## Short Course in Quantum Information

Prof. Ivan H. Deutsch
Dept. of Physics and Astronomy Center for Advanced Studies University of New Mexico

Information Physics Group: http://info.phys.unm.edu

## Course Info

- All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html
- Syllabus

Lecture 1: Intro
Lecture 2: Formal Structure of Quantum Mechanics
Lecture 3: Qubits
Lecture 4: Entanglement
Lecture 5: Algorithms
Lecture 6: Error Correction
Lecture 7: Physical Implementations
Lecture 8: Quantum Cryptography

# Why is a Physicist Talking About Information? 

## Information is Physical



## Entropy and Information



Maxwell's Demon (1867)

## Entropy and Information




Thermodynamics/reversible computing


## Moore's Law




## What is Information?




## Information = What we know.

Bayesian view of probabilities: $\quad P(x \mid y)$

## Prior information

Logic and probability of alternatives:

$$
P(x)=P\left(x \mid y_{1}\right) P\left(y_{1}\right)+P\left(x \mid y_{2}\right) P\left(y_{2}\right)
$$

Bayes Rule - Updating probabilities given new information:

$$
P\left(x \mid y_{1}, y_{2}\right)=N \underbrace{N\left(x \mid y_{1}\right)}_{\text {prior }^{N}} \underbrace{P\left(y_{2} \mid x, y_{1}\right)}_{\text {likelihood }}
$$

## How Does the Quantum World Differ?



## Probabilties of events Quantum World



## Probabilties of events Quantum World



## Quantum Events Can Define Logic



$$
P(A)=\underbrace{P(A \mid 1)}_{1 / 2} \underbrace{P(1)}_{1 / 2}+\underbrace{P(A \mid 2)}_{1 / 2} \underbrace{P(2)}_{1 / 2}=1 / 2
$$

$$
?_{?}^{?} ?
$$

## The Quantum World Has Its Own Logic

 Probability vs. Probability AmplitudeTo quantum "processes" are associated complex amplitudes, $\psi_{i}$
The probability of an even is the square modulus, $P_{i}=\left|\psi_{i}\right|^{2}=\psi_{i}^{*} \psi_{i}$

Feynman's Rule: Add amplitudes for indistinguishable processes

$$
\begin{aligned}
\psi(A)= & \psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2) \\
P(A) & =|\psi(A)|^{2}=\psi^{*}(A) \psi(A) \\
& =(\psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2))^{*}(\psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2)) \\
& =|\psi(A \mid 1)|^{2}|\psi(1)|^{2}+|\psi(A \mid 2)|^{2}|\psi(2)|^{2} \\
& +\psi(A \mid 1) \psi(1) \psi^{*}(A \mid 2) \psi^{*}(2)+\psi(A \mid 2) \psi(2) \psi^{*}(A \mid 1) \psi^{*}(1)
\end{aligned}
$$

## The Quantum World Has Its Own Logic

 Probability vs. Probability AmplitudeTo quantum "processes" are associated complex amplitudes, $\psi_{i}$
The probability of an even is the square modulus, $P_{i}=\left|\psi_{i}\right|^{2}=\psi_{i}^{*} \psi_{i}$

Feynman's Rule: Add amplitudes for indistinguishable processes

$$
\begin{aligned}
\psi(A) & =\psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2) \\
P(A) & =|\psi(A)|^{2}=\psi^{*}(A) \psi(A) \\
& =(\psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2))^{*}(\psi(A \mid 1) \psi(1)+\psi(A \mid 2) \psi(2)) \\
& =P(A \mid 1) P(1)+P(A \mid 2) P(2) \quad \text { classical logic } \\
n c e & +\psi(A \mid 1) \psi(1) \psi^{*}(A \mid 2) \psi^{*}(2)+\psi(A \mid 2) \psi(2) \psi^{*}(A \mid 1) \psi^{*}(1)
\end{aligned}
$$

quantum interference

## Measurement / Irreducible Disturbance

Single photon source




## Measurement / Irreducible Disturbance

$\left.\begin{array}{c}\text { Single photon } \\ \text { source }\end{array}\right) \sim$

Collapse of wave function
$P(A)=1 / 2$

Wave-particle duality
Complementarity


## What Is Collapsing?



What is the probability the coin is heads up?

$$
P=1 / 2
$$

I. H. Deutsch, University of New Mexico Short Course in Quantum Information

## What Is Collapsing?


I. H. Deutsch, University of New Mexico

Short Course in Quantum Information


## What Is Collapsing? State of knowledge



What is the probability the coin is heads up?

$$
P=1
$$

I. H. Deutsch, University of New Mexico

## Hidden Variables?

Classical probability: Incomplete knowledge of state, but can be "completed" by discovering the "hidden information" of an objective, "realistic" property.

Einstein: Quantum mechanics is "incomplete". "Hidden variables" make results appear random.

John Bell: There is no local hidden variable (objective value) that can account for correlations in quantum measurements.

## Entangled States

## The Weird Quantum World

- Interference between indistinguishable processes.
- Heisenberg uncertainty (incompatible observables).
- Information-gain / measurement-disturbance.
- Entanglement: No local realism.

Quantum Information: Putting weirdness to work!

## What is Quantum Information Good For?

## Quantum <br> Computation:

- Universal Machine (Shor's algorithm)
- Quantum Simulation


## Quantum <br> Cryptography:

- Key Distribution (QKD)
- Secret sharing


## Quantum

 Communication:- Channel capacity
- Distributed computation

Quantum Metrology

- Precision sensors


## Hardware and Software of Quantum Information

## Fundamental Unit of Quantum Information

Classical Bit: Two-states which are clear distinguished


MOSFET
I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

## Fundamental Unit of Quantum Information

Quantum bit (qubit): Two-states which are "orthogonal" and can exist in superposition.

- Photon paths or polarizations in an interferometer.
- Energy levels of an atom.
- "Spin" directions of an electron.
- Charge states in a quantum dot.
- Mesoscopic currents in a superconductor.

Logical "basis" states: $|0\rangle$ Port-A of interferometer

1) Port-B of interferometer

General superposition: $\quad|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$

## Transformation on qubits: Logic Gates

Bit


Qubit

```
NOT
```

| $\mid \sqrt{\mathrm{NOT}}$ |
| :---: |
| $\|0\rangle \rightarrow(\|0\rangle-i\|1\rangle) / \sqrt{2}$ |
| $\|1\rangle \rightarrow(\|1\rangle-i\|0\rangle) / \sqrt{2}$ |

$$
\begin{gathered}
\mathrm{H} \\
|0\rangle \rightarrow(|0\rangle+|1\rangle) / \sqrt{2} \\
|1\rangle \rightarrow(|1\rangle-|0\rangle) / \sqrt{2}
\end{gathered}
$$

## Multiple Qubits: The Space Grows Exponentially

E.g. 3-qubits, dim=8

$$
\begin{array}{lll}
|0\rangle=|0\rangle|0\rangle\rangle 0\rangle & |1\rangle=|0\rangle|0\rangle 1\rangle & |2\rangle=|0\rangle|1\rangle|0\rangle
\end{array}|3\rangle=|0\rangle|1\rangle|1\rangle
$$

General state: $|\psi\rangle=\sum_{x=0}^{2^{n}-1} c_{x}|x\rangle$
n-qubits: $\mathbf{2}^{\mathrm{n}}$ alternatives

$$
\begin{aligned}
& \text { Entangled } \\
& |\psi\rangle \neq\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle \otimes\left|\phi_{3}\right\rangle
\end{aligned}
$$

## Quantum Algorithm

- Map input-output

$$
\left|\psi_{\text {out }}\right\rangle=\hat{U}\left|\psi_{\text {in }}\right\rangle
$$



Quantum
Parallelism

## The Tao of Quantum Computing



- Coupling to environment.
- Coupling to neglected degrees of freedom.边ecoherence
I. H. Deutsch, University of New Mexico Short Course in Quantum Information


