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Abstract -Ternary quantum circuits have recently been 
introduced to help reduce the size of multi-valued logic for multi-
level quantum computing systems.  However, synthesizing these 
quantum circuits is not easy.  In this paper we describe a new 
genetic algorithm based synthesizer for ternary quantum circuits.   
Our results show some of the synthesized circuits use fewer gates 
than previously published methods. 
 

I. INTRODUCTION 
Quantum computing (QC) is a very promising and flourishing 
research area [9],[10],[16]. QC theoretically allows designers 
to build much more efficient computers than the existing 
classical ones. For example, some problems that can’t be 
solved in polynomial time using classical computers can be 
solved in polynomial time using quantum computers [9] 
(proven already experimentally but for small data only).  In 
part, this is because quantum circuits are inherently able to 
perform massive parallel computations [9],[10],[16]. While 
most of the results are for binary quantum computers, the 
multi-valued quantum logic synthesis is a very new research 
area.   Unfortunately, previous synthesis methods produced 
circuits that were unnecessarily complex.  One promising 
approach for reducing the circuit size is to use gates that are 
ternary counterparts of the classical binary Feynman gates and 
new 2-qudit ternary controlled gates (qudit is a multiple-
valued counterpart of binary quantum bit or qubit). 
 
The success in the true realization of some ternary 
permutation gates now allows us to physically build ternary 
quantum computer using these gates. However, synthesizing 
quantum circuits is not a trivial problem and most previous 
attempts have been disappointing.  Although there are several 
papers about using GA for binary quantum computers 
[13],[14],[17],[18] and quantum inspired evolutionary 
algorithms [19], to the best of our knowledge, no attempts 
have been made to use GAs for designing ternary quantum 
circuits.  This is the first paper to introduce a practical 
synthesis approach to synthesize directly with generalized 
ternary gates (GTG) gates and not only with Toffoli-like 
gates built on top of GTG gates [5],[6],[8]. This allows us to 
obtain significant reductions in terms of elementary gates that 
are directly realizable in ion trap technology. 
 
The paper is organized as follows.  In Section II we describe 
some previous work in multi-valued logic.  Section III covers 
the fundamentals of multi-valued logic along with some key 
definitions.  Section IV introduces some basic ternary 

quantum circuits.  The general model for synthesizing multi-
output ternary functions is given in Section V.  Section VI 
provides details on our GA.  Section VII discusses a new 
feature of our approach – synthesis of incompletely specified 
functions and Section VIII the experimental results. Section 
IX concludes the paper and Section X presents future work.  
 

II. PREVIOUS WORK 
In 2000, Muthukrishnan and Stroud [1] developed multi-
valued logic for multi-level quantum computing systems and 
showed their realizability in linear ion trap devices. However, 
this approach produces circuits that are too large and no 
procedure was proposed to minimize them. In 2002, Brylinski 
and Brylinski [2] discussed the universality of n-qudit gates 
without giving any design algorithm  Since 2001, Al-Rabadi 
and Perkowski [3],[4], and Khan et al [5],[6] proposed Galois 
Field approach to multi-valued quantum logic synthesis in 
several regular structures. They used gates that are ternary 
counterparts of classical binary Feynman and Toffoli gates, 
but no experimental data were given. De Vos [7] proposed 
two ternary 1*1 gates and two ternary 2*2 gates, but again no 
synthesis method was proposed. In 2002, Perkowski, Al-
Rabadi, and Kerntopf [8] proposed a 2*2 Generalized Ternary 
Gate (GTG gate) based on the ternary conditional gate [1] and 
ternary shift gates [5],[6] and showed the realization of 
ternary Toffoli gate using GTG gates. This work introduced 
for the first time the practical realizability of Galois Field 
circuits in existing multi-valued quantum technology.  
Unfortunately, very little has been published on synthesis 
algorithms for multi-valued quantum circuits. More 
importantly, there is nothing published on synthesizing 
incompletely specified multi-output circuits, which is the 
problem dealt with in this paper. 

 
III. FUNDAMENTALS OF MULTI-VALUED QUANTUM 

LOGIC 
In multi-valued (MV) Quantum Computing  (QC), the unit of 
memory (information) is qudit. MV quantum logic operations 
manipulate qudits, which are microscopic entities such as a 
photon’s polarization or atomic spin.  Ternary logic values of 
0, 1, and 2 are represented by a set of distinguishable different 
states of a qutrit.  These states can be a photon’s polarizations 
or an elementary particle’s spins. After encoding these 
distinguishable quantities into multiple-valued constants, 
qutrit states are represented by 0 , 1 , and 2 , 
respectively. 



 

    

Qudits exist in a linear superposition of states, and are 
characterized by a wavefunction ψ .  As an example ( 2=d ), 
it is possible to have light polarizations other than purely 
horizontal or vertical, such as slant 45° corresponding to the 

linear superposition of [ ]1202
2
1ψ += . In ternary 

logic, the notation for the superposition is 2γ1β0α ++ , 

where α, β, and γ are complex numbers. These intermediate 
states cannot be distinguished, rather a measurement will 
yield that the qutrit is in one of the basis states, 0 , 1 , or 

2 .  The probability that a measurement of a qutrit yields 

state 0  is 
2α , state 1  is 

2β , and state 2  is 
2γ .  The 

sum of these probabilities is one. The absolute values are 
required since, in general, α,  β and γ are complex quantities.   
Pairs of qutrits are capable of representing nine distinct 
states, 00 , 01 , 02 , 10 , 11 , 12 , 20 , 21 , 

and 22 , as well as all possible superpositions of the states. 
This property may be mathematically described using the 
Kronecker product (tensor product) operation ⊗ [9]. The 
Kronecker product of matrices is defined as follows: 
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As an example, consider two qutrits with 
210 1111 γβαψ ++= and 210 2222 γβαψ ++= . 

When the two qutrits are considered to represent a state, that 
state 12ψ  is the superposition of all possible combinations of 
the original qutrits, where 

2221201211

10020100

2121212121

212121212112

γγβγαγγβββ

αβγαβαααψψψ

+++++

+++=⊗=

Superposition property allows qubit states to grow much 
faster in dimension than classical bits, and qudits faster than 
qubits [1].  In a classical system, n bits represent n2  distinct 
states, whereas n qutrits correspond to a superposition of n3  
states. In the above formula some coefficient can be equal to 
zero, so there exist a constraint bounding the possible states in 
which the system can exist. As observed in [1] – “Allowing d 
to be arbitrary enables a tradeoff between the number of 
qudits making up the quantum computer and the number of 
levels in each qudit”. An output of a gate is obtained by 
multiplying the unitary matrix of this gate by the vector of 
Hilbert space corresponding to this gate’s input state. A 
resultant unitary matrix of arbitrary quantum circuit is created 
by matrix or Kronecker multiplications of matrices of 
composed subcircuits. These all contribute to difficulty in 
understanding the concepts of quantum computing and 
creating efficient analysis, simulation, verification and 
synthesis algorithms for QC. Generally, however, we believe 
that much can be learned from the history of Electronic 
Computer Aided Design as well as from MV logic theory and 
design, and the lessons learned there should be used to design 
efficient CAD tools for MV quantum computing. 

In terms of logic operations, anything that changes a vector of 
qudit states to another qudit satisfying measurement 
probability properties can be considered as a quantum 
operator (unitary matrix). These phenomena can be modeled 
using the analogy of a “quantum circuit”. In a quantum 
circuit, wires do not carry ternary constants but correspond to 
3-tuples of complex values, α, β, and γ. Quantum logic gates 
of the circuit map the complex values on their inputs to 
complex values on their outputs. As mentioned, operation of 
quantum gates is described by matrix operations. Any 
quantum circuit is a composition of parallel and serial 
connections of blocks, from small to large. Small blocks 
correspond to directly realizable quantum gates such as 
Feynman or Stroud/Muthukrishnan gates.  Serial connection 
of blocks corresponds to multiplication of their (unitary) 
matrices. Parallel connection corresponds to Kronecker 
multiplication of their matrices. So, theoretically, the analysis, 
simulation and verification are easy and can be based on 
matrix methods. Practically they are tough because the 
dimensions of the matrices grow exponentially. All these 
become much easier when one deals only with permutative 
matrices, which are equivalent to multi-output truth tables of 
completely specified functions. We deal with such a special 
class in this paper. 
 
IV. SOME TERNARY PERMUTATION QUANTUM 
GATES  
Any unitary matrix represents a quantum gate. If a unitary 
matrix has only one 1 in every column and the remaining 
elements are 0, then such a matrix is called a permutation 
matrix. A quantum gate represented by a permutation matrix 
is called a permutation quantum gate. In this paper we 
concentrate only on permutation quantum gates. 
Figure 1 shows a 2*2 ternary Feynman gate. Here A is the 
controlling input and B is the controlled input. The output P is 
equal to the input A and the output Q is GF3 sum of A and B. 
Observe that GF3 sum is the same as modulo 3 sum. If 

0=B , then AQ =  and the ternary Feynman gate acts as a 
copying gate. The ternary 2*2 Feynman gate is practically 
realizable, for instance see [1]. 
Six 1*1 ternary shift gates are proposed in [5, 6]. Operations  
 

 
 
 
 

 
Figure 1. 2*2 ternary Feynman gate. 

 
Figure 2. Ternary shift gates. 
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and symbols of these gates are shown in Fig. 2. These gates 
are realizable using ternary quantum Feynman primitive [5, 
6]. 
 
A shift gate is said to be a mirror gate of another shift gate if 
the mirror gate is connected with the output of the original 
shift gate, then the input signal is restored. The mirror gates 
for all the shift gates are shown in Figure 3. 

                              Figure 3. Mirror gates. 
 
A very useful 2*2 gate called Generalized Ternary gate 
(GTG gate) is proposed in [8] as shown in Figure 4. Here, 
input A is the controlling input and input B is the controlled 
input. The output P is equal to the input A. The controlling 
input A controls a conceptual ternary multiplexer (a 
conditional gate) that can be realized using quantum 
technology such as ion traps [1]. If 0=A , then the output Q 
is the x shift of the input B. Similarly, if 1=A , then the 
output Q is the y shift of the input B and if 2=A , then the 
output Q is the z shift of the input A. Here shift means all 
ternary shift operations including the Buffer (simple quantum 
wire). As the Conditional gate and the Shift gates are 
realizable in quantum technology, the GTG gate is a truly 
realizable ternary quantum gate.  
 
 
 
 
 
 
 
 
                
             Figure 4. 2*2 Generalized Ternary gate. 
 
For the purpose of this paper we assume that the GTG gate 
can be controlled from both top and bottom as shown in 
Figure 5. 
 
 
 
 
 
 
 
 
Figure 5. Two different forms of controlling a GTG gate. 
 
 

It should be noted that if 0=== zyx , then for all values 
of A, BQ =  and the GTG gate eventually becomes 
equivalent to two parallel wires as shown in Figure 6(a). 
Again, if 0=A  and 0=x  as in Figure 6(b); if 1=A  and 

0=y  as in Figure 6(c); and if 2=A  and 0=z  as in 
Figure 6(d), then the GTG gate also becomes equivalent to 
two parallel wires. 
A very useful gate for multiple input circuit synthesis is a 3*3 
Toffoli gate as shown in Figure 7. Design of GFSOP (Galois 
Field Sum of Products) arrays and factorized arrays is based 
on these gates. These arrays are the multiple-valued 
counterparts of well-known binary ESOP (Exclusive Sum of 
Products) and factorized ESOP cascades. Here the inputs A 
and B are the controlling inputs and the input C is the 
controlled input. The output P is equal to the input A, the 
output Q is equal to the input B, and the output R is equal to 

CBA +• , where •  and + are GF3 multiplication and 
addition, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Some configurations of GTG gate that act as two parallel 
wires. 

 
 
 
 
 
                  
                           Figure 7. 3*3 Toffoli gate. 
 
A generalized Ternary Toffoli gate is proposed in [6] as 
shown in Figure 8, where kf  is an arbitrary ternary function 

of the input variables kAAA ,,, 21 L . Here, there are k 
controlling inputs and n controlled inputs. 

 
 
 
 

 
 
          
 
 
               Figure 8. A generalized ternary Toffoli gate. 
 
Any m*m (m > 2) gate is very difficult to realize in quantum 
technology, since interaction of more than two  particles is 
nearly impossible to control. Therefore, these gates should be
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Figure 10. Realization of ternary half-adder function TBAC ]1,1,0,1,0,0,0,0,0[),( =  and 
TBAS ]1,0,2,0,2,1,2,1,0[),( = using a cascade of GTG gates.

  
   PC 0.6 0.7 0.8 0.9 1.0 

P L    
PM 

1/L 2/L 1/L 2/L 1/L 2/L 1/L 2/L 1/L 2/L 

 9           
50 18  8, 4 8, 4 7, 4 8, 4   7, 4 6, 4  

 27 11, 5 15, 5 6, 4 8, 5 12, 4  12, 5 15, 4 11, 4 10, 4 
 9           

100 18 7, 4    9, 5  7, 4  8, 3 9, 4 
 27 12, 4 5, 3  14, 5 19, 5 11, 4   7, 4  
 9           

150 18  6, 3 8, 4    5, 4 6, 3 7, 4  
 27 10, 5 12, 4  15, 5 11, 5  9, 4 17, 5 8, 4 8, 4 
 9    5, 4       

200 18   6, 4 8, 5 5, 3 6, 3     
 27 17, 5 12, 5 15, 5 8, 5 11, 5 16, 5  9, 4 9, 4 6, 4 
 9           

250 18 9, 5  7, 3      8, 4 6, 5 
 27 9, 5 8, 4 7, 3 8, 5  14, 5 16, 5 8, 4 9, 4 6, 4 
 9           

300 18 6, 4 7, 4 7, 4 8, 4  7, 4 7, 4 7, 3   
 27  14, 5   8, 3 14, 4 10, 4 16, 5 14, 5 7, 4 
 9           

350 18 9, 5 5, 4 7, 4 6, 4 7, 5 7, 5 6, 4 8, 5 8, 4  
 27 7, 4 12, 5 10, 4 10, 5 12, 5 10, 4  12, 5  9, 4 
 9           

400 18 6, 4 5, 4 8, 4 11, 5  5, 4 7, 4  11, 5 6, 4 
 27 17, 5   8, 4 7, 4 13, 5 10, 5 16, 5 7, 4  
 9        6, 4   

450 18 8, 5 7, 5 6, 4 10, 4   8, 5 9, 5  8, 4 
 27 7, 5 12, 5 6, 3 15, 5 16, 5 8, 4 7, 3 14, 5  14, 5 
 9       5, 3    

500 18 8, 5 6, 5 12, 5   6, 4 11, 5  10, 4 7, 4 
 27 16, 5  5, 3 6, 4 12, 5 13, 4 8, 4 10, 5 13, 5 7, 4 
 

 
realized from 1*1 and 2*2 gates. As the ternary Feynman 
gate and GTG gate are relatively easy to realize, they are 
treated as primitive gates for realizing other gates. A 
generalized Toffoli gate is realizable from 1*1 Shift gates, 
2*2 Feynman gate, and 2*2 GTG gate as discussed in 
Section IX. Quantum technologies do not allow wire 
crossing. In those technologies, swap gate plays an 

important role. (In general reversible logic these gates may 
have zero cost since any two wires can overlap). The 
schematic of a ternary swap gate is shown in Figure 9. 

 
 
 
               
                  Figure 9. Ternary swap gate.         
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Table 1. Number of GTG 
gates and scratchpad register 
width (separated by commas) 
for ternary half-adder 
function generated by the GA 
for different values of 
population size (P), 
chromosome length (L), 
crossover probability (PC), 
and mutation probability 
(PM). An empty entry 
represents that the GA did not 
find a correct circuit within 
500,000 generations. 



 

 

V. GENERAL MODEL OF SYNTHESIZING 
MULTI-OUTPUT TERNARY FUNCTIONS 

USING CASCADES OF GTG GATES 
Realization of ternary half-adder function 

TBAC ]1,1,0,1,0,0,0,0,0[),( =  and 
TBAS ]1,0,2,0,2,1,2,1,0[),( =  using a cascade of GTG 

gates is shown in Figure 10. Signal values at all intermediate 
wires are shown as maps to verify the correctness of the 
circuit. In this realization we assumed the following: 

(1) A GTG gate can be controlled either from top or from 
bottom. 

(2) A limited vertical wire crossing for the controlling 
signals of GTG gates is allowed. 

(3) Constant input signals 0, 1, or 2 are added as needed. 
(4) Output may be realized along any primary input line 

or any constant input line. 
(5) Each of the GTG gate form a column where the 

remaining lines represent quantum wires. The columns 
are cascaded to realize the circuit. 

 
 

VI. PROPOSED GENETIC ALGORITHM 
A. Problem encoding 
In the proposed genetic algorithm (GA) we use the model of 
synthesizing multi-output ternary function using cascaded 
GTG gates as discussed in Section IV. In this circuit model, 
for initial input to the GA, we add three constant input signals 
0, 1, and 2 for up to 3+≤ nm  outputs, where n is the 
number of inputs. For every increment of 3 or less outputs, we 
add additional 3 constant input signals 0, 1, and 2. For 
example, if the function has 2 inputs and 6 outputs, then we 
add 6 constant input signals 0, 1, 2, 0, 1, and 2. Then after 
convergence of the GA we eliminate the unused constant 
input signals from the final circuit. Initially we take n3  or 

n32×  or n33×  columns (chromosome length) as the input 
to the GA. After convergence of the GA we eliminate a 
column having all wires (i. e. a column having a GTG gate 
representing two parallel wires) and other redundant columns 
as described in Subsection VI. F. 
The primary input lines and the constant input lines are 
numbered starting from 0 as shown in Figure 10. Each of the 
columns of the circuit is represented by an ordered tuple of 
controlled wire no, controlling wire no, x-shift, y-shift, and z-
shift of the associated GTG gate as shown in Figure 10. Using 
this notation the chromosome representing the circuit of 
Figure 10 is as shown in Figure 11 (these are strings of 
characters and not integers). Here each column of the circuit 
is a gene of the chromosome. In this problem encoding of the 
genotype (chromosome) ties very closely with the phenotype 
(actual circuit ). 

 
21310 10012 02500 20040 21040 
Figure 11. Chromosome representing the circuit of 

Figure 10. 
 

B. Fitness function 
In the proposed GA, we tried to reduce the cost of the resulting 
circuit by (i) reducing the number of wires in the circuit (the 
width of the scratchpad register), i. e. increasing the number of 
unused constant input lines, (ii) reducing the number of non-

wire columns, i. e. increasing the number of wire columns, (iii) 
reducing the number of non-buffer shift gates, i. e. increasing 
the buffer gates in the non-wire columns. For this reason we 
used four components of the fitness function as discussed 
below. 
Output fitness: The output fitness is defined as follows: 
Individual output fitness, Oi = (if output i is realized along any 
wire, then 1, otherwise 0) + highest number of truth values 
realized along any wire/ n3  

Total output fitness, ∑=
=

m

i
iOO

1
, where m is the number of 

outputs in the function. 
For testing the output fitness, we compute the resulting truth 
vector for all wires and then the best fit wire is selected for a 
given output i. 
Width fitness: The scratchpad width fitness is defined as 
follows: 
W = Number of unused constant input lines/Number of 
constant input lines. 
Column fitness: The column fitness (or cascade length fitness) 
is defined as follows: 
C =  Number of wire columns/length of the chromosome, L. 
Shift-gate fitness: The shift-gate fitness is defined as follows: 
S = Number of buffer gates in the non-wire 
columns/3×Number of non-wire columns. 
In the current quantum technologies the scratchpad width is a 
major limitation. Therefore, if we can reduce the width of the 
circuit, it will be more favorable. So, we give more selection 
pressure on width fitness.  Reducing the number of columns 
will reduce the cost of the circuit. So, we give moderate 
selection pressure on column fitness. Finally, reducing the 
number of non-buffer shift gates also reduce the cost of the 
circuit to some extent. So, we give less selection pressure on 
shift-gate fitness. Considering all these factors, we define the 
fitness function as follows: 

F = O + 0.5W + 0.4C + 0.1S 
From the fitness function, we can see that the value of 0.5W + 
0.4C + 0.1S will always be less than 1. On the other hand, 
when all the m outputs are realized, then the value of O will be 
2m. Therefore, the threshold fitness value is 2m, that is, if the 
fitness of a chromosome is greater than 2m, then that 
chromosome is a solution for the given function. 

 
C. Type of GA 
As the model of our circuit synthesis (see Section V) is not 
well structured, we want to make sure that the best solutions 
found are not lost in the successive generations. Therefore, we 
use the steady-state GA [12]. We use gene repair, binary 
tournament selection and elimination of redundant columns 
(knowledge-based local transformation). 

 
D. GA operators and parameters 

We experimented with different values of population size (P), 
chromosome length (L), crossover probability (PC), and 
mutation probability (PM) for synthesizing ternary half-adder 
and we have done replicate trials for each parameter settings.  
The influences of these parameters are shown in Table 1. From 
Table 1, we see that a wide range of population sizes yield 
good solutions. Therefore, in our other experimentation, we 
used population sizes of 100, 200, 300, 400, and 500. 



 

    

In the experimentation of Table 1, we used chromosome length 
(number of columns) of n3 , n32× , and n33×  (that is, 9, 18, 
and 27). From the table, we see that chromosome length of 

n32×  and n33×  yield good solutions. Therefore, in our other 
experimentation, we used chromosome length of n32×  and 

n33× . 
In our GA we use binary tournament selection with 
replacement for selecting the parents.   One-point crossover 
was used and, as shown in Table 1, crossover probabilities of 
0.6, 0.7, 0.8, 0.9, and 1.0 all yielded good results.  

 
We mutated each column (or gene) of the offspring with a 
given low mutation probability (PM). In this mutation we 
replaced the column by a randomly generated column. In our 
experimentation illustrated in Table 1, we used mutation 
probability of 1/L and 2/L, where L is the chromosome length, 
and we see from table that both of these two mutation 
probabilities yield good results.  Our GA seemed to be not 
much sensitive to crossover and mutation probabilities, so we 
concentrated on repair which had big influence on results 
quality. However, further studies need to be done on influence 
of various parameters and other genetic operators. 
 
E. Repair operation 
From the circuit model of Figure 10, we see that, in the gene 
representation of a column, the wire numbers representing the 
controlled signal and the controlling signal should be different. 
But if, during random generation of the individuals of the 
initial population or after mutation of offspring, both the wire 
numbers of a gene become same, then we make that column 
representing wires by setting 0=== zyx . The motivation 
behind this repair operation is to reduce the number of non-
wire columns in the final solution. As our circuit model 
initially starts with an arbitrary length, reducing the number of 
non-wire columns will improve the quality of the solution. For 
example, if a gene is 11012, then we make it 11000. 

 
F.  Elimination of redundant columns 
In the solution produced by the GA, some of the columns will 
be wire-columns. We eliminate all such wire-columns from the 
solution to get the final solution. But, even after elimination of 
these wire-columns some of the remaining columns may still 
be redundant. For example, a GA may produce (after the wire-
columns have been eliminated) the circuit of Figure 12 for 
ternary half-adder function. The third and the sixth columns 
from the left are redundant, because they modify the garbage 
outputs [13]. Therefore, we also eliminate these redundant 
columns from the solution to get the final solution. 

 
For a given function, we performed a number of experiments 
using different values of population size (P), chromosome 
length (L), crossover probability (PC), and mutation probability 
(PM) as stated above. We eliminated redundant columns from 
all these solutions.  Then we selected the best solution from 
these experiments as the final solution for the given function. 
The circuit of Figure 10 is thus derived for ternary half-adder 
function. 
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Figure 12. Ternary half-adder circuit with redundant 

columns. 
 

VII. SYNTHESIS OF INCOMPLETELY 
SPECIFIED MULTI-OUTPUT TERNARY 

FUNCTIONS 
For synthesizing an incompletely specified multi-output 
ternary function, we used the same GA as discussed in 
Section VI, except the output fitness is calculated differently 
because don’t cares are ignored.  Now, the truth vectors of a 
wire and the output function are compared only for cares. 
Interestingly, this allows to simplify functions with more 
wires faster, when the percent of don’t cares is high. We 
experimented with a randomly generated 2-input 3-output 
incompletely specified function 

TBAF ]1,0,2,3,1,3,1,2,3[),(0 = , 
TBAF ]2,0,2,3,3,2,3,2,1[),(1 = , and 
TBAF ]2,2,2,1,3,0,3,0,0[),(2 = , where a 3 represents a 

don’t care output. The resulting circuit is shown in Figure 13. 
In the figure, intermediate signal values are shown as maps to 
verify the correctness of the circuit. 
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Figure 13. Circuit realizing an incompletely  
specified function 

TBAF ]1,0,2,3,1,3,1,2,3[),(0 = , 
TBAF ]2,0,2,3,3,2,3,2,1[),(1 = , and 
TBAF ]2,2,2,1,3,0,3,0,0[),(2 = . 

   
VIII. EXPERIMENTAL RESULTS  

 



 

    

We have written C program to implement the proposed GA. 
We performed experimentation with some multi-output 
completely and incompletely specified ternary functions and 
the results are given in Table 2. Using the algorithm we were 
able to find better solutions to some known circuits and the 
program “discovered” new realizations of some known gates 
such as swap which had very inefficient realizations [5],[6],[8]. 
Synthesis of gates such as Toffoli and Swap is especially 
important because of the role that they play in other methods. 

 
For synthesis of generalized ternary Toffoli gate, we assumed 
that the controlling function of Figure 8 is kk AAAf L21= . 
This type of generalized ternary Toffoli gates are very useful 
for realization of GFSOP cascades. For synthesizing a 
generalized ternary Toffoli gate of this type, we first realize the 
controlling function kk AAAf L21=   as a cascade of GTG 
gates using our GA and then the controlled outputs are realized 
using ternary Feynman gates. To restore the primary inputs and 
the constant inputs mirror GTG gates are used. Here we use the 
same GA as discussed in Section VI, except that the controlling 
function kk AAAf L21=  is realized along any constant input 
wires. We experimented with a generalized ternary Toffoli gate 
with 2 controlling inputs and 2 controlled inputs. The resulting 
circuit is shown in Figure 14. In this figure, the left four 
columns generate the controlling function AB  along the 
constant input signal 2 and the right four columns are the 
mirror columns that restores the controlling inputs A and B and 
the constant input 2. Intermediate signal values are shown as 
maps to verify the correctness of the circuit. We synthesized 
ternary swap gate using cascade of GTG gates using our GA as 
discussed in Section 6, except  that no constant input is used 
and the outputs are restricted to their corresponding wires. The 
resultant circuit is shown in Fig. 15. 

  
IX.   CONCLUSIONS 

GTG gate was proposed in [8] without giving any synthesis 
algorithm. In this paper we prpose a GA for synthesizing both 
completely and incompletely specified ternary functions using 
cascade of GTG gates. Generalized ternary Toffoli gate and 
ternary swap gate were synthesized. The generalized ternary 
Toffoli gate realization proposed in [8] requires 10 GTG gates, 
whereas the realization of this paper requires 8 GTG gates. 
Similarly, previous best design of ternary swap gate had 4 
Feynman gates and one 1-qubit permutative gate. The new 
design has only 3 GTG gates and is very elegant, it has the 
same symmetry as the well-known design of Swap from 
Feynman gates in binary, so we can say that the GA has done 
certain “discovery”. Other circuits are realized using cascade of 
GTG gates for the first time and, therefore, cannot be compared 
with other results. 

 
X.   FUTURE WORK  

Future research is further improvement of the GA to a broader 
class of evolutionary algorithms (larger tournaments, restart 
with new parameters when stacked in local minimum, new 
crossover and mutation operators, local search [13], memetic 
algorithms). We will be also developing GA for synthesizing 
both completely and incompletely specified multi-output 
ternary function using cascade of both 2*2 GTG gates and 2*2 
ternary Feynman gates.  (Feynman gates are linear, although 
Feynman gate is a special case of GTG gate, it is treated in a 

special way as seen in rows 7,8 of Table 2). Similarly as in 
[13], we will add powerful local transformations of circuits 
based on ternary quantum identities, to decrease the cost of the 
synthesized cascades. In binary quantum the improvements of 
costs are sometimes as dramatic as 300% [13], which 
demonstrates that it is a good idea to combine evolutionary and 
algorithmic rule-based approaches into one working program 
for quantum circuits synthesis.  

 
       REFERENCES 

[1]       A. Muthukrishnan, and C. R. Stroud, Jr., “Multivalued 
logic gates for quantum computation”, Phys. Rev. A, 
Vol. 62, No. 5, Nov. 2000, 052309/1-8. 

[2] J. L. Brylinski and R. Brylinski, “Universal Quantum 
Gates”,  Math. of Quantum Comp., CRC Press, 2002, 
LANL e-print quant-ph/010862. 

[3] A. Al-Rabadi, “Novel Methods for Reversible Logic 
Synthesis and Their Application to Quantum 
Computing”, Ph. D. Thesis, PSU, Portland, Oregon, 
USA, October 24, 2002.  

[4] A. Al-Rabadi and M. Perkowski, “Multiple-Valued 
Galois Field S/D Trees for GFSOP Minimization and 
their Complexity”, Proc. 31st ISMVL, Warsaw, Poland, 
May 22-24, 2001, pp. 159-166. 

[5] M.H.A. Khan, M.A. Perkowski, and P. Kerntopf, 
“Multi-Output Galois Field Sum of Products Synthesis 
with New Quantum Cascades”, Proc. 33rd ISMVL, 
Tokyo, May 16-19, 2003, pp. 146-153 

[6] M.H.A. Khan, M.A. Perkowski, M.R. Khan, and P. 
Kerntopf, “Ternary GFSOP Minimization using 
Kronecker Decision Diagrams and Their Synthesis with 
Quantum Cascades”, Submitted to J. Multiple-Valued 
Logic and Soft Computing. 

[7] A. De Vos, B. Raa, and L. Storme, “Generating the 
group of reversible logic gates”, J. Physics A: 
Mathematical and General, Vol. 35, 2002, pp. 7063-
7078.  

[8] M. Perkowski, A. Al-Rabadi, and P. Kerntopf, 
“Multiple-Valued Quantum Logic Synthesis”, Proc. of 
2002 Int. Symposium on New Paradigm VLSI 
Computing, pp. 41-47. Sendai, Japan, December 12-14, 
2002 

[9]  Nielsen and I. Chuang, Quantum Computation and 
Quantum Information, Cambridge University Press, 
2000. 

[10] M. Hirvensalo, “Quantum Computing,” Springer 
Verlag, 2001. 

[11]  D. E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison Wesley, 
1989. 

[12] P. Mazumder and E.M. Rudnick, Genetic Algorithms 
for VLSI Design, Layout & Test Automation, Pearson 
Education Asia, 2002. 

[13] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C.H. 
Yu, K. Chung, H. Jee, B-G. Kim, and Y-D. Kim, 
“Evolutionary approach to Quantum and Reversible 
Circuits synthesis”, Artificial Intelligence Review, 20, 
pp 361-417, 2003. Kluwer Academic Publishers. 

[14] Y. Z. Ge, L. T. Watson, and E. G. Collins, “Genetic 
algorithms for optimization on a quantum computer,”  
In Unconventional Models of Computation, pp. 218-
227. Springer Verlag, London, 1998.  

[15] C.W. Williams, A.G. Gray, "Automated Design of 
Quantum Circuits", ETC Quantum Computing and 
Quantum Communication, QCQC '98, Palm Springs, 
California, February 17-20, Springer-Verlag, pp. 113-
125, 1999. 



 

    

[16]  C.P. Williams, and S.H. Clearwater, "Explorations in 
Quantum Computing", Springer-Verlag,  New York 
Inc. (1998)  

[17] T. Yabuki and H. Iba. “Genetic algorithms and 
quantum circuit design, evolving a simpler teleportation 
circuit,”  In Late Breaking Papers at the 2000 Genetic 
and Evolutionary Computation Conference, pp. 421-
425, 2000. 

[18] L. Spector, H. Barnum, H.J. Bernstein, and N.Swamy, 
“Finding a better-than-classical quantum AND/OR 

algorithm using genetic programming,” Proc. 1999 
Congress on Evolutionary Computation, Vol. 3, pp. 
2239-2246, Washington DC, 6-9 July 1999, IEEE, 
Piscataway, NJ. 

[19] K-H Han, J-H Kim, Quantum-inspired evolutionary 
algorithm for a class of combinatorial optimization, 
IEEE Trans. Evolutionary Computation, 6 (6): pp. 580-
593, 2002. 

 

 
Table 2. Number of GTG gates, scratchpad width, and number of additional Feynman gates required for realizing some multi-output 

ternary functions. 
 
Function In Out No. of GTG 

gates 
Scratchpad 

width 
No. of additional 
Feynman gates 

thadd (ternary half-adder): 
]3/)int[(),( BABAC += , 3mod)(),( BABAS +=  

2 2 5 3 0 

mul2: ]3/int[),( ABBAC = , 3mod),( ABBAM =  2 2 8 4 0 

sum2: 3mod)(),( BABAF +=  2 1 2 3 0 

sum3: 3mod)(),,( CBACBAF ++=  3 1 2 3 0 

sqsum2: 3mod)(),( 22 BABAF +=  2 1 2 3 0 

avg2: 3mod]2/)int[(),( BABAF +=  2 1 3 3 0 

gttg22 (generalized ternary Toffoli gate): AP = , BQ = , 

CABR += , DABS +=  

4 4 8 5 2 

gttg33 (generalized ternary Toffoli) gate: AP = , BQ = , 

CR = , DABCS += , EABCT += , 
FABCU +=  

6 6 30 8 3 

tsg (ternary swap gate): BP = , AQ =  2 2 3 2 0 

Randomly generated incompletely specified function: 
TBAF ]1,0,2,3,1,3,1,2,3[),(0 = , 

TBAF ]2,0,2,3,3,2,3,2,1[),(1 = ,  
TBAF ]2,2,2,1,3,0,3,0,0[),(2 =  

2 3 5 3 0 
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Fig.15. Realization of Ternary Swap gate 
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