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1 Introduction
It is important to protect quantum information against
decoherence and operational errors, and quantum er-
ror correcting codes (QECC) are the keys to solving
this problem. Of course, just the existence of codes
is not efficient. It is necessary to perform operations
fault-tolerantly on encoded states [2, 6, 5] because error
correction process (i.e., encoding, decoding, syndrome
measurement and recovery) itself induces an error. By
using simulation, this paper investigates the effects of
three QECC (the five qubit code, the seven qubit code
and the nine-qubit code) and their fault-tolerant oper-
ations when the error correction process itself induces
an error.

2 Quantum Computer Simula-
tion System (QCSS)

The features of our quantum computer simulation sys-
tem (QCSS) are fully described in the Reference [4].
We briefly explain the error model implemented in the
QCSS.

QCSS assumes that the quantum depolarizing chan-
nel as the decoherence error model. QCSS represents
inaccuracies by adding small deviations to the angles of
rotations and phase shifts. Each error angle is drawn
from Gaussian distribution with the standard devia-
tion.

QCSS does not deal with mixed states. Therefore,
in order to compute the fidelity, the experiments are
repeated 105 ∼ 107 times and the average values are
used.

3 Error-correction codes and
circuits

We deal with three QECC, that is, the nine qubit code,
the seven qubit code and the five qubit code. They
correct one arbitrary error.

The error correction circuits (i.e., encoding, decod-
ing, syndrome measurement and recovery circuits) for
the nine qubit code are shown in Figure 1. Of course,
there exists the syndrome measurement and recovery
circuit based on the stabilizer formalism [1]. However,
we use this circuit∗, since it is simpler and hence in-
duces less errors.

∗Department of Computer Science, Graduate School of Infor-
mation Science and Technology, The University of Tokyo, Japan.

†QCI Project, ERATO, JST Corporation, Japan.
∗Note that this recovery circuit cannot be used without de-

coding circuit.
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Figure 1: The error correction circuit for the nine qubit
code

As for the seven qubit code, we use the error cor-
rection circuits described in the Reference [7]. As for
the five qubit code, we use the error correction circuits
described in the Reference [2].

It will be helpful to compare the features of these
three QECC. Table 1 summarizes the comparison
among three QECC.

Table 1: Comparison among the nine qubit code, the
seven qubit code and the five qubit code

Depth of error-correcting circuits.
[[9, 1, 3]] [[7, 1, 3]] [[5, 1, 3]]

Encoder
5 4 10(Decoder)

Syn. measurement
2 28 22and recovery

The number of (minimum) required qubits.
[[9, 1, 3]] [[7, 1, 3]] [[5, 1, 3]]

qubits 9 8 6

Transversal operations implementation [2].
[[9, 1, 3]] [[7, 1, 3]] [[5, 1, 3]]
Hard Easy Hard

As for error-correcting circuit complexity, the nine
qubit code is simplest. Furthermore, it does not re-
quire an ancilla qubit. About transversal operations, in
which the operations act independently on each qubit
in the block, the seven qubit code is best.

4 Simulation Results
Quantum computation using encoded qubits, is a se-
quence of computation directly (or indirectly) on the
encoded qubits along with periodic error-correction
processes. If these processes are not performed suf-
ficiently, then multiple errors may occur between these
processes, which results in an uncorrectable state.
However, if these processes are performed too much,
then the circuit size becomes too large, which increases



the total amount of errors. Our simulation aims to in-
vestigate how often to perform these operations.

We adopt Hadamard transformation as main compu-
tation. We have performed the simulation using QCSS.
The start state of the quantum register is |0L〉 (logical
0 bit). The x-axis in the Figure 2 and 3 show the even
iteration number of Hadamard transformation. The
y-axis in the Figure 2 and 3 show the fidelity.

4.1 Effects of Ancilla operations
We have investigated the effects of fault-tolerant ancilla
operations by using the seven qubit code. We set the
number of main computation 200. We have performed
the simulation under the following two conditions.

First, only one qubit is used to compute each bit of
the syndrome. Second, four qubits are used to compute
each bit of the syndrome. Of course, we prepare the
ancilla in a Shor state [6] that reveals the errors without
revealing the data, and four XOR gates are performed
transversally in computing the syndrome. The depth
of error-correcting circuits becomes 20.

Table 2: Final fidelity with decoherence errors for the
one qubit ancilla case and the four qubit ancilla case

rate
Ancilla Frequency of recovery process

bit 200G 100G 50G 10G 1G

10−5
1bit 0.9989 0.9985 0.9983 0.9948 0.9584
4bit 0.9976 0.9969 0.9959 0.9891 0.9631

10−4
1bit 0.9842 0.9835 0.9807 0.9491 0.7018
4bit 0.9621 0.9766 0.9557 0.9442 0.7031

10−3
1bit 0.7245 0.7411 0.7411 0.5915 0.4384
4bit 0.6693 0.6696 0.6580 0.5136 0.3997

Table 2 shows the final fidelity with decoherence er-
rors (rate = 10−5 ∼ 10−3) for the one qubit ancilla
system and the four qubit ancilla system. Theoreti-
cally, the four qubit ancilla system is better than the
one qubit ancilla system in terms of fault-tolerant op-
erations. However, from Table 2, we can see that the
four qubit ancilla system is not always better than the
one qubit ancilla system. This is because the error
probability of four qubit ancilla system is higher than
that of the one qubit ancilla system.

4.2 Effects of the frequency of the error
correction operations

We have experimented to investigate how the frequency
of the error correction operation affects the fidelity with
decoherence errors (rate = 10−6 ∼ 10−2) for three
QECC. We briefly state the results due to limitations
of space. Computation with error correction is much
worse than computation without it for any frequency
of the error correction operations as for the five qubit
code and the nine qubit code.

The seven qubit code is effective for a decoherence
rate of 10−6 ∼ 10−4 if the error correction operation
is performed at every 50 ∼ 200 main gate, as shown
in Figure 2. We set the number of main computation
4000. The main computation is performed transver-
sally. For example, “QECC/50” in the figure means
that the error-correction operation is performed every
50 main gates. This figure also shows that error cor-
rection step performed at every 1 gate is excessive. We

have also investigated the combined effect of opera-
tional and decoherence errors for three QECC. Briefly
stated, the combined effect of two errors (decoherence
errors and operational errors) is the product of each
factor.
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Figure 2: Fidelity with decoherence errors (10−5) for
the seven qubit code.

4.3 Comparison among three codes
We have made a comparison among the effects of three
QECC in the asymptotic case. Figure 3 shows the fi-
delity with decoherence errors (rate = 10−3). We set
the number of main computation 2000. An error cor-
rection operation is performed at every 1 main gate.
The result shows that the nine qubit code always gives
the best result.
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Figure 3: Fidelity with decoherence errors (10−3) for
three QECC
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