Short Course in Quantum Information

Prof. Ivan H. Deutsch

Dept. of Physics and Astronomy

Center for Advanced Studies

University of New Mexico

Information Physics Group: http://info.phys.unm.edu

Course Info

All materials downloadable @ website
 http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html

Syllabus

Lecture 1: Intro

Lecture 2: Formal Structure of Quantum Mechanics

Lecture 3: Qubits

Lecture 4: Entanglement

Lecture 5: Algorithms

Lecture 6: Error Correction

Lecture 7: Physical Implementations

Lecture 8: Quantum Cryptography

Why is a Physicist Talking About Information?

Information is Physical

Any computation is constrained by the physical laws governing the "machine" that carries out the operations.

Entropy and Information

Maxwell's Demon (1867)

Entropy and Information

Bennett (1982)

Landauer (1961)

Benioff (1985)

Thermodynamics/reversible computing

Quantum Simulations

Feyman (1982)

Universal quantum circuit model

Deutsch (1985)

Moore's Law

What is Information?

Information = What we know.

Bayesian view of probabilities:

Prior information

Logic and probability of alternatives:

$$P(x) = P(x|y_1)P(y_1) + P(x|y_2)P(y_2)$$

Bayes Rule - Updating probabilities given new information:

$$P(x|y_1, y_2) = NP(x|y_1)P(y_2|x, y_1)$$
prior likelihood

How Does the Quantum World Differ?

Probabilties of events Quantum World

Probabilties of events Quantum World

Quantum Events Can Define Logic

$$P(A) = \underbrace{P(A|1)}_{1/2} \underbrace{P(1)}_{1/2} + \underbrace{P(A|2)}_{1/2} \underbrace{P(2)}_{1/2} = 1/2$$

The Quantum World Has Its Own Logic

Probability vs. Probability Amplitude

To quantum "processes" are associated complex amplitudes, ψ_i

The probability of an even is the square modulus, $P_i = |\psi_i|^2 = \psi_i^* \psi_i$

Feynman's Rule: Add amplitudes for indistinguishable processes

$$\psi(A) = \psi(A | 1)\psi(1) + \psi(A | 2)\psi(2)$$

$$P(A) = |\psi(A)|^2 = \psi^*(A)\psi(A)$$

$$= (\psi(A | 1)\psi(1) + \psi(A | 2)\psi(2))^* (\psi(A | 1)\psi(1) + \psi(A | 2)\psi(2))$$

$$= |\psi(A|1)|^2 |\psi(1)|^2 + |\psi(A|2)|^2 |\psi(2)|^2$$

$$+\psi(A|1)\psi(1)\psi^{*}(A|2)\psi^{*}(2)+\psi(A|2)\psi(2)\psi^{*}(A|1)\psi^{*}(1)$$

The Quantum World Has Its Own Logic

Probability vs. Probability Amplitude

To quantum "processes" are associated complex amplitudes, ψ_i

The probability of an even is the square modulus, $P_i = |\psi_i|^2 = \psi_i^* \psi_i$

Feynman's Rule: Add amplitudes for indistinguishable processes

$$\psi(A) = \psi(A|1)\psi(1) + \psi(A|2)\psi(2)$$

$$P(A) = |\psi(A)|^2 = \psi^*(A)\psi(A)$$

$$= (\psi(A | 1)\psi(1) + \psi(A | 2)\psi(2))^* (\psi(A | 1)\psi(1) + \psi(A | 2)\psi(2))$$

$$= P(A|1)P(1) + P(A|2)P(2)$$
 classical logic

quantum interference

 $+\psi(A|1)\psi(1)\psi^{*}(A|2)\psi^{*}(2)+\psi(A|2)\psi(2)\psi^{*}(A|1)\psi^{*}(1)$

Measurement / Irreducible Disturbance

Measurement / Irreducible Disturbance

What Is Collapsing?

What is the probability the coin is heads up?

P=1/2

What Is Collapsing?

What Is Collapsing? State of knowledge

What is the probability the coin is heads up?

P=1

Hidden Variables?

<u>Classical probability:</u> Incomplete knowledge of state, but can be "completed" by discovering the "hidden information" of an objective, "realistic" property.

Einstein: Quantum mechanics is "incomplete". "Hidden variables" make results appear random.

John Bell: There is no *local* hidden variable (objective value) that can account for correlations in quantum measurements.

Entangled States

The Weird Quantum World

- Interference between indistinguishable processes.
- Heisenberg uncertainty (incompatible observables).
- Information-gain / measurement-disturbance.
- Entanglement: No local realism.

Quantum Information: Putting weirdness to work!

What is Quantum Information Good For?

Quantum Computation:

- Universal Machine (Shor's algorithm)
- Quantum Simulation

Quantum Cryptography:

- Key Distribution (QKD)
 - Secret sharing

Quantum Communication:

- Channel capacity
- Distributed computation

Quantum Metrology

Precision sensors

Hardware and Software of Quantum Information

Fundamental Unit of Quantum Information

Classical Bit: Two-states which are clear distinguished

Fundamental Unit of Quantum Information

Quantum bit (qubit): Two-states which are "orthogonal" and can exist in superposition.

- Photon paths or polarizations in an interferometer.
- Energy levels of an atom.
- "Spin" directions of an electron.
- Charge states in a quantum dot.
- Mesoscopic currents in a superconductor.

Logical "basis" states:

|0 Port-A of interferometer

|1| Port-B of interferometer

General superposition:

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$

Transformation on qubits: Logic Gates

Bit

Identity

NOT

Qubit

NOT

$$|0\rangle \rightarrow |1\rangle$$

$$|1\rangle \rightarrow |0\rangle$$

√NOT

$$|0\rangle \to (|0\rangle - i|1\rangle) / \sqrt{2}$$
$$|1\rangle \to (|1\rangle - i|0\rangle) / \sqrt{2}$$

$$|1\rangle \rightarrow (|1\rangle - i|0\rangle) / \sqrt{2}$$

$$|0\rangle \rightarrow (|0\rangle + |1\rangle) / \sqrt{2}$$

$$|1\rangle \rightarrow (|1\rangle - |0\rangle) / \sqrt{2}$$

Multiple Qubits: The Space Grows Exponentially

E.g. 3-qubits, dim=8

$$|0\rangle = |0\rangle|0\rangle|0\rangle |1\rangle = |0\rangle|0\rangle|1\rangle |2\rangle = |0\rangle|1\rangle|0\rangle |3\rangle = |0\rangle|1\rangle|1\rangle |4\rangle = |1\rangle|0\rangle|0\rangle |5\rangle = |1\rangle|0\rangle|1\rangle |6\rangle = |1\rangle|1\rangle|0\rangle |7\rangle = |1\rangle|1\rangle|1\rangle \text{General state: } |\psi\rangle = \sum_{i=1}^{2^{n}-1} c_{x}|x\rangle$$

n-qubits: 2ⁿ alternatives

Quantum Algorithm

•Map input-output

$$|\psi_{\scriptscriptstyle out}
angle = \hat{U}|\psi_{\scriptscriptstyle in}
angle$$

Quantum Parallelism

The Tao of Quantum Computing

- · Coupling to environment.
- · Coupling to neglected degrees of freedom.

Decoherence

