness function from eq. 1.16 with α = 0.99. This is because on
one hand α = 0.99 captures the correctness of the circuit and on the other hand a
β = 0.01 takes into account the size of the circuit in such a way that allows both to
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search for the correct circuit and minimize the size (cost) of it in an appropriate ratio.
Consequently, comparing it to the fitness function (eq. 1.14) one can observe similar
result but with small oscillations in the fitness function (eq. 1.16 with α = 0.99).

Figure 2.26 illustrates also the generally observed slow convergence of the GA. Ob-
serve that this can be seen in Figures 2.3, 2.9 and 2.15 where the results appear as
a jump in the fitness value rather than as a result of a convergence of the fitness
value to the value of one. The reason for this is, is the structure of the error that
is always symmetric. In other words because the evolved circuit is a unitary matrix
built from unitary matrices (quantum gates) any discrepancy between the target
and the synthesized circuit will be always on 2r coefficients.

The structure of the error in an unitary matrix also means that when synthesizing
using only permutative component gates, the magnitude of the error will always be
at least 2

2n which results in the fact that the GA overall fitness value is very often
stuck on a local maximum before in one step reaching the fitness value of one and
error value of 0. In the case when arbitrary quantum gates are used for synthesis the
magnitude of the error can be arbitrarily small. However because in the present case
we use only a set of selected quantum gates the generated error is again bounded by
the used gates. Thus confirming that the GA reaches the correct solution (fitness =
1) after a jump from a local optimal fitness value.

2.6 Conclusion of the Evolutionary QLS

This chapter presented a new approach to quantum logic synthesis using a a fit-
ness/error function and a circuit cost. Similarly to the previous work in this area [],
our algorithm was able to successfully use the selected cost policy and synthesis
constraints to generate new circuits implementing permutative reversible circuits.
However we were also able to obtain novel circuits preiously unknown to exists.
Such example can be seen in Figure ?? showing a Fredkin gate having the same
cost as a Toffoli gate. This is quite a novel result and it illustrates the power the
evolutionary computation has. Indeed as it was shown in the search using the NMR
pulses, to find a result is quite difficult because the amount of input gates is too
large. On the other hand with a small set of gates algorithmic approach will out-
perform GA in both speed and optimal solutions. Thus the discovery of novel gates
and novel minimal solutions of universal reversible gates is a task where the GA is
the great match.

Another interesting result of the search presented here is that despite the fact that
using the NMR pulses the synthesis was not very successful for three-qubit circuits
the joint approach that used pseudo-binary and unitary pulses allowed to find out
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new circuits, otherwise not possible to discover on two qubits. This was not achieved
in previous researches of their authors.

The Figure ?? and ?? shows the implementation of the CNOT and CV gates using
NMR pulses, that have been designed by our GA algorithm. Because the Izz does
not commute, the circuit is split in half. Thus, two sides of the quantum circuit
can be distinguished; but this observation is only possible when looking into the
sub-permutative-logic level. Similar observation was made with the synthesis model
using only the CV/CV † and CNOT gates. The usefulness of this anti-symmetric
property is the fact that circuits with a given structure can have different function
when the order of the component gates is inverted.

Figure 2.27: Inversely constructed CNOT generates CE

To conclude this Chapter the following observations can be made:

• The cost-error ratio is a difficult problem that can be partially solved using
evolutionary QLS

• The QLS as evolutionary process is sensitive to multiple factors such as the
size of the input-gate set, the width of the synthesized circuit, the level of
synthesis, the ratio between user specified minimal cost and the desired circuit
size. Together, these problems makes the evolutionary QLS a hard problem

• The evolutionary QLS allowed us to rediscover already known realizations of
quantum circuits (Fredkin, Toffoli) as well as invent novel interesting gates
such as Entanglement, Majority, etc.

• The ME and EE methods of evaluations are quite useful insights into the QLS
from an algorithmic point of view and allowed us to discover novel, partial
realization of universal quantum gates.



Bibliography

[BBC+95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and Weinfurter H. Elementary gates
for quantum computation. Physical Review A, 52:3457–3467, 1995.

[EvKK95] A. E. Eiben, C. H. M. van Kemenade, and J. N. Kok. Orgy in the com-
puter: multi-parent reproduction in genetic algorithms. In 94, page 10.
Centrum voor Wiskunde en Informatica (CWI), ISSN 0169-118X, 31
1995.

[GKD89] D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Mo-
tivation, analysis and first results. Complex Systems, 3:493–530, 1989.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, MA, 1989.

[Hol75] J.H. Holland. Adaptation in Natural and Artificial systems. The Uni-
versity of Michigan Press, Ann Arbor, 1975.

[HSY+06] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M Perkowski. Optimal
synthesis of multiple output boolean functions using a set of quan-
tum gates by symbolic reachability analysis. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and systems, 25(9):1652–
1663, 2006.

[LBA+08] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph,
K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White.
Quantum computing using shortcuts through higher dimensions, April
2008.

[Lei04] A. Leier. Evolution of Quantum Algorithms Using Genetic Program-
ming. PhD thesis, University of Dortmund, 2004.

65



66 BIBLIOGRAPHY

[LKBP06] S. Lee, S.J. Kim, J. Biamonte, and M. Perkowski. The cost of quantum
gate primitives. Journal of Multiple-Valued Logic and Soft Computing,
12(5-6):561–574, 2006.

[LP02] M. Lukac and M. Perkowski. Evolving quantum circuit using genetic
algorithm. In Proceedings of the 2002 NASA/DoD Conference on Evolv-
able hardware, pages 177–185, 2002.

[LP05a] M. Lukac and M. Perkowski. Combining evolutionary and exhaustive
search to find the least expensive quantum circuits. In Proceedings of
ULSI symposium, 2005.

[LP05b] M. Lukac and M. Perkowski. Using exhaustive search for the discovery
of a new family of optimum universal permutative binary quantum
gates. In Proceedings of International Workshop on Logic & Synthesis,
Poster Session, 2005.

[LP08] M. Lukac and M. Perkowski. Evolutionary approach to quantum sym-
bolic logic synthesis. In IEEE Congress on Computational Intelligence
(WCCI), pages 3374–3380, 2008.

[LPG+03] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung,
H. Jee, B.-G. Kim, and Y.-D. Kim. Evolutionary approach to quan-
tum reversible circuit synthesis. Artif. Intell. Review., 20(3-4):361–417,
2003.

[LPG+04] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung,
H. Jee, B-G. Kim, and Y-D. Kim. Evolutionary approach to quan-
tum and reversible circuits synthesis. In Artificial Intelligence in Logic
Design, pages 201 – 257. Kluwer Academic Publisher, 2004.

[LPK10] M. Lukac, M. Perkowski, and M. Kameyama. Evolutionary quan-
tum logic synthesis of boolean reversible logic circuits embedded in
ternary quantum space using structural restrictions. In Proceedings of
the WCCI 2010, 2010.

[LPMP02] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski. Auto-
mated synthesis of generalized reversible cascades using genetic algo-
rithms. In Proceedings of Fifth Intern. Workshop on Boolean Problems,
pages 33–45, 2002.

[Luk09] M. Lukac. Quantum Logic Synthesis and Inductive Machine Learning,
Ph.D. dissertation. PhD thesis, Portland State University, 2009.



BIBLIOGRAPHY 67

[MCS04] P. Massey, J.A. Clark, and S. Stepney. Evolving quantum circuits and
programs through genetic programming. In Proceedings of the Genetic
and Evolutionary Computation conference (GECCO), pages 569–580,
2004.

[MCS05] P. Massey, J.A. Clark, and S. Stepney. Evolving of a human-competitive
quantum fourier transform algorithm using genetic programming. In
Proceedings of the Genetic and Evolutionary Computation conference
(GECCO), pages 1657–1664, 2005.

[MDM05] D. Maslov, G. W. Dueck, and D. M. Miller. Synthesis of Fredkin-Toffoli
reversible networks. IEEE Transactions on VLSI, 13(6):765–769, 2005.

[Mil02] D. M. Miller. Spectral and two-place decomposition techniques in re-
versible logic. In Proc. Midwest Symposium on Circuits and Systems,
on CD-ROM, August 2002.

[MMD06] D. M. Miller, D. Maslov, and G. W. Dueck. Synthesis of quantum
multiple-valued circuits. Journal of Multiple-Valued Logic and Soft
Computing, 12(5-6):431–450, 2006.

[MT78] S. Martello and P. Toth. Algorithm for the solution of the 0-1 single
knapsack problem. Computing, 21:81–86, 1978.

[Rai96] G. Raidl. Evolutionary Algorithms. University of Technology, Wien,
1996.

[Rub01] B.I.P. Rubinstein. Evolving quantum circuits using genetic program-
ming. In Congress on Evolutionary Computation (CEC2001), pages
114–121, 2001.

[SBS08] R. Stadelhofer, W. Banzhaf, and D. Suter. Evolving blackbox quantum
algorithms using genetic programming. Artif. Intell. Eng. Des. Anal.
Manuf., 22:285–297, 2008.

[SD96] J. Smolin and D. P. DiVincenzo. Five two-qubit gates are sufficient to
implement the quantum fredkin gate. Physical Review A, 53(4):2855–
2856, 1996.

[Spe04] L. Spector. Automatic Quantum Computer Programming: A Genetic
Programming Approach. Kluwer Academic Publishers, 2004.

[WGMD09] R. Wille, D. Große, D.M. Miller, and R. Dreschler. Equivalence check-
ing of reversible circuits. In Proceedings of the ISMVL, 2009.



68 BIBLIOGRAPHY

[Yab00] T. Yabuki. Genetic algorithms for quantum circuit design – evolving a
simpler teleportation circuit –. In In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, 2000.
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