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 Abstract 
 
It is believed that quantum computing will begin to 
have an impact around year 2010. Much work is 
done on physical realization and synthesis of 
quantum circuits, but nothing so far on the problem 
of generating tests and localization of faults  for 
such circuits. Even fault models for quantum 
circuits have been not formulated yet. We propose 
an approach to test generation for a wide category 
of fault models of single and multiple faults. It  uses 
deterministic and probabilistic tests to detect faults. 
A Fault Table is created that includes probabilistic 
information. If possible, deterministic tests are first 
selected, while covering faults with tests, in order 
to shorten the total length of the test sequence. The 
method is applicable to both binary and ternary 
quantum circuits. The system generates test 
sequences and  adaptive trees for fault localization 
for small binary and ternary quantum circuits. 
 
1. Introduction 
 
Quantum computers will reach a lower limit as to 
how much heat the computing device can generate. 
They will be super-fast and super-small in size. 
Quantum logic gate [1,3,4,5,6,7,9,10,11,13,17,18] 
is a device which performs an operation described 
by a unitary matrix on selected qubits (quantum 
bits, [11]). Binary quantum gates process qubits 
which can have either a |0> or |1> or both |0> and 
|1> at the same time to varying extents and hence 
exhibit a superposition state α|0>+|β> where |α|2 + 
|β|2 = 1,  α and β are complex numbers such that 
measurement probability of |0> is  |α|2 and 
measurement probability of |1> is  |β|2. |X|2 is a 

result of multiplication of complex number X and 
its conjugate. When the qubit state is observed or 
measured, it becomes invariably either |0> or |1>. 
Ternary quantum gates [2,3,7,10] process qutrits 
which can be pure state |0>, |1> or |2> or any 
combination of |0>, [1> and |2>, a superposition 
state α|0> + |β> + |γ> where |α|2 + |β|2 + |γ|2 = 1,  α, 
β and  γ are complex numbers such that 
measurement probability of |0> is  |α|2, 

measurement probability of |1> is  |β|2 and 
measurement probability of |2> is |γ|2, [10,11]. 
When the qubit state is observed or measured, it 
becomes either |0>,  |1> or |2>. Quantum gates and 
circuits exhibit the additional property of 
reversibility as their mechanism of action is 
through Schrödinger’s evolution (which is 
reversible by virtue of being unitary). Thus, 
methods developed for permutative (reversible) 
circuits [12,15] are helpful for quantum circuits as 
well. Matrices of all quantum operations are 
unitary (and usually have complex numbers as 
entries). Matrix X is unitary when X * X+ = I, 
where I is an identity matrix and X+ is a hermitian 
matrix of X. Hermitian matrix of X is conjugate 
transpose matrix of X. Permutative circuits have 
only pure states and their matrices are permutative 
[11]. 
 
The Test Generation Problem is to find a sequence 
of input vectors (tests) that applied to the circuit 
will either confirm that the circuit is correct or will 
determine that it has one or more faults from 
certain library of faults. When only a single fault in 
a circuit is assumed, we use a single-fault model 
[8]. Here we are concerned with a multiple-fault 
model, where there may be more than one fault in 
the circuit. The reversibility property notably 



simplifies the problem of testing reversible circuits 
compared to irreversible circuits [12]. The basic 
quantum gates that are used in  quantum circuits in 
this paper are Toffoli, Feynman, CV (controlled 
square root of NOT) and CV+ (controlled square 
root of NOT Hermitian gate). These gates are 
selected for explanation only, since they are truly 
quantum and allow to create all permutative binary 
quantum gates. However, the test generation and 
fault localization methods [8,15] outlined here are 
for arbitrary  (binary or ternary) quantum gates and 
for broad fault models (including stuck-at pure 
states, stuck-at superposition states, bridging-AND, 
bridging-OR, shift of value, phase shift, gate 
change and many others). 
 
The paper is organized as follows. Section 2 
presents the quantum gates that will be used in 
circuits for which we will generate tests. Section 3 
discusses fault models. Section 4 presents testing 
of reversible and quantum circuits. Section 5 
discusses generalization to ternary reversible and 
quantum circuits. Section 6 discusses generating 
complete test sets and localizing faults and section 
7 concludes the paper. Although we tried to make 
the paper self-contained, the reader interested in 
more details may need to consult basic textbooks 
about test generation and fault localization (at least 
[8]) and quantum textbooks like [11], as well as 
paper [15]. 
 
2. Quantum Gates and Their Unitary 
Matrices. 
 
Toffoli Gate. 
Toffoli gate (C2NOT) [11,16] is a 3-qubit universal 
permutative gate that has the most central role in 
quantum computing. As the alternative name 
implies, this gate only negates the third qubit if the 
first two qubits are in the |1> state. One use of this 
gate is as a reversible AND gate: when the third 
qubit is set to |0>, it is only flipped to |1> if both 
the first and the second inputs are true. Likewise, 
by setting the third qubit to |1>, we get NOT-AND 
(NAND) functionality (Figure 1a).  
The unitary operation matrix of this gate is shown 
in Figure 2a. As we see, it is a permutation matrix; 
in every row and column there is only one “1” and 
all other entries are “0”, meaning a permutation of 
states.  
 
Feynman Gate. 
Feynman gate (CNOT) gate takes two qubits as 
input, |x> and |y>. The result is the |x> qubit and an 
XOR of |x> and |y>. If the value of |x> is 0, the 

value of |y> remains the same, else the value of  
|y> is flipped to it’s opposite (see Figure 1b). The 
unitary operation matrix of Feynman is also 
permutative (Figure 2b). 
 
Square Root of NOT Gate 
Connecting two “square root of NOT” gates in 
series acts as a NOT gate inverting a qubit (that is, 
the probabilities that the qubit will collapse to pure 
state |1> is changed to the probability that that the 
qubit will collapse to |0>, [1]). If one measures the 
qubit after only one “square root of NOT” gate, the 
result of the measurement is unknown.  
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               Figure 1  ( a) Toffoli gate, (b)  Feynman gate  
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There is however an equal probability of measuring 
a |0> and a |1>. By V we denote the “square root of 
NOT” gate. The unitary operation matrix  UV of V 

Figure 2. (a) Unitary matrix of Toffoli gate, (b) unitary 
matrix of Feynman gate, (c) unitary matrix of Square-root-
of-Not gate, (d) unitary matrix of Square-root-of-Not-
Hermitian gate, (e) calculation of result on output of 
Square-root-of-Not gate when its input is in pure state |0> 



gate is shown in Figure 2c. As we see, this is not a 
permutative gate, but a truly quantum gate. It 
means, applied to pure states it creates 
superposition states on its output (Figure 2e). 
 
Square Root of Not Hermitian Gate  
The conjugated transpose of a unitary matrix X is 
called the hermitian of matrix X and denoted by X+. 
By V+ we denote a gate that has a unitary matrix 
which is a hermitian of V.  Therefore, the hermitian 

of V is called “square root of NOT hermitian” and 
has the unitary matrix UV+ of gate V+ from Figure 
2d. 
 
Operation of V and V+ Gates. 
Design of many permutative gates is based on 
(controlled) cascading of V and V+ gates. 
Cascading two square root of NOT gates acts as a 
basic inverted gate (see Figures 3 and 4a).
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The operation of the circuit from Figure 4a can 
be explained by the matrix equations from 
Figure 3. Multiplying the unitary matrix UV by 
the input state we obtain the vector ½ [1+i  1-i]T 

= V0, Figure 2e. By multiplying V by this vector 
we obtain vector [0 1]T = |1>.  
 
Let us now try to find, by matrix/vector 
multiplication, all possible states that can be 
created by applying all possible serial 
combinations of gates V and V+ to states |0> , 
|1> and all states created from these pure states 
(Figure 5).  A qubit |0> given to a “square root of 
NOT” gate (Figures 2e and  5a) gives a state 

denoted by |V0>. After measurement this state 
gives |0> and |1> with equal probabilities ½.   
Similarly all other possible cases are calculated 
in Figure 5b – h.  
 
As we see, after obtaining states |0>, |1> |V0> 
and |V1> the system is closed and no more states 
are generated. Therefore the subset of (complex, 
continuous) quantum space of states is restricted 
with these gates to a set of states that can be 
described by a four-valued algebra with states 
{ |0>, |1>, |V0>, |V1> }. We assume here for 
simplification of explanation that only faults s-a-

Figure 3 (from [1]). Step-by-step calculation of unitary matrix of an inverter gate created by multiplication of unitary matrices of 
Square-root-of-Not gates connected in series (standard matrix multiplication).  



0, s-a-1, s-a- V0, and s-a-V1 are possible, but many other fault models can be defined. 
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Controlled gates 
Figure 4b shows a Controlled-V gate 
(Controlled-Square-Root-of-Not) and Figure 4c 
its unitary matrix. The gate operates as follows. 
Control signal a goes through the gate unaffected, 
i.e. P = a.  If the control signal has value 0 then 
the qubit b goes through the controlled part 
unaffected, i.e. Q = b. If a = 1 then the unitary 
operation that is inside the box is applied to the 
input signal b, it means Q = V(b) in our case. 
This operation is general for all binary controlled 
gates, for instance the Controlled-V-hermitian 
(Controlled-Square-root-of-Not-hermitian). This 
gate is shown in Figure 4d and its unitary matrix 
in Figure 4e. Ternary controlled gates are 
described in [3,7,10] and their fault models in 
[14]. 
 
3. Fault Models used in the Algorithm. 
Figure 6 shows some selected examples of fault 
matrices (these matrices are square and in 
general complex non-unitary). They are usually 
real matrices in this paper, but in general they are 
complex matrices, depending on the assumed 
faults’ nature. The fault model in our system is 
that a fault matrix is inserted in place of the fault, 
more formally, the fault matrix is inserted in the 
netlist of parallel-serial connections of unitary 
matrices of gates, as will be shown in Fig. 12, 
Section 6 below. Observe in Figure 6 that these 
are not only stuck-at fault matrices. The matrices 
of stuck-at faults are not unitary, but some other 

Figure 5. Calculating all possible superposition states 
that can be obtained from pure states |0> and |1> 
using V and V+ gates. 

Figure 4. (a) Cascading V gates creates an inverter. 
Measurement of intermediate state would give  |0> and 
|1> with equal probabilities, (b) Controlled-V  gate, (c) 
its unitary matrix, (d) Controlled-V+ gate, (e) its unitary 
matrix. 



fault matrices may be unitary, like for instance 
changing phase or inserting a Pauli rotation. 
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Figure 6. Matrices of faults. (a) stuck-at-0 in binary quantum 
circuit, (b) stuck-at-1 in binary quantum circuit, (c) inverter 
in  binary quantum circuit, (d) stuck-at-V0 in binary quantum 
circuit, (e) phase fault in binary quantum circuit, (f) stuck-at-
2 in ternary quantum circuit, (g) truncated plus 1 in ternary 
quantum circuit, (h) AND-bridging fault in binary quantum 
circuit, (i)stuck-at-entangled-state-01-10 of two quantum 
wires. 
 
4. Principles of Test Generation for 
Binary Quantum Circuts 
 
At first, we consider a quantum equivalent of 
stuck-at faults in this paper. It means, the gate is 
stuck to a pure state or a superposition state that 
can be created from initial pure states using  the 
gates used in the system. It means, if the circuit 
contains only permutative gates and (controlled 
by pure signals) gates V and V+, the four values 
listed above; { |0>, |1>, |V0>, |V1> } can occur as 
the correct and the stuck-at values. In case of the 
circuit from Figure 7, every quantum wire, 
denoted by a letter x, y, z, p, r, q, s  can be stuck 
to one of the values: { |0>, |1>, |V0>, |V1> }. We 
call it “four-valued algebra” keeping in mind that  
V0 and V1 are symbolic representations of pairs 
of real numbers, as shown earlier. In general, 
symbols correspond to groups of complex 
numbers. The output measurements of a faulty 
circuit is in general probabilistic, because of the 
use of the non-permutative quantum gates such 
as Controlled-V, resulting in measured random 
outputs. To illustrate the method, the fault-free 
output is calculated and is represented by a K-
map of function f from Figure 7a, as shown in 
Figure 7b. Similarly, the K-map of the faulty 
output is calculated in four-valued algebra for 
outputs when there is a stuck-at-fault at the point 
p in quantum wire c of the  circuit from Fig. 7a. 
By comparing the faulty output (in general, a 

vector of complex numbers) with the faultless 
output (a binary vector), it can be observed 
whether the test for this fault is deterministic or 
probabilistic. As seen from Kmaps in Figure 7b-
e the tests a’b’c’ and ab’c’ are deterministic and 
tests a’bc’, a’bc, abc’ and abc are probabilistic 
(by b’ we denote a negation of b). The Kmap can 
be drawn for each output separately (Figure 7b,c) 
or for all outputs together (Figure 7d,e). All 
outputs are measured (observed) together (Figure 
7e). The internal signals (complex numbers) of 
the quantum world cannot be observed by the 
testing program. Only the externally measured 
classical signals |0>, |1> (for binary) or |0>, |1>, 
|2> (for ternary)  in the classical world are 
observed and measured at the input to the Tester 
Program (see Figure 14). We know, however,  
from the symbolic  output what binary vector 
values can occur and with what probabilities on 
the output. So all possible measurement vectors 
can be known in advance with their probabilities. 
If  these values can collapse to the correct output  
vector (of a non-faulty circuit) they are called 
probabilistic tests, otherwise they are called the 
deterministic tests. If they are the same in the 
faulty and non-faulty circuit then they cannot be 
used as tests for this fault which is represented 
by a zero or a blank cell in the Fault Table 
(Figure 13). 
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Figure 7. (a)  Realization of a Toffoli gate from Controlled V, 
Controlled V+ and Feynman gates.Places of faults are denoted by 
small italic letters.(b) Kmap of the fault free output f for circuit from 
Figure 6, and the Kmap of the same output f when there is a stuck-at-
1 fault in quantum wire p, (c) symbolic output for function f for stuck-
at-1 fault in wire p, (d) binary output signals of a correct circuit, (e) 
symbolic faulty outputs with probabilistic tests for the same fault. 

        

 



 If the outputs are “deterministic”, we apply test 
vectors and detect the fault using standard 
deterministic approach to testing. If the outputs 
are “probabilistic” (complex numbers denoted by 
symbolic values like V0 and V1 in our case), we 
calculate the probability of occurrence of the 
observed output as explained in the following 
sections. We give priority to deterministic tests. 
Observe that a deterministic fault in quantum 
circuit can be observed on the output 
probabilistically. There are also probabilistic 
faults that are observed probabilistically. 
 
4.1. Probability calculation of the 
random output 
 
By iteratively applying the same input test vector 
(a probabilistic test) we are calculating the 
probability of getting the observed output. The 
input vectors are always vectors of pure states. 
Each successive iteration reduces the probability 
of obtaining a correct measurement for a faulty 
circuit.  For five iterations the probability of 
obtaining a correct measurement in presence of a 
given fault is reduced to 1/32. Similarly for six 
iterations it is 1/64 and for eight iterations it is 
1/256 (See Figure 8). Hence, the greater the 
number of iterations the lesser is the probability 
of getting the correct measurement for faulty 
circuit. Suppose that we use test 110 for fault S-
a-1 in location p.  According to Fig. 7d the 
correct output should be 111 and according to 
Figure 7e the faulty output is 11V1, which means 
110 or 111 with equal probabilities of ½ are 
measured. If we tested eight times and we get |1> 
in bit f each time, we have the probability 
255/256 that there no fault S-a-1 in location p. 
Of course, in this particular case we should apply 
deterministic tests a’b’c’ or ab’c’ since they are 
possible. In general, probabilistic tests may not 
exist. The number of iterations should depend on 
the expected accuracy and cost of testing. 
 
5. Generalization to ternary logic 
 
For a given reversible circuit and a fault set, a 
test set is said to be the complete test set if and 
only if the test vectors can detect all possible 
faults [8]. A complete test set with minimum 
number of vectors is called the minimal test set. 
The two properties of reversibility namely, 
Reversible Controllability and Reversible 
Observability simplify the test set generation 
problem [12]. The Reversible Controllability 
states that there are test vectors that will generate 

any given desired state on the wires at any given 
level. The Reversible Observability states that 
any single fault that changes an intermediate 
state in the circuit will also change the output. 
 

 
Figure 8. Probabilistic Supernode – a tree for calculating the 
probability of obtaining a sequence of n signals “1”  from a 
gate which has probability ½ of output “1”. 

5.1. Generalization of propositions 
from binary to ternary logic 
 
PROPOSITION 1: Under the single stuck-at-
fault model (i.e. stuck-at-0 and stuck-at-1 in 
binary), a test set is complete if and only if each 
of the wires at every level can be set to |0>, |1> 
and |2> by the test set. 
 
PROPOSITION 2: Any test set that is complete 
for the single stuck-at-fault model is also 
complete for the multiple stuck-at-fault model. 
 
LEMMA 1:  Each test vector covers exactly two-
third of the faults, and every fault is covered by 
exactly two-thirds of the possible test vectors. 
 
These propositions can be observed from the 
circuit in Figure 9. It is straightforward to further 
generalize these results to a multiple-valued 
logic with arbitrary radix. Thus similar 
propositions and lemma can be used in quantum 
or reversible logic of any radix. 
  
 
5.2. Testing the ternary reversible 
circuit 



The ternary circuit in Figure 9 uses 3 quantum 
wires and  has the depth of 3. The gates are 
ternary Feynman gates, they use modulo 3 
addition instead of EXOR (which is a modulo 2 
addition).  The analogy to binary case is 
straightforward. 

 
 
                    Figure  9.  Ternary reversible circuit  
 
Greedy approach is adopted to detect faults. It 
has been analyzed that a minimum of two test 
vectors can cover all the faults. Hence the 
minimal test set has two vectors (i.e., 012 and 
121), as illustrated in the table in Figure 11. In 
this table we denote by X0 the stuck-at |0> fault 
in place X, by X1 the stuck-at |1> fault in this 
place and by X2 the stuck-at |2> fault in point X. 
Symbol * at the intersection of row Ri and 
column Cj denotes that test Ri detects fault Cj. 
Because in reversible logic there are relatively 
many tests for each fault, the test generation is 
easier than in irreversible logic. Creating fault 
tables and adaptive trees [8,15] for fault 
localization for binary and ternary reversible 
logic and quantum computing is very similar 
[15]. 
 
6. Test Generation and Fault 
Localization System. 
 
The system for test generation and fault 
localization in binary and ternary quantum 
circuits is shown in Figure 10. We generate tests 
and use them to localize the fault in quantum 
circuits (details about fault localization are in 
[15]). Localization is done using an adaptive tree 
(decision tree, diagnostic tree, fault tree). In 
adaptive tree there are two types of nodes, 
deterministic nodes which are the same as in 
standard decision (adaptive) tree, and 
probabilistic supernodes (which represent small 
trees of probabilistic tests like one from Figure 
8).  In contrast to reversible circuits [15] where 
forward and backward fault simulation is applied 
for the test generation efficiency, in case of 

quantum circuits only forward simulation is 
possible since using backward simulation from 
the arbitrary fault point back to inputs may result 
in mixed (superposition) states on inputs, and we 
can create only pure states on the circuit inputs. 
The algorithm for quantum fault simulation is 
similar to standard fault simulation in a 
irreversible circuit, only the fault model is more 
general now.  
 
The sequence of  steps is as follows. 
1. Preprocessing the netlist.  
First the circuit is preprocessed to a form for 
which it is possible to apply operators of 
Kronecker multiplication (for parallel connection 
of sub-circuits (gates, blocks, columns). Standard 
matrix multiplication are applied for serial 
connection of gates (columns). As seen in Fig.12, 
swap gates are introduced in such a way that the 
circuit is build from parallel and serial 
connections of blocks. This allows to calculate a 
resultant matrix of each column using Kronecker 
multiplications. This was not possible if a wire 
was crossing a gate description as in Figure 12a 
in the first gate from the left. 
2. Creating a resultant unitary matrix of a 
correct circuit.  
A non-faulty circuit is simulated for all pure state 
input combinations to create a fault-free table 
like that from Figure 7d. It is done as follows. 
The program calculates the resultant transition 
matrix of the correct circuit from component 
matrices of gates (unitary) and faults (usually 
non-unitary). Operations of Kronecker matrix 
multiplication and standard matrix multiplication 
are used to calculate the resultant matrices of 
non-faulty and faulty circuits [10].  
3. Calculation of all correct output vectors 
corresponding to input vectors. 
The resultant matrix of the correct circuit is 
multiplied by the vector of all possible (pure 
state) input vectors to obtain the vector of all 
corresponding output vectors. 
4. Generating tests for every possible fault 
Every single fault is inserted and all tests for it 
are generated as in Figure 7e (currently we use 
exhaustive methods as in points 2,3 above). 
Assume a fault F1 is inserted in place X. It 
means, a value different than the stuck-at value 
should be in this place. (If a correct value is V0  
then 0, 1 and V1 are faulty values in our case). 
This way, for certain input vector, a vector of 
faulty values is created in the place and level of 
the fault. Every fault is simulated by inserting a 
unitary or non-unitary transition matrix in the 
location of this fault. For stuck-at faults the 



matrices are non-unitary. This way we can 
simulate not only the multiple stuck-at faults in 
the same level but many other fault types as well.  
The circuit is continued to be simulated forward 
from the level of the fault to create finally the 
output vector of complex numbers (see Figure 
7e).  
 
As an example, in Figure 12 the matrix of block 
B1 is S ⊗  I, where I is 1-qubit identity matrix, S 
is swap gate matrix and ⊗ is a symbol of 
Kronecker multiplication. Similarly matrix B2 = 
I ⊗ CV, where CV is a matrix of Controlled-V 
with control up. B3 = B1.  B4 = I ⊗ I ⊗ S-a-0, 
where S-a-0 is non-unitary matrix of the stuck-
at-0 fault. B5 = B2. B6 = Fe ⊗ I. B7 = I ⊗ CV+ 
where CV+ is a matrix of Controlled-V+ with 
control up. B8 = B6. The final matrix with the 
inserted fault is B8 * B7 * B6 * B5 * B4 * B3 * 
B2 * B1. For every fault the set of all 
corresponding output vectors is calculated using 
the respective resultant transition matrix of the 
faulty circuit. 
 
 

Insert Swap Gates

Binary or ternary
quantum netlist

Netlist of parallel and 
serial connections

Generate Fault TableFault 
models

Binary/Ternary 
Quantum Simulator

Fault Table

Deterministic/Probabilistic
Set Covering

Tree Construction

Adaptive 
Diagnostic Tree

Complete Test 
Sequence 

Gate 
models

 

For each test, the output vectors of the faulty  
and non-faulty circuits (Figure 7d,e) are 
compared to create a column of the Fault Table. 
This is iterated for all fault models in all 
locations. A part of Fault Table for a correct 
circuit and a column for fault S-a-1 in location p 
is shown in Figure 13. It was created from Figure 
7. The Fault Table is a starting point to both the 
minimal test sequence generation and adaptive 
tree generation. The entries in the table for a 
quantum circuit are more general than for a 

irreversible [8] or reversible [15] circuit. An 
empty cell (equivalent to entries “no” “no” in 
both subcolumns) at the intersection of fault 
column Fi and row (test vector) Tj means that 
fault Fi  is not detected by vector Tj. A symbol 1 
at the intersection of column Fi (at the right of 
the left subcolumn) and row Tj mean that test 
vector Tj is a deterministic (probability =1) test 
able to detect fault Fi. A number other than 1 is a 
probability that test Tj detects fault Fi. For 
instance, ½ means that test Tj detects fault Fi 
with probability one half. However, by repeating 
this test successfully two time the probability is 
increased to ¾.  In some variants (shown in 
Figure 13) the Fault Table stores also the correct 
output, output for the detected fault in the 
column of the fault, and other possible output 
vectors for this test in case of this fault. These 
data are used in probabilistic test sequence 
generation, adaptive tree generation and adaptive 
testing. 
 

 
 
Figure 11. Two rows of  Fault Table for the Ternary 
reversible circuit. These rows are enough to solve the fault 
covering problem in which all columns should be covered by 
a minimum subset of rows. 
 
A probabilistic approach is used to calculate the 
occurrence of faulty output, by applying the test 
vectors when the outputs are random in nature. 
Observe that even if there are probabilistic 
outputs in output test vectors, a fault can be 
sometimes found with 100% certainty. For 
instance, if the correct circuit gives output 
reading 100 and the symbolic output complex 
vector is 00V0, we know that the circuit is faulty 
because the first bit differs. Thus, whatever the 
random number assigned to V0, the measured 
output vector will be different from the expected 
output vector 100. This example points to the 
importance of knowing during measurements 
which output bits are probabilistic and which are 
deterministic. This information is stored in the 

Figure 10. The block diagram of the system for test generation 
and fault localization in binary and ternary quantum circuits. 



Fault Table (Fig. 13) that is used by the 
programs  (Fig. 14). 
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A probabilistic approach is used to calculate the  
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Using the system for testing quantum 
circuit models and quantum circuits. 
 
Figure 14 shows the system for testing the test 
generation program using the approach outlined 
above. To verify the operation of the system 
without a quantum computer the tests are given 
to the software model of the correct and faulty 
quantum circuit. The Tester Program returns 
“good/bad” decision about the circuit and also 

(optionally) the localization of faults and other 
information. The switch at the bottom center of 
the Figure takes the outputs from either the 
model of a quantum circuit or from the 
measurement of the real quantum circuit in the 
quantum computer. 
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7. Conclusion 
The presented paper presents the  first attempt at 
the test generation and fault localization for both 
permutative and non-permutative quantum 
circuts. With powerful enough fault model the 
approach can be used to arbitrary quantum 
circuits. In software, we used standard 
realization of matrix operations to implement 
matrix and Kronecker multiplications on unitary 
and non-unitary matrices [9]. Because these 
operations are repeated many times, the speed of 
the program suffers and we cannot handle larger 
functions. Currently we can work only with 3-
qubit and 4-qubit binary and ternary circuits. A 
better approach, that we are working on, is to use 
a new technique for gate-level simulation of 
quantum circuits that was recently proposed by 
Viamontes et al [17,18]. It is based on a new data 
structure called Quantum Information Decision 
Diagrams (QuIDDs), which are generalizations 
of Binary Decision Diagrams, well-known for 
their ability to efficiently represent many 
problems. We are going to use these new 
diagrams in synthesis problems as well [3,4,7,9]. 
 
In the proposed method we repeat the same test 
several times in supernodes, used both for test 
sequence generation and for fault localization in 

Figure 13. A segment of a Fault Table with correct 
outputs for each input vector (test) and a column for s-a-
1 fault in location p. Note the subcolumn for faulty 
output with its probability and the subcolumn for other 
output values measured. 

Figure 14. The system to test the test generating and 
tester programs and to use the tester for quantum 
circuits. 

Figure12. (a) Netlist of another variant of  Toffoli gate 
represented as a cascade of simple quantum gates  with S-a-0 
fault inserted,, (b) cascade  from (a) preprocessed by inserting 
swap gates to allow  Kronecker and matrix multiplications. 
Observe the inserted matrix of S-a-0 fault in column B4  



adaptive trees. It can be observed, however, that 
statistical information can be obtained also from 
various different tests [14], thus shorter test 
sequences can be perhaps build for the same 
circuits and with the same error probability than 
the sequences generated according to the 
presented algorithm. 
 
Future works include developing more efficient 
test generation and fault localization algorithms 
for binary, multi-valued and mixed (binary-
ternary) quantum circuits composed of arbitrary 
permutative and non-permutative gates [14]. We 
will also use all fault models that are necessary 
in real quantum computing, such as NMR. 
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