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Abstract 
 

This report provides an idea of a tool for computer aided designing of quantum 
cascades, preceded by a step-by-step introduction to quantum computing addressed to 
interdisciplinary students and researchers. Quantum computers, when one day appear, 
will be able to teleportate information, break secret codes, generate true random 
numbers, and warn when a message is eavesdropped. Also artificial brain builders must 
not remain blind to the development of the field of quantum computation. Having to 
put all necessary computational stuff into robot’s head we will supposedly have to 
employ as many primitive operations as really necessary with possibly low energy 
dissipation. Reversible circuits dissipate much less energy than the classic ones, while 
every quantum cascade is reversible. The world of quantum phenomena is also 
explored in hope to solve the mystery of conscious mind and free will. In order to make 
readers easily acquire the essence of quantum computation, the presentation is free of 
distracting quantum-mechanical nomenclature, while any time a new concept is 
introduced, the full calculation way is provided. Final remarks include a tip how to use 
the NeuroMaze paradigm to build models of quantum cascades to be run on the ATR’s 
CAM-Brain Machine (CBM).  
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1. Introduction 

This report provides brief idea of the Quantrix—a tool for computer aided designing of 

quantum cascades—preceded by a step-by-step introduction to quantum computing 

addressed to interdisciplinary students and researchers. Quantum computation is 

discussed here without reference to quantum mechanics, so the way of presentation 

does not require prior knowledge of advanced mathematics. It can be said, that this 

report is a kind of guidelines for programmers who would like to develop the Quantrix. 

This topic is explored in the framework of the Quantrix Project, launched as one of four 

themes constituting the Artificial Brain Project conducted at the ATR Human 

Information Science Laboratories, Kyoto (Buller & Shimohara 2003) in cooperation 

with the Portland Quantum Logic Group.  

Quantum computing, as Williams and Clearwater (1998:xii) noted is currently 

one of the hottest topics in computer science, physics and engineering. The authors 

wrote: Quantum phenomena have no classical analogues. They can be potentially 

employed to do certain computational tasks much more efficiently tan can be done by 

any classical computer. Hence, a quantum computer, when one day built, will be able 

to perform such tasks as teleporting information, breaking supposedly unbreakable 

codes, generating true random numbers, and communicating with messages that betray 

the presence of eavesdropping.  

Artificial brain builders must not remain blind to the development of the field of 

quantum computation. The first reason is that, one day, we will want to put all 

necessary computational stuff into the head of an intelligent robot. So, we will 

supposedly have to employ as many primitive operations as really necessary. This idea 

contradicts the currently dominating computational paradigm based on a processor, 

RAM, operation system and libraries of standard software. Moreover, the 

computational technology that got matured by the end of 20th century produces heat, 

which blocks the way toward 3-dimensional chips. Quantum computing is reversible, 

which implies a dramatic reduction of energy dissipation (cf. Bennett 1973). The 

second reason is the quest for machine consciousness. Although the mainstream of 

politically correct science insist that either the consciousness does not exist at all or it is 

nothing but a processing of traditional data, there are scientists who explore the world 

of quantum phenomena in search for an explanation of the mystery of conscious mind 

and free will (Penrose 1991; Stapp 1993; Ecless 1994).   
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In order to not to remain unprepared for possible appearance of 

reversible/quantum hardware (to be used in a way completely different that our good 

old microprocessors or even FPGAs), artificial brain builders should observe the 

progress in quantum research and sometimes try to describe mental mechanisms in 

terms of quantum cascades. No degree in physics is necessary to do this. In this case 

there is no point to try to contribute to construction of first useful quantum chip. The 

point is to get understand the difference between classic computing and quantum 

computing. When the Quantrix appears, people will be able to gain appropriate 

knowledge just playing with it. This report shows that the math necessary to understand 

the essentials of quantum computation is much below the academic level. For readers’ 

convenience, any time a new concept is introduced, the full way of calculation is 

provided, which additionally reminds reader the meaning of related symbols.  

 
 
 
 
 
 
2. Qubit 
 
Although quantum computation may deal with multiple-state units of information, this 

report discusses only operations on two-level units called qubits.  A qubit (quantum bit) 

is an entity whose state is defined by an ordered pair of complex numbers that meet 

certain constraint provided below together with an explanation what does it mean 

‘complex number’.  

Let such a pair be denoted as a one-column two-element matrix          .  

 

Any matrix          is a qubit if and only if 

        

(i) α0 = p0 + q0i, α1 = p1 + q1i, where p0, q0, p0, q0 are real numbers, while i is so 
called imaginary unit such that i2 = -1, 

(ii)  p0
2 + q0

2 + p1
2 + q1

2 = 1. 
 

As it can be seen, both α0  and α1 contain a “real” element (represented by a real 

number) and an “imaginary” element (represented by a product of a real number and 

the imaginary unit i). A complex number is just a number having both real and 

imaginary element. 

α0

α1 

α0 
α1  

Important note: the value 0.71 used in some formulas 
represents 1 divided by the square root of 2.
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When p0 = 1, q0 = 0, p1 = 0, q1 = 0, the state of the qubit is an equivalent of 

Boolean “0” and can be denoted |0〉.  When p0 = 0, q0 = 0, p1 = 1, q1 = 0, the state of the 

qubit is an equivalent of Boolean “1” and can be denoted |1〉. Qubit states |0〉 and |1〉 are 

called pure states. When a qubit state has given arbitrary values of p0, q0, p1, q1, we can 

consider it as a superposition of both pure states weighted by the complex values p0 + 

q0i, p1 + q1i. The complex values are called here amplitudes. 

 

3. Unary quantum gates 
Every one-input-one-output quantum gate, called unary gate, is a device that changes 

the state of a given qubit. The new state comes form multiplying a 2 × 2 transition 

matrix by the matrix defining the old state. The elements of the transition matrix are 

complex numbers. In other words: 

 

If           and           are the old and new value of a given qubit, respectively, and 

 

defines a gate converting          into         , then                                                            . 

 

If the qubit is processed by a gate defined as              and, then (immediately) by the  

 

gate defined as               then the resulting state will be       

                                                                

 

 

 

 

 

 

3.1. Unary I-gate 

The unary I-gate, called identity gate, does not change a qubit state. In schemes it is 

represented as a horizontal “wire”. The only reason of introducing it is that its transition 

matrix I2 =               is useful for calculating matrices defining more complex structures. 

 

ω0 
ω1   

α0 
α1 

a    b
c    d

α0 
α1 

ω0

ω1   

ω0

ω1   

α0

α1    

a    b
c    d

aα0 + bα1  

cα0 + dα1  
==

a    b
c    d

e    f 
g    h 

e    f
g    h

a    b 
c    d 

α0 
α1 

= 

e    f 
g    h 

a    b 
c    d 

α0 
α1 = = 

ea + fc
ga + hc

α0

α1

eb + fd
gb + hd

1    0 
0    1 

Note #3.1: The transition matrix of a concatenation of two quantum gates is a 
product of the matrix defining the second gate and the matrix defining the first gate. 
Multiplying the first matrix by the second one would give wrong result. 
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3.2. NOT gate 

The NOT gate is represented in schemes as ⊕ threaded onto a horizontal wire 

(Figure 3.1).   

The transition matrix of the NOT gate is             . 

 

Hence, the NOT gate converts          into        .    

 

This means that for pure states of a qubit, the quantum NOT gate behaves as the classic 

Boolean function NOT (Figure 3.1).    

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
3.3. Hadamard gate 
 
The Hadamard gate is represented in schemata as a square with the letter ‘H’ inside. 

The square is threaded onto a horizontal wire (Figure 3.2).   

 

The transition matrix of the Hadamard gate is                              . Hence, the Hadamard  

 

gate converts         into                                                                                                       .    

 

 

When a qubit         is processed consecutively by two Hadamard gates, the resulting 

0   1
1   0

α0

α1

α1

α0

1 
0 

0   1
1   0

1
0 = 0⋅1 + 1⋅0

1⋅1 + 0⋅0
=

0
1 

0 
1 

0   1
1   0

0
1 = 0⋅0 + 1⋅1

1⋅0 + 0⋅1
=

1
0 

α0 
α1 

0   1
1   0

α0

α1
= 0⋅α0 + 1⋅α1

1⋅α0 + 0⋅α1
= α1 

α0 

Figure 3.1. NOT gate. (a) Conversion of the qubit |0〉, (b) Conversion 
of the qubit |1〉, (c) Conversion of an arbitrary qubit. 

a. 

b. 

c. 

0.71  0.71 
0.71 –0.71 

α0 
α1 

α0 
α1 

0.71α0 + 0.71α1

0.71α0 + (-0.71)α1

0.71  0.71 
0.71 –0.71 

α0

α1 
= =

 α0 + α1

 α0 − α1
0.71 
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value will be                  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
3.4. Square-Root-of-NOT gate 
 
The Square-Root-of-NOT gate is represented in schemata as a square with the letter ‘V’ 

inside. The square is threaded onto a horizontal wire (Figure 3.3).   

 

The transition matrix of the Square-Root-of-NOT gate is                                                .  

 

Hence, the Square-Root-of-NOT gate converts         into  

 

 

 

and           into  

 

0.71  0.71 
0.71 –0.71 

0.71(α0 + α1)
0.71(α0 − α1)

=

0.71⋅0.71(α0 + α1) + 0.71⋅0.71(α0 − α1)
0.71⋅0.71(α0 + α1) – 0.71⋅0.71(α0 − α1)

= = 0.5(α0 + α1 + α0 − α1) 
0.5(α0 + α1 – α0 + α1) 

= α0

α1

0.5 + 0.5i  0.5 – 0.5i 
0.5 – 0.5i  0.5 + 0.5i 

1
0 

0.5 + 0.5i  0.5 – 0.5i
0.5 – 0.5i  0.5 + 0.5i 

1 
0 = 0.5 + 0.5i 

0.5 – 0.5i 

0 
1 

0.5 + 0.5i  0.5 – 0.5i
0.5 – 0.5i  0.5 + 0.5i 

0 
1 = 0.5 - 0.5i

0.5 + 0.5i

Figure 3.2. Concatenation of two Hadamard gates. (a) Conversion 
of the qubit |0〉, (b) Conversion of the qubit |1〉, (c) Conversion of 
an arbitrary qubit. 

1 
0 

0.71
0.71

1
0 

0 
1 

0
1 

α0 
α1 

α0 
α1 

a. 

b. 

c. 

H H

H H

 0.71
–0.71

HH

 α0 + α1

α0 − α1
0.71



 

 7

Concatenation of two Square-Root-of-NOT gates is an equivalent of the NOT gate 

(Figure 3.3). 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
In order to make sure that the concatenation of two V-gates behaves as the quantum 

NOT gate, let us use recall the Note #3.1 and calculate: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
0 

0.5 + 0.5i
0.5 - 0.5i

1
0 

0 
1 

0
1 

α0 
α1 

α1 
α0 

Figure 3.3. Concatenation of two Square-Root-of-NOT gates. 
(a) Conversion of the qubit |0〉, (b) Conversion of the qubit |1〉, 
(c) Conversion of an arbitrary qubit. 

a. 

b. 

c. 

V V

V V

VV

0.5 - 0.5i
0.5 + 0.5i

α0 + α1 + (α0 – α1)i 
α0 + α1 – (α0 – α1)i 0.5

=
0.5 + 0.5i  0.5 – 0.5i 
0.5 – 0.5i  0.5 + 0.5i 

0.5 + 0.5i  0.5 – 0.5i
0.5 – 0.5i  0.5 + 0.5i 

=
1 + i  1 –i 
1 –i  1 + i 

1 + i  1 –i
1 –i  1 + i= 0.5 0.5 

(1 + i)(1 + i)+(1 - i)(1 - i)   (1 + i)(1 - i)+(1 - i)(1 + i) 
(1 - i)(1 + i)+(1 + i)(1 - i)   (1 - i)(1 - i)+(1 + i)(1 + i) = 0.25 

(1 + 2i + i2)+(1 - 2i + i2)          2(1 - i2) 
     2(1 - i2)           (1 + 2i + i2)+(1 - 2i + i2) = 0.25 =

= 

 1 +  i2 + 1 + i2      2 - 2i2      
     2 - 2i2      1 +  i2 + 1 + i2  = 0.25 = 

 1 + i2  1 - i2 
 1 - i2  1 + i2 = 0.5 

 1 + i2  1 - i2 
 1 - i2  1 + i2 = 0.5 = 

 1 + (-1)  1 - (-1) 
 1 - (-1)  1 + (-1) 0.5 =

0  2  
2  0  0.5 

 0  1  
 1  0  = 

i.e. just as for the NOT gate! 
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3.5. V  gate 
 
The “mirror” of Square-Root-of-NOT gate is represented in schemata as a square with 

the symbol ‘V ’ inside. The square is threaded onto a horizontal wire (Figure 3.4).   

 

The transition matrix of the V  gate is                                                .  

 

 

Hence, V  gate converts         into                        and         into                       .  

 

Concatenation of two V  gates is an equivalent of the NOT gate, while concatenation of 

one V gate and one V  gate returns the initial qubit state (Figure 3.4). 

 
 

 

 

 

 

3.6. Pauli gates 

The set of Pauli gates contains four gates defined by 2×2 matrices I, σX, σY, and σZ. 
 
 
 
 
As it can be noted, σX is identical with the NOT gate, while I is the unary identity gate 

introduced before. 

4. Two-qubit register 

A pair of qubits constitutes a 2-qubit register represented as an ordered quadruple of 

complex numbers such that the sum of the squares of the modules of the numbers is 

equal to 1. We well denote such a quadruple as a one-column four-element matrix 

calculated as Kronecker product of related qubits (Figure 4.1 and 4.2).  

 

 

Figure 3.4. Concatenation of one V gate and one V  gate 
returns the initial qubit state. 

α0 
α1 

α0 
α1 

VV 

α0 + α1 + (α0 – α1)i 
α0 + α1 – (α0 – α1)i 0.5

0.5 – 0.5i  0.5 + 0.5i
0.5 + 0.5i  0.5 – 0.5i 

1 
0 

0.5 – 0.5i 
0.5 + 0.5i 

0
1 

0.5 + 0.5i 
0.5 – 0.5i 

0  1 
1  0 

σX = 0  -i
i   0

σY = 1   0
0  -1

σZ = 1   0 
0   1 I = 
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A 2-qubit register, as well as any n-qubit register, can get into a state that is not 

decomposable into states of contributing qubits. In such a case we say that the state is 

an entangled state. An example of an entangled state is shown in Figure 4.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
0 

1 
0 ⊗ = 

1
0 
0 
0 

1
0 

0
1 ⊗ = 

0
1 
0 
0 

0 
1 

1 
0 ⊗ = 

0
0 
1 
0 

1
0 

0
1 ⊗ = 

0
0 
0 
1 

Figure 4.2. States of a 2-qubit register for pure states of contributing qubits. 

0.71 
0.00 
0.00 
0.71 

Task:  
Decompose 
the state of 
a 2-qubit register 

α0

α1

β0

β1
⊗ = 

i.e. find such α0, α1, β0, β1 that
0.71 
0.00 
0.00 
0.71 

Unfortunately, such 
α0, α1, β0, β1 do not exist, 
which means that the state 
we attempted to decompose 
is entangled. 

In other words  
find such α0, α1, β0, β1 

that 
α0β0  = 0.71
α0β1  = 0.00 

α1β0  = 0.00 
α1β1  = 0.71 

Figure 4.3. An example of an entangled state of a 2-qubit register 

Figure 4.1. Two qubits make a 2-qubit register (⊗ - Kronecker product) 

α0

α1

β0

β1
⊗ = 

α0 

  
α1 

α0

α1

β0

β1 

α0β0 
α0β1 

α1β0 
α1β1 

= 
β0

β1 

β0

β1 
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5. Two-qubit gates 

 Every two-input-two-output quantum gate (called by some authors ‘binary gate’ which 

seems to be a bit confusing) is a device that changes the state of a 2-qubit register. The 

new register state comes form multiplying a 4 × 4 transition matrix by the matrix 

defining the old state of the register. The elements of the transition matrix are complex 

numbers. In other words: 

 

If           and           are the old and new state of a 2-qubit register, respectively, 

 

 

 

and                         defines a gate converting          into         , 

 

 

 

then                                                                                                 .                                                                

 

 

5.1. Two-qubit I-gate 

The two-qubit I-gate, called identity gate, does not change a 2-qubit register state.  

 

The only reason of introducing it is that its transition matrix  I4 =               

 

is useful for calculating matrices defining more complex structures. 

 

 
5.2. CNOT (Feynman) Gate 

The CNOT (Controlled NOT) gate, called also the Feynman gate, applies to 2-qubit 

register, so in drawings it concerns two and only two wires. It is represented using a 

compound of three symbols: ⊕, •, and | that represent an inverter, a control and a 

connection, respectively (Figure 5.1). The qubit that is associated with the control is 

called control qubit. The qubit that is associated with the inverter is called target qubit.  

 

a b c d  
e f g h 
i j k l 
m n o p 

µ0 
µ1 

µ2 
µ3 

ν0 
ν1 

ν2 
ν3 

µ0

µ1 

µ2

µ3

ν0

ν1 

ν2 
ν3

ν0 
ν1 

ν2 
ν3 

µ0

µ1 

µ2

µ3

= 

a b c d  
e f g h 
i j k l 
m n o p 

=

aµ0 + bµ1 + cµ2 + dµ3

eµ0 + fµ1 + gµ2 + hµ3

iµ0 + jµ1 + kµ2 + lµ3

mµ0 + nµ1 + oµ2 + pµ3

1    0    0    0 
0    1    0    0 
0    0    1    0 
0    0    0    1 
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The transition matrix of the quantum CNOT gate is                         .  

 

 

Hence, the quantum CNOT gate converts          into  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the control qubit in the pure state |0〉 the target qubit remains unchanged (Figure 

5.2a). When the control qubit in the pure state |1〉, the target qubit is processed the same 

way as using the quantum NOT gate (Figure 5.2b).  

For both qubits in their pure states the quantum CNOT works the same way as 

the classic CNOT (Figure 5.3). It can be noted that if the target qubit is |0〉, the CNOT 

gate behaves as a fan-out element (cf. Figure 5.3, Case 1 and Case 2). Unfortunately, 

this “fan-out” will not work for arbitrary state of the target qubit (see Figures 5.4 and 

5.5).   

5.2. SWAP Gate 

The SWAP gate applies to 2-qubit register, so in drawings it concerns two and only two 

wires. It is represented using two copies of the symbol ×, and one copy of | that mark 

the states to be swapped and a connection, respectively (Figure 5.6). 

 

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

µ0

µ1 

µ2

µ3

µ0 
µ1 

µ3 
µ2 

= = 

1⋅µ0 + 0⋅µ1  + 0⋅µ2 + 0⋅µ3 
0⋅µ0 + 1⋅µ1 + 0⋅µ2 + 0⋅µ3 

0⋅µ0 + 0⋅µ1 + 0⋅µ2 + 1⋅µ3 

0⋅µ0 + 0⋅µ1 + 1⋅µ2 + 0⋅µ3 

µ0

µ1 

µ2

µ3

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

µ0

µ1 

µ2

µ3

µ0 
µ1 

µ3 
µ2 

=

Control qubit 

Target qubit 

2-qubit register 
initial state 

2-qubit register 
resulting state

Figure 5.1. Quantum CNOT (Feynman) gate 

µ0

µ1 

µ2

µ3
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β0 
β1 
0 
0 

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

=

1
0 

β0

β1

0
0 

β0

β1

β0

β1
0
0 

1
0 

β0 
β1 

0 
0 

β0 
β1 

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

=

0
1

β0

β1

0
0 

β1

β0

0
0 

β0

β1

0
1 

β1 
β0 

a. 

b. 

Figure 5.2. Quantum CNOT’s behavior for pure control states 

Case 1 

Case 3 Case 4 

Case 2 

0
1

1
0 

1
0 

1
0

1
0

1
0 

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1 

0
1

0
1

Figure 5.3. Quantum CNOT’s behavior for all pure states 

Figure 5.4. CNOT (Feynman) gate as a quantum “fan-out”. Unfortunately, 
such a “fan-out” works only if | y〉 is a pure state of the control qubit. 

| y〉

1
0

| y〉

| y〉
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The SWAP gate converts                       into                     . This means that the initial  
 
 
 
and resulting state of a related 2-qubit register are              ,                 , respectively.  
 
 
 

 
Such operation can be performed by matrix                            . 
 
 

 
 

 

 

 

 

 

 

 

 

 
 

α0β0 
α0β1 

α1β0 
α1β1 

1  0  0  0 
0  0  1  0 
0  1  0  0 
0  0  0  1 

α0 
α1 

β0

β1
⊗

α0

α1

β0

β1
⊗

β0α0 
β0α1 

β1α0 
β1α1 

α0 
α1 

β0

β1 

β0 
β1 

α0

α1
Figure 5.6. SWAP gate 

0.71 
0 

0.71 
0 

1 0 0 0  
0 1 0 0 
0 0 0 1 
0 0 1 0

=

1
0 

0.71 
0.71 

   

  
  

Entangled state

Figure 5.5. An attempt to fan-out a non-pure state of the control qubit resulted in 
an entangled state of the entire 2-qubit register. Indeed, when the register is in an 
entangled state, the states of contributing qubits must not be treated separately. 
One can make use of this astonishing property but this is beyond the scope of this 
report. 

0.71
0 
0 

0.71

0.71
0 

0.71
0    

Such separate sates 
can neither be computed
nor even considered
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5.3. Controlled-V gate 
 
The Controlled-V (CV) gate, applies to 2-qubit register, so in drawings it concerns two 

and only two wires. It is represented using a compound of three symbols: a square with 

the letter ‘V’ inside, •, and | that represent the Square-Root-of-NOT, a control and a 

connection, respectively (Figure 5.7a). The qubit that is associated with the control is 

called control qubit. The qubit that is associated with the Square-Root-of-NOT is called 

target qubit.  

The transition matrix of the CV gate is                                                       .  

 

5.4. Controlled-V  gate 

 
The Controlled-V (CV ) gate, applies to 2-qubit register, so in drawings it concerns two 

and only two wires. It is represented using a compound of three symbols: a square with 

the symbol ‘V ’ inside, •, and | that represent the “mirror” of Square-Root-of-NOT, a 

control and a connection, respectively (Figure 5.7b). The qubit that is associated with 

the control is called control qubit. The qubit that is associated with the Square-Root-of-

NOT is called target qubit.  

The transition matrix of the CV  gate is                                                       .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0
0

0.5 + 0.5i
0.5 − 0.5i

1  0
0  1
0  0
0  0

0 
0 

0.5 − 0.5 i 
0.5 + 0.5 i 

V 

α0β0 
α0β1 

α1β0 
α1β1 

α0

α1 

β0

β1

0
0

0.5 + 0.5i
0.5 − 0.5i

1  0
0  1
0  0
0  0

0 
0 

0.5 − 0.5i 
0.5 + 0.5i 

V

α0β0 
α0β1 

α1β0 
α1β1 

α0

α1

β0

β1 

0
0

0.5 − 0.5i
0.5 + 0.5i

1  0
0  1
0  0
0  0

0 
0 

0.5 + 0.5i 
0.5 − 0.5i 

Figure 5.7. Controlled Square-Root-of-NOT gates 

a. 

b. 

0
0

0.5 − 0.5i
0.5 + 0.5i

1  0
0  1
0  0
0  0

0 
0 

0.5 + 0.5 i 
0.5 − 0.5 i 
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5.5. Concatenations of binary quantum gates 

Let us consider the concatenation of two gates shown in Figure 5.8. 

 

 

 

 

 

 

 

It processes the state of a 2-qubit register as if it were a single gate defined using the 

matrix: 

 

 

where cij =   bi0a0j + bi1a1j + bi2a2j + bi3a3j. 
 

Let us consider the scheme shown in Figure 5.9. 

 

 

 

 

 

The concatenation of three binary quantum gates will behave as a gate defined by the 

matrix Fu = S2 (Fd S1) = 

 

 

 

 

 

 

 

 

What kind of register-state change is defined by matrix Fu? We could calculate four 

cases of register pure states, but let as use a trick. Let us draw the SWAP gates as they 

were true devices made of true wires (Figure 5.10a). When we now stretch the wires to 

Figure 5.9. Concatenation 
of three binary quantum gates 

S1 S2 Fd 

1  0  0  0
0  0  1  0
0  1  0  0
0  0  0  1

1  0  0  0
0  1  0  0
0  0  0  1
0  0  1  0

1  0  0  0
0  0  1  0
0  1  0  0
0  0  0  1

= = 

1  0  0  0
0  0  1  0
0  1  0  0
0  0  0  1

1  0  0  0
0  0  1  0
0  0  0  1
0  1  0  0

= = 

a00 a01 a02 a03 
a10 a11 a12 a13 
a20 a21 a22 a23  
a30 a31 a32 a33

b00 b01 b02 b03 
b10 b11 b12 b13  
b20 b21 b22 b23  
b30 b31 b32 b33

Figure 5.8. Concatenation of two binary quantum gates 
defined by 4×4 transition matrices. 

a00 a01 a02 a03 
a10 a11 a12 a13  
a20 a21 a22 a23  
a30 a31 a32 a33 

b00 b01 b02 b03 
b10 b11 b12 b13 
b20 b21 b22 b23  
b30 b31 b32 b33

c00 c01 c02 c03 
c10 c11 c12 c13  
c20 c21 c22 c23  
c30 c31 c32 c33 

=

1  0  0  0
0  0  0  1
0  0  1  0
0  1  0  0
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make them straight, the Feynman gate will flip vertically (5.10b). This way we obtained 

the transition matrix for flipped Feynman gate. 

 

 

 

 

 

 

5.6. Joint unary gates 
 
A two-input two-output gate can be composed of two parallel unary gates.  

If the upper unary gate is defined by the matrix G0 =  

and the lower unary gate is defined by the matrix G1 = 

then the transition matrix of the pair of the gates is the Kronecker product of G0 and G1, 

i.e. 

 

 

 

 
 

As the first example let us calculate the transition matrix of a “wire” put in parallel with 

the NOT gate (Figure 5.11).   

Since the matrix for “wire” is I2 =                ,  

While the matrix for the NOT gate is N = 

then the joint transition matrix of the pair “wire” || NOT of the gates is the Kronecker 

product of I2 and N, i.e. 

 

 

 

 

 

 

a0   b0 
c0   d0 

a1   b1 
c1   d1 

a0   b0 
c0   d0 

a1   b1 
c1   d1 

⊗ = 

a0                   b0 

 
 
c0                   d0 

a1   b1 
c1   d1 

a1   b1 
c1   d1 

a1   b1 
c1   d1 

a1   b1 
c1   d1 

=

a0a1   a0b1   b0a1   b0b1 

a0c1   a0d1   b0c1   a0d1 

c0a1   c0b1   d0a1   d0b1 

c0c1   c0d1   d0c1   d0d1

G = 

Figure 5.10. Flipped Feynman gate as a concatenation of “non-flipped” 
Feynman gate with two SWAP gates (the “wires” are only a metaphor). 

a. b. 

1   0 
0   1 

0   1 
1   0 

1   0 
0   1 

0   1 
1   0 ⊗ = 

1                   0 

 
 
0                   1 

0   1 
1   0 

0   1 
1   0 

0   1 
1   0 

0   1 
1   0 

=

0    1    0    0 

1    0    0    0 

0    0    0    1 

0    0    1    0 
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As another example let us take two parallel Hadamard gates (Figure 5.12). Their joint 

behavior can be described in terms of a single two-input two-output gate with the 

transition matrix calculated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

6. Three-qubit register 

A triple of qubits constitutes a 3-qubit register represented as a one-column eight-

element matrix of complex numbers such that the sum of the squares of the modules of 

the numbers is equal to 1. The matrix calculated as Kronecker product of related qubits 

(Figure 6.1).  
 

0.71   0.71 
0.71  -0.71 ⊗ = 

1 
1 
1 
1 

1 
–1 
1 
–1 

1 
1 
–1 
–1 

1 
–1
–1
1

1 
2 =

0.71   0.71 
0.71  -0.71 

0.71    0.71 
 
 
0.71                     -0.71 

0.71   0.71 
0.71  -0.71

0.71   0.71 
0.71  -0.71

0.71   0.71 
0.71  -0.71

0.71   0.71 
0.71  -0.71

=

1
0 

0.71 
0.71 H

H

0.71 
0 

0.71 
0 

0.71
0 

0.71
0

1 
1
1
1

1 
–1
1
–1

1 
1
–1
–1

1 
–1
–1
1

1
2

0.71 
0.71 

0 
0

1
0 

0.71 
0.71 

 

Figure 5.12. An example of behavior of two parallel Hadamard gates.  

0    1    0    0 

1    0    0    0 

0    0    0    1 

0    0    1    0

≡

Figure 5.11. NOT gate coupled in parallel with a „wire”. 
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7. Three-input-three-output quantum gates (three-qubit gates) 

Every three-input-three-output quantum gate is a device that changes the state of a 3- 

qubit register. The new register state comes form multiplying an 8 × 8 transition matrix 

by the matrix defining the old state of the register. In other words:  

 

 

 

If           and           are the old and new state of a 3-qubit register, respectively, and 

 

 

 

 

 

                                                                      defines a gate converting          into         , 

 

 

 

 

then                                                                                                                       .                                           

 

 

a00 a01 a02 a03 a04 a05 a06 a07 
a10 a11 a12 a13 a14 a15 a16 a17 
a20 a21 a22 a23 a24 a25 a26 a27 
a30 a31 a32 a33 a34 a35 a36 a37 
a40 a41 a42 a43 a44 a45 a46 a47 
a50 a51 a52 a53 a54 a55 a56 a57 
a60 a61 a62 a63 a64 a65 a66 a67 
a70 a71 a72 a73 a74 a75 a76 a77

µ0 
µ1 

µ2 
µ3 

µ4 
µ5 

µ6 
µ7 

ν0 
ν1 

ν2 
ν3 

ν4 
ν5 

ν6 
ν7 

µ0 
µ1 

µ2 
µ3 

µ4 
µ5 

µ6 
µ7 

ν0 
ν1 

ν2 
ν3 

ν4 
ν5 

ν6 
ν7 

ν0 
ν1 

  
ν7 

µ0

µ1 

  
µ7 

= =

a00µ0 + a01µ1 +     + a07µ3 
a10µ0 + a11µ1 +     + a17µ3 
  
a70µ0 + a71µ1 +     + a77µ3 

a00 a01    a07 
a10 a11    a17 
           
a70 a71    a77

Figure 6.1. Three qubits constituting a 3-qubit register 
(⊗ - symbol of Kronecker product) 

= 

α0β0

α0β1 

α1β0

α1β1 

α0 
α1 

β0 
β1 

γ0 
γ1 

α0 
α1 

β0

β1
⊗ ⊗

γ0

γ1
⊗

γ0

γ1
= 

α0β0γ0 

α0β0γ1 
α0β1γ0 

α0β1γ1 

α1β0γ0 

α1β0γ1 
α1β1γ0 

α1β1γ1 
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7.1. Concatenation of 3-input 3-output quantum gates 

Let us consider the concatenation of two gates shown in Figure 7.1. 

 

 

 

 

 

 

It processes the state of a 3-qubit register as if it were a single gate defined using the 

matrix: 

 

 

where cij =   bi0a0j + bi1a1j + bi2a2j + bi3a3j + … + bi7a7j. 
 

7.2. WCI (Wire||Control||Inverter) gate 

Let us consider the  Feynman-based 3-input 3-output gate shown in Figure 7.2. The 

transition matrix Fwci is calculated as Kronecker product of I2 and Fci. Hence, 
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FWCI = 

Figure 7.1. Concatenation of two 3-input 3-output quantum gates  

a00 a01     a07 
a10 a11     a17 
            
a70 a71     a77 

b00 b01     b07
b10 b11     b17
            
b70 b71    b77

c00 c01     c07 
c10 c11     c17 
            
c70 c71     c77 

=

a00 a01     a07
a10 a11     a17
            
a70 a71     a77

b00 b01     b07 
b10 b11     b17 
            
b70 b71    b77 
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µ1 
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µ3 
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µ6 
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0
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µ0 
µ1 

µ2 
µ3 

µ4 
µ5 

µ6 
µ7 

Figure 7.2. Feynman-based 3-input 3-output WCI (Wire-Control-Inverter) gate 
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7.3. CIW (Control||Inverter||Wire) gate 

Another Feynman-based 3-input 3-output gate is shown in Figure 7.3. The transition 

matrix FCIW is calculated as Kronecker product of FCI and I2. Hence, 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
7.4. XXI (SWAP||Wire) gate 

A SWAP-based 3-input 3-output gate is shown in Figure 7.4. The transition matrix S′ is 

calculated as Kronecker product of S and I2. Hence, 
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Figure 7.3. Feynman-based 3-input 3-output CIW (Control-Inverter-Wire) gate 
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7.5. WCV (Wire||Control||Square-Root-of-NOT) gate 

Let us consider the Square-Root-of-NOT-based 3-input 3-output gate shown in 

Figure 7.5. The transition matrix FWCV is calculated as Kronecker product of I2 and 

FCV. Hence, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 

 
 

Figure 7.5. V-gate-based 3-input 3-output WCV (Wire-Control-V) gate 
(p = 0.5+0.5i, q = 0.5-0.5i) 

µ0 
µ1 

µ2 
µ3 

µ4 
µ5 

µ6 
µ7 

1  0  0  0  0  0  0  0 
0  1  0  0  0  0  0  0
0  0  p  q  0  0  0  0
0  0  q  p  0  0  0  0
0  0  0  0  1  0  0  0 
0  0  0  0  0  1  0  0
0  0  0  0  0  0  p  q 
0  0  0  0  0  0  q  p

µ0 
µ1 

µ2 
µ3 

µ4 
µ5 

µ6 
µ7 

V 

1   0 
0   1 ⊗ = 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
p 
q 

0 
0 
q 
p 

=

1 
0
0
0

0 
1
0
0

0 
0
p
q

0 
0
q
p

1

1 
0
0
0

0 
1
0
0

0 
0
p
q

0 
0
q
p

0

1 
0
0
0

0 
1
0
0

0 
0
p
q

0 
0
q
p

0

1 
0
0
0

0 
1
0
0

0 
0
p
q

0 
0
q
p

1

1 
0
0
0
0 
0
0
0

0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
p 
q 
0 
0 
0 
0 

0 
0 
q 
p 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
p 
q 

0 
0
0
0
0 
0
q
p

FWCI = 

where: 
p = 0.5+0.5i 
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Figure 7.4. SWAP-based 3-input 3-output S′ gate 
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7.6. WCV  (Wire||Control||Square-Root-of-NOT ) gate 

Let us consider the Square-Root-of-NOT -based 3-input 3-output gate shown in 

Figure 7.6. The transition matrix FWCV+ is calculated as Kronecker product of I2 and 

FCV+. Hence, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

7.7. CWV (Wire||Control||Square-Root-of-NOT) gate 

Let us consider the Square-Root-of-NOT-based 3-input 3-output gate shown in 

Figure 7.7. The transition matrix FCWV is calculated as a product S′FCVS′.  
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I2 

Figure 7.6. V -gate-based 3-input 3-output WCV  (Wire-Control-V ) gate 
(p = 0.5+0.5i, q = 0.5-0.5i) 
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7.8. C2NOT (Toffoli) Gate 

The C2NOT gate, called also Toffoli gate, applies to 3-qubit register, so in drawings it 

concerns three and only three wires. It is represented using a compound of four graphic 

elements: ⊕, two copies of •, and | that represent an inverter, two controls and a 

connection, respectively (Figure 3.13). The qubits that is associated with the controls 

are called control qubist. The qubit that is associated with the inverter is called target 

qubit.  

 
 

Figure 7.7. V-gate-based 3-input 3-output CWV (Control-Wire -V) gate 
(p = 0.5+0.5i, q = 0.5-0.5i) 
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The transition matrix of the quantum C2NOT gate is TCCI  =                                       .  
 

 

 
 
Let us check the Toffoli gate’s behavior for four cases with pure initial states: 
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Figure 7.8. Toffoli gate 
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The summary of the checking is shown in Figure 7.9. As it can be seen, for a 3-qubit 

register in its pure states when the third qubit is in constant state |0〉, the Tofoli gate 

may be used as the classic AND gate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Quantum cascades 
 

Unlike some sorts of binary (2-input 2-output) gates, a physical implementation 

of any 3-qubit gates as a compact device is an open question and even no convincing 

ideas has been reported in the matter. Hence, one of directions of quantum computing 

development is search for methods of automated synthesis of n-qubit gates (for n>2) 

based on a limited set of simple 1-qubit or 2-qubut gates. Figure 8.1 shows a cascade 

being an equivalent of a Toffoli gate. 
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Figure 7.9. For pure states of a 3-qubit register, the Toffoli gate 
may be used as a classic AND gate. 
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Figure 8.1. Toffoli gate as a cascade of simple quantum gates  
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The equivalence can be checked via multiplying matrices defining the binary-gate-

based 3-input 3-output gates (Figure 8.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. Quantum cascade synthesis 
 
The Quantrix is a software tool for computer aided design of quantum cascades. In this 

chapter the first outline of interfacing is provided. The key concepts are the Worksheet 

and the Matrix. The Worksheet is a grid of N horizontal lines and M vertical lines. The 

user can drag a desired 1-qubit gate and drop it in any node of the grid (Figure 9.1). A    

relevant Matrix appears immediately and changes any time a next function is dragged 

and dropped (Figure 9.3). In order to make the interface user friendly elements of the 

Matrix are represented as colored squares according to a user defined mapping. A 

recommended mapping is shown in Figure 9.2. The user can also create a Matrix for 

unknown cascade and the Quantrix will employ a search method to provide a cascade 

represented by the Matrix (Figure 9.4). The search is scientific challenge. The Portland 

Quantum Logic Group reports some promising results in evolving quantum cascades 

(Lucas  & Perkowski 2002; Lukas et al. 2002).   
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Figure 8.2. Proof of correctness of the cascade substituting the Toffoli gate. 
The matrices FWCV, FWCV+, FCIW and FCWV  were introduced in Chapter 7. 

Matrix defining the Toffoli  gate 
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Figure 9.1. Quantum Works session. Step 1 amd 2. 
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Step 3. Drag and drop a control 

Effect: The connection appears and the matrix changes 

Figure 9.3. Quantum Works session. Step 3 amd 4. 
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Figure 9.4. Quantum Works session. Automated cascade synthesis 
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10. Final remarks 
 
This report was intended to make an interdisciplinary reader understand the essence of 

quantum computing. Hence, several quantum-mechanics-related concepts as Hilbert 

space, orthonormal bases, spin, Schrödinger equation, etc. were not introduced to not to 

obstruct the process of knowledge acquisition. It is believed that a reader who has 

elementary background in programming can now write a simple program for 

processing states of a 3-qubit register and easily scale it toward operations on four or 

more qubits.  

A challenging task would be to employ the NeuroMaze paradigm (see Liu 2002 

www.his.atr.co.jp/ecm/n_maze ) to building models of quantum cascades to be run on 

the ATR’s CAM-Brain Machine (CBM). The suggested approach assumes that a given 

24×24×24-cell module would be provided with  spiketrains representing a 3- or 4-qubit 

register and return spiketrains representing a single element of a vector of a resulting 

entangled state. This means that only a single row of a matrix defining a quantum gate 

would have to be encoded in the module’s structure. For, say, 3-qubit register the 

module’s task would be to take get a vector of 8 complex number, multiply each of the 

number by an appropriate element of the row, and return a representation of the sum of 

the products.   

The book by Mika Hirvensalo (2001) contains the generalized and formalized 

description of principles of quantum computation, as well as the most impressive 

quantum algorithms including Grover’s Search Algorithm and Shor’s Algorithm for 

Factoring Numbers. The book by Collin P. Williams and Scott H. Clearwater (1998) 

provides an introduction to quantum computing focusing on quantum mechanics 

underlying the operations on qubit registers. More about the properties of reversible 

circuits can be found in (Shende et al. 2002) or (Buller 2003).  
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