

DETERMINISTIC AND PROBABILISTIC TEST GENERATION

FOR BINARY AND TERNARY QUANTUM CIRCUITS

Sowmya Aligala, Sreecharani Ratakonda, Kiran Narayan, Kanagalakshmi Nagarajan,
Martin Lukac, Jacob Biamonte and Marek Perkowski

Portland Quantum Logic Group

Electrical & Computer Engineering Department, Portland State University, Portland,

OR 97207-0751, USA, mperkows@ee.pdx.edu

 Abstract

It is believed that quantum computing will begin to
have an impact around year 2010. Much work is
done on physical realization and synthesis of
quantum circuits, but nothing so far on the problem
of generating tests and localization of faults for
such circuits. Even fault models for quantum
circuits have been not formulated yet. We propose
an approach to test generation for a wide category
of fault models of single and multiple faults. It uses
deterministic and probabilistic tests to detect faults.
A Fault Table is created that includes probabilistic
information. If possible, deterministic tests are first
selected, while covering faults with tests, in order
to shorten the total length of the test sequence. The
method is applicable to both binary and ternary
quantum circuits. The system generates test
sequences and adaptive trees for fault localization
for small binary and ternary quantum circuits.

1. Introduction

Quantum computers will reach a lower limit as to
how much heat the computing device can generate.
They will be super-fast and super-small in size.
Quantum logic gate [1,3,4,5,6,7,9,10,11,13,17,18]
is a device which performs an operation described
by a unitary matrix on selected qubits (quantum
bits, [11]). Binary quantum gates process qubits
which can have either a |0> or |1> or both |0> and
|1> at the same time to varying extents and hence
exhibit a superposition state α|0>+|β> where |α|2 +
|β|2 = 1, α and β are complex numbers such that
measurement probability of |0> is |α|2 and
measurement probability of |1> is |β|2. |X|2 is a

result of multiplication of complex number X and
its conjugate. When the qubit state is observed or
measured, it becomes invariably either |0> or |1>.
Ternary quantum gates [2,3,7,10] process qutrits
which can be pure state |0>, |1> or |2> or any
combination of |0>, [1> and |2>, a superposition
state α|0> + |β> + |γ> where |α|2 + |β|2 + |γ|2 = 1, α,
β and γ are complex numbers such that
measurement probability of |0> is |α|2,

measurement probability of |1> is |β|2 and
measurement probability of |2> is |γ|2, [10,11].
When the qubit state is observed or measured, it
becomes either |0>, |1> or |2>. Quantum gates and
circuits exhibit the additional property of
reversibility as their mechanism of action is
through Schrödinger’s evolution (which is
reversible by virtue of being unitary). Thus,
methods developed for permutative (reversible)
circuits [12,15] are helpful for quantum circuits as
well. Matrices of all quantum operations are
unitary (and usually have complex numbers as
entries). Matrix X is unitary when X * X+ = I,
where I is an identity matrix and X+ is a hermitian
matrix of X. Hermitian matrix of X is conjugate
transpose matrix of X. Permutative circuits have
only pure states and their matrices are permutative
[11].

The Test Generation Problem is to find a sequence
of input vectors (tests) that applied to the circuit
will either confirm that the circuit is correct or will
determine that it has one or more faults from
certain library of faults. When only a single fault in
a circuit is assumed, we use a single-fault model
[8]. Here we are concerned with a multiple-fault
model, where there may be more than one fault in
the circuit. The reversibility property notably

simplifies the problem of testing reversible circuits
compared to irreversible circuits [12]. The basic
quantum gates that are used in quantum circuits in
this paper are Toffoli, Feynman, CV (controlled
square root of NOT) and CV+ (controlled square
root of NOT Hermitian gate). These gates are
selected for explanation only, since they are truly
quantum and allow to create all permutative binary
quantum gates. However, the test generation and
fault localization methods [8,15] outlined here are
for arbitrary (binary or ternary) quantum gates and
for broad fault models (including stuck-at pure
states, stuck-at superposition states, bridging-AND,
bridging-OR, shift of value, phase shift, gate
change and many others).

The paper is organized as follows. Section 2
presents the quantum gates that will be used in
circuits for which we will generate tests. Section 3
discusses fault models. Section 4 presents testing
of reversible and quantum circuits. Section 5
discusses generalization to ternary reversible and
quantum circuits. Section 6 discusses generating
complete test sets and localizing faults and section
7 concludes the paper. Although we tried to make
the paper self-contained, the reader interested in
more details may need to consult basic textbooks
about test generation and fault localization (at least
[8]) and quantum textbooks like [11], as well as
paper [15].

2. Quantum Gates and Their Unitary
Matrices.

Toffoli Gate.
Toffoli gate (C2NOT) [11,16] is a 3-qubit universal
permutative gate that has the most central role in
quantum computing. As the alternative name
implies, this gate only negates the third qubit if the
first two qubits are in the |1> state. One use of this
gate is as a reversible AND gate: when the third
qubit is set to |0>, it is only flipped to |1> if both
the first and the second inputs are true. Likewise,
by setting the third qubit to |1>, we get NOT-AND
(NAND) functionality (Figure 1a).
The unitary operation matrix of this gate is shown
in Figure 2a. As we see, it is a permutation matrix;
in every row and column there is only one “1” and
all other entries are “0”, meaning a permutation of
states.

Feynman Gate.
Feynman gate (CNOT) gate takes two qubits as
input, |x> and |y>. The result is the |x> qubit and an
XOR of |x> and |y>. If the value of |x> is 0, the

value of |y> remains the same, else the value of
|y> is flipped to it’s opposite (see Figure 1b). The
unitary operation matrix of Feynman is also
permutative (Figure 2b).

Square Root of NOT Gate
Connecting two “square root of NOT” gates in
series acts as a NOT gate inverting a qubit (that is,
the probabilities that the qubit will collapse to pure
state |1> is changed to the probability that that the
qubit will collapse to |0>, [1]). If one measures the
qubit after only one “square root of NOT” gate, the
result of the measurement is unknown.

|x1〉

|x2〉

|y〉

|x1〉

|x2〉

| x1 x2 ⊕ y〉

(a)

|x〉

|y〉

|x〉

| x ⊕ y〉
(b)

 Figure 1 (a) Toffoli gate, (b) Feynman gate

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

U Tof =

(a) (b)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

U Fe =

1+i 1-i
1-i 1+iU V = ½

(c)
1-i 1+i
1+i 1-iU V+ = ½

(d)

(e)

1+i 1-i
1-i 1+iU V * |0> = ½ 1

0
= 1+i

1-i = V0½

There is however an equal probability of measuring
a |0> and a |1>. By V we denote the “square root of
NOT” gate. The unitary operation matrix UV of V

Figure 2. (a) Unitary matrix of Toffoli gate, (b) unitary
matrix of Feynman gate, (c) unitary matrix of Square-root-
of-Not gate, (d) unitary matrix of Square-root-of-Not-
Hermitian gate, (e) calculation of result on output of
Square-root-of-Not gate when its input is in pure state |0>

gate is shown in Figure 2c. As we see, this is not a
permutative gate, but a truly quantum gate. It
means, applied to pure states it creates
superposition states on its output (Figure 2e).

Square Root of Not Hermitian Gate
The conjugated transpose of a unitary matrix X is
called the hermitian of matrix X and denoted by X+.
By V+ we denote a gate that has a unitary matrix
which is a hermitian of V. Therefore, the hermitian

of V is called “square root of NOT hermitian” and
has the unitary matrix UV+ of gate V+ from Figure
2d.

Operation of V and V+ Gates.
Design of many permutative gates is based on
(controlled) cascading of V and V+ gates.
Cascading two square root of NOT gates acts as a
basic inverted gate (see Figures 3 and 4a).

=
0.5 + 0.5i 0.5 – 0.5i
0.5 – 0.5i 0.5 + 0.5i

0.5 + 0.5i 0.5 – 0.5i
0.5 – 0.5i 0.5 + 0.5i

=
1 + i 1 –i
1 –i 1 + i

1 + i 1 –i
1 –i 1 + i

= 0.5 0.5

(1 + i)(1 + i)+(1 - i)(1 - i) (1 + i)(1 - i)+(1 - i)(1 + i)
(1 - i)(1 + i)+(1 + i)(1 - i) (1 - i)(1 - i)+(1 + i)(1 + i)= 0.25

(1 + 2i + i2)+(1 - 2i + i2) 2(1 - i2)
2(1 - i2) (1 + 2i + i2)+(1 - 2i + i2)= 0.25 =

=

1 + i2 + 1 + i2 2 - 2i2
2 - 2i2 1 + i2 + 1 + i2= 0.25

=
1 + i2 1 - i2
1 - i2 1 + i2= 0.5

1 + i2 1 - i2
1 - i2 1 + i2= 0.5 =

1 + (-1) 1 - (-1)
1 - (-1) 1 + (-1)0.5 =

0 2
2 00.5

0 1
1 0=

The operation of the circuit from Figure 4a can
be explained by the matrix equations from
Figure 3. Multiplying the unitary matrix UV by
the input state we obtain the vector ½ [1+i 1-i]T

= V0, Figure 2e. By multiplying V by this vector
we obtain vector [0 1]T = |1>.

Let us now try to find, by matrix/vector
multiplication, all possible states that can be
created by applying all possible serial
combinations of gates V and V+ to states |0> ,
|1> and all states created from these pure states
(Figure 5). A qubit |0> given to a “square root of
NOT” gate (Figures 2e and 5a) gives a state

denoted by |V0>. After measurement this state
gives |0> and |1> with equal probabilities ½.
Similarly all other possible cases are calculated
in Figure 5b – h.

As we see, after obtaining states |0>, |1> |V0>
and |V1> the system is closed and no more states
are generated. Therefore the subset of (complex,
continuous) quantum space of states is restricted
with these gates to a set of states that can be
described by a four-valued algebra with states
{ |0>, |1>, |V0>, |V1> }. We assume here for
simplification of explanation that only faults s-a-

Figure 3 (from [1]). Step-by-step calculation of unitary matrix of an inverter gate created by multiplication of unitary matrices of
Square-root-of-Not gates connected in series (standard matrix multiplication).

0, s-a-1, s-a- V0, and s-a-V1 are possible, but many other fault models can be defined.

NOT NOT
|0〉 |1〉

Superposition state
V0 observed as
random state

(a)

V

a

b

P

Q

1 0 0 0
0 1 0 0
0 0 1+i 1-i
0 0 1-i 1+i

1/2(b) (c)

(e)(d)V+

a

b

P

Q

1 0 0 0
0 1 0 0
0 0 1-i 1+i
0 0 1+i 1-i

1/2

 (a)

(b)

(c)

 (d)

 (e)

 (f)

 (g)

 (h)

Controlled gates
Figure 4b shows a Controlled-V gate
(Controlled-Square-Root-of-Not) and Figure 4c
its unitary matrix. The gate operates as follows.
Control signal a goes through the gate unaffected,
i.e. P = a. If the control signal has value 0 then
the qubit b goes through the controlled part
unaffected, i.e. Q = b. If a = 1 then the unitary
operation that is inside the box is applied to the
input signal b, it means Q = V(b) in our case.
This operation is general for all binary controlled
gates, for instance the Controlled-V-hermitian
(Controlled-Square-root-of-Not-hermitian). This
gate is shown in Figure 4d and its unitary matrix
in Figure 4e. Ternary controlled gates are
described in [3,7,10] and their fault models in
[14].

3. Fault Models used in the Algorithm.
Figure 6 shows some selected examples of fault
matrices (these matrices are square and in
general complex non-unitary). They are usually
real matrices in this paper, but in general they are
complex matrices, depending on the assumed
faults’ nature. The fault model in our system is
that a fault matrix is inserted in place of the fault,
more formally, the fault matrix is inserted in the
netlist of parallel-serial connections of unitary
matrices of gates, as will be shown in Fig. 12,
Section 6 below. Observe in Figure 6 that these
are not only stuck-at fault matrices. The matrices
of stuck-at faults are not unitary, but some other

Figure 5. Calculating all possible superposition states
that can be obtained from pure states |0> and |1>
using V and V+ gates.

Figure 4. (a) Cascading V gates creates an inverter.
Measurement of intermediate state would give |0> and
|1> with equal probabilities, (b) Controlled-V gate, (c)
its unitary matrix, (d) Controlled-V+ gate, (e) its unitary
matrix.

fault matrices may be unitary, like for instance
changing phase or inserting a Pauli rotation.

1 0

1 0

(a)

0 1

0 1

(b)

0 1

1 0

(c)

1+i 1-i

1+i 1-i

(d)

2

1 1 0

0 i

(e)

0 0 1

0 0 1

0 0 1

(f)

0 1 0

0 0 1

0 0 1

(g)

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

(h)

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

(i)

Figure 6. Matrices of faults. (a) stuck-at-0 in binary quantum
circuit, (b) stuck-at-1 in binary quantum circuit, (c) inverter
in binary quantum circuit, (d) stuck-at-V0 in binary quantum
circuit, (e) phase fault in binary quantum circuit, (f) stuck-at-
2 in ternary quantum circuit, (g) truncated plus 1 in ternary
quantum circuit, (h) AND-bridging fault in binary quantum
circuit, (i)stuck-at-entangled-state-01-10 of two quantum
wires.

4. Principles of Test Generation for
Binary Quantum Circuts

At first, we consider a quantum equivalent of
stuck-at faults in this paper. It means, the gate is
stuck to a pure state or a superposition state that
can be created from initial pure states using the
gates used in the system. It means, if the circuit
contains only permutative gates and (controlled
by pure signals) gates V and V+, the four values
listed above; { |0>, |1>, |V0>, |V1> } can occur as
the correct and the stuck-at values. In case of the
circuit from Figure 7, every quantum wire,
denoted by a letter x, y, z, p, r, q, s can be stuck
to one of the values: { |0>, |1>, |V0>, |V1> }. We
call it “four-valued algebra” keeping in mind that
V0 and V1 are symbolic representations of pairs
of real numbers, as shown earlier. In general,
symbols correspond to groups of complex
numbers. The output measurements of a faulty
circuit is in general probabilistic, because of the
use of the non-permutative quantum gates such
as Controlled-V, resulting in measured random
outputs. To illustrate the method, the fault-free
output is calculated and is represented by a K-
map of function f from Figure 7a, as shown in
Figure 7b. Similarly, the K-map of the faulty
output is calculated in four-valued algebra for
outputs when there is a stuck-at-fault at the point
p in quantum wire c of the circuit from Fig. 7a.
By comparing the faulty output (in general, a

vector of complex numbers) with the faultless
output (a binary vector), it can be observed
whether the test for this fault is deterministic or
probabilistic. As seen from Kmaps in Figure 7b-
e the tests a’b’c’ and ab’c’ are deterministic and
tests a’bc’, a’bc, abc’ and abc are probabilistic
(by b’ we denote a negation of b). The Kmap can
be drawn for each output separately (Figure 7b,c)
or for all outputs together (Figure 7d,e). All
outputs are measured (observed) together (Figure
7e). The internal signals (complex numbers) of
the quantum world cannot be observed by the
testing program. Only the externally measured
classical signals |0>, |1> (for binary) or |0>, |1>,
|2> (for ternary) in the classical world are
observed and measured at the input to the Tester
Program (see Figure 14). We know, however,
from the symbolic output what binary vector
values can occur and with what probabilities on
the output. So all possible measurement vectors
can be known in advance with their probabilities.
If these values can collapse to the correct output
vector (of a non-faulty circuit) they are called
probabilistic tests, otherwise they are called the
deterministic tests. If they are the same in the
faulty and non-faulty circuit then they cannot be
used as tests for this fault which is represented
by a zero or a blank cell in the Fault Table
(Figure 13).

a

b

c

g

h

f
V+V V

x

y

z p q s

r

c
ab

00
01
11
10

0 1
0 1
0 1
1 0
0 1

ab 0 1 0 1

(a)

(b) (c) (e)

00
01
11
10

1 1
v0 v0

v1 v1

1 1

ab
00
01
11
10

001 001

01V0 01V0

11V1 11V1

101 101

(d)

ab
00
01
11
10

000 001

010 011

111 110

100 101

0 1
c c c

Figure 7. (a) Realization of a Toffoli gate from Controlled V,
Controlled V+ and Feynman gates.Places of faults are denoted by
small italic letters.(b) Kmap of the fault free output f for circuit from
Figure 6, and the Kmap of the same output f when there is a stuck-at-
1 fault in quantum wire p, (c) symbolic output for function f for stuck-
at-1 fault in wire p, (d) binary output signals of a correct circuit, (e)
symbolic faulty outputs with probabilistic tests for the same fault.

 If the outputs are “deterministic”, we apply test
vectors and detect the fault using standard
deterministic approach to testing. If the outputs
are “probabilistic” (complex numbers denoted by
symbolic values like V0 and V1 in our case), we
calculate the probability of occurrence of the
observed output as explained in the following
sections. We give priority to deterministic tests.
Observe that a deterministic fault in quantum
circuit can be observed on the output
probabilistically. There are also probabilistic
faults that are observed probabilistically.

4.1. Probability calculation of the
random output

By iteratively applying the same input test vector
(a probabilistic test) we are calculating the
probability of getting the observed output. The
input vectors are always vectors of pure states.
Each successive iteration reduces the probability
of obtaining a correct measurement for a faulty
circuit. For five iterations the probability of
obtaining a correct measurement in presence of a
given fault is reduced to 1/32. Similarly for six
iterations it is 1/64 and for eight iterations it is
1/256 (See Figure 8). Hence, the greater the
number of iterations the lesser is the probability
of getting the correct measurement for faulty
circuit. Suppose that we use test 110 for fault S-
a-1 in location p. According to Fig. 7d the
correct output should be 111 and according to
Figure 7e the faulty output is 11V1, which means
110 or 111 with equal probabilities of ½ are
measured. If we tested eight times and we get |1>
in bit f each time, we have the probability
255/256 that there no fault S-a-1 in location p.
Of course, in this particular case we should apply
deterministic tests a’b’c’ or ab’c’ since they are
possible. In general, probabilistic tests may not
exist. The number of iterations should depend on
the expected accuracy and cost of testing.

5. Generalization to ternary logic

For a given reversible circuit and a fault set, a
test set is said to be the complete test set if and
only if the test vectors can detect all possible
faults [8]. A complete test set with minimum
number of vectors is called the minimal test set.
The two properties of reversibility namely,
Reversible Controllability and Reversible
Observability simplify the test set generation
problem [12]. The Reversible Controllability
states that there are test vectors that will generate

any given desired state on the wires at any given
level. The Reversible Observability states that
any single fault that changes an intermediate
state in the circuit will also change the output.

Figure 8. Probabilistic Supernode – a tree for calculating the
probability of obtaining a sequence of n signals “1” from a
gate which has probability ½ of output “1”.

5.1. Generalization of propositions
from binary to ternary logic

PROPOSITION 1: Under the single stuck-at-
fault model (i.e. stuck-at-0 and stuck-at-1 in
binary), a test set is complete if and only if each
of the wires at every level can be set to |0>, |1>
and |2> by the test set.

PROPOSITION 2: Any test set that is complete
for the single stuck-at-fault model is also
complete for the multiple stuck-at-fault model.

LEMMA 1: Each test vector covers exactly two-
third of the faults, and every fault is covered by
exactly two-thirds of the possible test vectors.

These propositions can be observed from the
circuit in Figure 9. It is straightforward to further
generalize these results to a multiple-valued
logic with arbitrary radix. Thus similar
propositions and lemma can be used in quantum
or reversible logic of any radix.

5.2. Testing the ternary reversible
circuit

The ternary circuit in Figure 9 uses 3 quantum
wires and has the depth of 3. The gates are
ternary Feynman gates, they use modulo 3
addition instead of EXOR (which is a modulo 2
addition). The analogy to binary case is
straightforward.

 Figure 9. Ternary reversible circuit

Greedy approach is adopted to detect faults. It
has been analyzed that a minimum of two test
vectors can cover all the faults. Hence the
minimal test set has two vectors (i.e., 012 and
121), as illustrated in the table in Figure 11. In
this table we denote by X0 the stuck-at |0> fault
in place X, by X1 the stuck-at |1> fault in this
place and by X2 the stuck-at |2> fault in point X.
Symbol * at the intersection of row Ri and
column Cj denotes that test Ri detects fault Cj.
Because in reversible logic there are relatively
many tests for each fault, the test generation is
easier than in irreversible logic. Creating fault
tables and adaptive trees [8,15] for fault
localization for binary and ternary reversible
logic and quantum computing is very similar
[15].

6. Test Generation and Fault
Localization System.

The system for test generation and fault
localization in binary and ternary quantum
circuits is shown in Figure 10. We generate tests
and use them to localize the fault in quantum
circuits (details about fault localization are in
[15]). Localization is done using an adaptive tree
(decision tree, diagnostic tree, fault tree). In
adaptive tree there are two types of nodes,
deterministic nodes which are the same as in
standard decision (adaptive) tree, and
probabilistic supernodes (which represent small
trees of probabilistic tests like one from Figure
8). In contrast to reversible circuits [15] where
forward and backward fault simulation is applied
for the test generation efficiency, in case of

quantum circuits only forward simulation is
possible since using backward simulation from
the arbitrary fault point back to inputs may result
in mixed (superposition) states on inputs, and we
can create only pure states on the circuit inputs.
The algorithm for quantum fault simulation is
similar to standard fault simulation in a
irreversible circuit, only the fault model is more
general now.

The sequence of steps is as follows.
1. Preprocessing the netlist.
First the circuit is preprocessed to a form for
which it is possible to apply operators of
Kronecker multiplication (for parallel connection
of sub-circuits (gates, blocks, columns). Standard
matrix multiplication are applied for serial
connection of gates (columns). As seen in Fig.12,
swap gates are introduced in such a way that the
circuit is build from parallel and serial
connections of blocks. This allows to calculate a
resultant matrix of each column using Kronecker
multiplications. This was not possible if a wire
was crossing a gate description as in Figure 12a
in the first gate from the left.
2. Creating a resultant unitary matrix of a
correct circuit.
A non-faulty circuit is simulated for all pure state
input combinations to create a fault-free table
like that from Figure 7d. It is done as follows.
The program calculates the resultant transition
matrix of the correct circuit from component
matrices of gates (unitary) and faults (usually
non-unitary). Operations of Kronecker matrix
multiplication and standard matrix multiplication
are used to calculate the resultant matrices of
non-faulty and faulty circuits [10].
3. Calculation of all correct output vectors
corresponding to input vectors.
The resultant matrix of the correct circuit is
multiplied by the vector of all possible (pure
state) input vectors to obtain the vector of all
corresponding output vectors.
4. Generating tests for every possible fault
Every single fault is inserted and all tests for it
are generated as in Figure 7e (currently we use
exhaustive methods as in points 2,3 above).
Assume a fault F1 is inserted in place X. It
means, a value different than the stuck-at value
should be in this place. (If a correct value is V0
then 0, 1 and V1 are faulty values in our case).
This way, for certain input vector, a vector of
faulty values is created in the place and level of
the fault. Every fault is simulated by inserting a
unitary or non-unitary transition matrix in the
location of this fault. For stuck-at faults the

matrices are non-unitary. This way we can
simulate not only the multiple stuck-at faults in
the same level but many other fault types as well.
The circuit is continued to be simulated forward
from the level of the fault to create finally the
output vector of complex numbers (see Figure
7e).

As an example, in Figure 12 the matrix of block
B1 is S ⊗ I, where I is 1-qubit identity matrix, S
is swap gate matrix and ⊗ is a symbol of
Kronecker multiplication. Similarly matrix B2 =
I ⊗ CV, where CV is a matrix of Controlled-V
with control up. B3 = B1. B4 = I ⊗ I ⊗ S-a-0,
where S-a-0 is non-unitary matrix of the stuck-
at-0 fault. B5 = B2. B6 = Fe ⊗ I. B7 = I ⊗ CV+
where CV+ is a matrix of Controlled-V+ with
control up. B8 = B6. The final matrix with the
inserted fault is B8 * B7 * B6 * B5 * B4 * B3 *
B2 * B1. For every fault the set of all
corresponding output vectors is calculated using
the respective resultant transition matrix of the
faulty circuit.

Insert Swap Gates

Binary or ternary
quantum netlist

Netlist of parallel and
serial connections

Generate Fault TableFault
models

Binary/Ternary
Quantum Simulator

Fault Table

Deterministic/Probabilistic
Set Covering

Tree Construction

Adaptive
Diagnostic Tree

Complete Test
Sequence

Gate
models

For each test, the output vectors of the faulty
and non-faulty circuits (Figure 7d,e) are
compared to create a column of the Fault Table.
This is iterated for all fault models in all
locations. A part of Fault Table for a correct
circuit and a column for fault S-a-1 in location p
is shown in Figure 13. It was created from Figure
7. The Fault Table is a starting point to both the
minimal test sequence generation and adaptive
tree generation. The entries in the table for a
quantum circuit are more general than for a

irreversible [8] or reversible [15] circuit. An
empty cell (equivalent to entries “no” “no” in
both subcolumns) at the intersection of fault
column Fi and row (test vector) Tj means that
fault Fi is not detected by vector Tj. A symbol 1
at the intersection of column Fi (at the right of
the left subcolumn) and row Tj mean that test
vector Tj is a deterministic (probability =1) test
able to detect fault Fi. A number other than 1 is a
probability that test Tj detects fault Fi. For
instance, ½ means that test Tj detects fault Fi
with probability one half. However, by repeating
this test successfully two time the probability is
increased to ¾. In some variants (shown in
Figure 13) the Fault Table stores also the correct
output, output for the detected fault in the
column of the fault, and other possible output
vectors for this test in case of this fault. These
data are used in probabilistic test sequence
generation, adaptive tree generation and adaptive
testing.

Figure 11. Two rows of Fault Table for the Ternary
reversible circuit. These rows are enough to solve the fault
covering problem in which all columns should be covered by
a minimum subset of rows.

A probabilistic approach is used to calculate the
occurrence of faulty output, by applying the test
vectors when the outputs are random in nature.
Observe that even if there are probabilistic
outputs in output test vectors, a fault can be
sometimes found with 100% certainty. For
instance, if the correct circuit gives output
reading 100 and the symbolic output complex
vector is 00V0, we know that the circuit is faulty
because the first bit differs. Thus, whatever the
random number assigned to V0, the measured
output vector will be different from the expected
output vector 100. This example points to the
importance of knowing during measurements
which output bits are probabilistic and which are
deterministic. This information is stored in the

Figure 10. The block diagram of the system for test generation
and fault localization in binary and ternary quantum circuits.

Fault Table (Fig. 13) that is used by the
programs (Fig. 14).

V V V+

a

b
c

S-a-0

(a)

V V V+

a

b

c S-a-0

B1 B2 B3 B4 B5 B6 B7 B8

(b)

A probabilistic approach is used to calculate the

Input test
vector

Correct output
vector

Fault S-a-1 in p
Faulty
output

Other
outputs

000
001
010
011
100
101
110
111

000
001
010
011
100
101
111
110

001
no
011
010
101
no
110
111

no
no
010
011
no
no
111
110

…
..
.
…
…
..
.

.

.

.

.

.

1

1

1/2

1/2

1/2

1/2

Using the system for testing quantum
circuit models and quantum circuits.

Figure 14 shows the system for testing the test
generation program using the approach outlined
above. To verify the operation of the system
without a quantum computer the tests are given
to the software model of the correct and faulty
quantum circuit. The Tester Program returns
“good/bad” decision about the circuit and also

(optionally) the localization of faults and other
information. The switch at the bottom center of
the Figure takes the outputs from either the
model of a quantum circuit or from the
measurement of the real quantum circuit in the
quantum computer.

Quantum
simulator

Probabilistic
Measurement

simulator

Vector of
binary inputs

Quantum Circuit
model

With/without
inserted faults

Vector of
Complex outputs

Probabilistic
binary output

Model of
correct/faulty
quantum
circuit

Tester
program

Next test
vector

Good/bad
with
probability

Which
faults

Fault Table Quantum

Circuit

Quantum

Measurement

Probabilistic
binary output

Pure state Input
Generator for

Quantum Circuit

quantum
computer

Standard
computer

switch

7. Conclusion
The presented paper presents the first attempt at
the test generation and fault localization for both
permutative and non-permutative quantum
circuts. With powerful enough fault model the
approach can be used to arbitrary quantum
circuits. In software, we used standard
realization of matrix operations to implement
matrix and Kronecker multiplications on unitary
and non-unitary matrices [9]. Because these
operations are repeated many times, the speed of
the program suffers and we cannot handle larger
functions. Currently we can work only with 3-
qubit and 4-qubit binary and ternary circuits. A
better approach, that we are working on, is to use
a new technique for gate-level simulation of
quantum circuits that was recently proposed by
Viamontes et al [17,18]. It is based on a new data
structure called Quantum Information Decision
Diagrams (QuIDDs), which are generalizations
of Binary Decision Diagrams, well-known for
their ability to efficiently represent many
problems. We are going to use these new
diagrams in synthesis problems as well [3,4,7,9].

In the proposed method we repeat the same test
several times in supernodes, used both for test
sequence generation and for fault localization in

Figure 13. A segment of a Fault Table with correct
outputs for each input vector (test) and a column for s-a-
1 fault in location p. Note the subcolumn for faulty
output with its probability and the subcolumn for other
output values measured.

Figure 14. The system to test the test generating and
tester programs and to use the tester for quantum
circuits.

Figure12. (a) Netlist of another variant of Toffoli gate
represented as a cascade of simple quantum gates with S-a-0
fault inserted,, (b) cascade from (a) preprocessed by inserting
swap gates to allow Kronecker and matrix multiplications.
Observe the inserted matrix of S-a-0 fault in column B4

adaptive trees. It can be observed, however, that
statistical information can be obtained also from
various different tests [14], thus shorter test
sequences can be perhaps build for the same
circuits and with the same error probability than
the sequences generated according to the
presented algorithm.

Future works include developing more efficient
test generation and fault localization algorithms
for binary, multi-valued and mixed (binary-
ternary) quantum circuits composed of arbitrary
permutative and non-permutative gates [14]. We
will also use all fault models that are necessary
in real quantum computing, such as NMR.

References

1. A. Buller, Quantrix: Toward Automated Synthesis of

Quantum Cascades, Technical Report TR-HIS-00-*,
ATR Human Information Processing Laboratories,
Kyoto, 2003. 03.15.

2. H.F. Chau, Correcting quantum errors in higher spin
systems. Physical Review A, Vol. 55, R839-R841, 1997.

3. E. Curtis, and M. Perkowski, Minimization of Ternary
Reversible Logic Cascades using a Universal Subset of
Generalized Ternary Gates, submitted to International
Journal on Multiple-Valued Logic and Soft Computing,
Svetlana Yanushkevich, editor

4. W. Hung, X. Song, G. Yang, and M. Perkowski.
Reachability Analysis for reversible minimization.
Proceedings of DAC 2004.

5. http://www.dhushara.com/book/quantcos/qcompu/qc2/qc2.ht
m

6. http://www.themilkyway.com/quantum/FinalReport/Quantu
mGates.html

7. M. H. A. Khan and M. Perkowski, Genetic Algorithms
Based Synthesis of Multi-Output Ternary Functions

Using Quantum Cascade of Generalized Ternary Gates,
submitted to special issue of International Journal on
Multiple-Valued Logic and Soft Computing, Tatjana
Kalganova, editor.

8. Z. Kohavi, Switching and Finite Automata Theory, Mc
Graw-Hill, 1978.

9. M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, Ch-H.
Yu, K. Chung, H. Jee, B.G. Kim, and Y-D. Kim,
Evolutionary approach to Quantum and Reversible
Circuits synthesis, Artificial Intelligence Review
Journal, Special Issue on Artificial Intelligence in
Logic Design, S. Yanushkevich guest editor, 2003.

10. A. Muthukrishnan and C. R. Stroud Jr., “Multivalued
Logic Gates for Quantum Computation,” Physical
Review A, Vol. 62, pp. 052309.1-8, 2000.

11. M. Nielsen, and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press,
2000.

12. K.N. Patel, J.P. Hayes and I. Markov, “Fault testing for
reversible circuits,” Proc. VLSI Test Symp. (VTS 03),
Napa, CA, pp. 410–416, April 2003.

13. B. Patterson, http:www.cs.iastate.edu/~patterbi/cs
/quantum.fp/FinalPaper.pdf

14. M. Perkowski, and J. Biamonte, Probabilistic Testing
and Fault Localization of Binary and Ternary Quantum
Circuits, to be submitted, 2004.

15. K. Ramasamy, R. Tagare, E. Perkins, and M.
Perkowski, Greedy Algorithm for Fault Localization in
Binary Reversible Circuits, submitted to IWLS 2004.

16. T. Toffoli, „Reversible Computing”, in Automata,
Languages and Programming (edited by de J. W.
Bakker and J. van Leeuwen), Springer Verlag, pp. 632-
644, 1980.

17. G.F. Viamontes, M. Rajagopalan, I.L. Markov and J.P.
Hayes, Gate-Level Simulation of Quantum Circuits,
quant-ph/0208003.

18. G. F. Viamontes, I. L. Markov and J. P. Hayes,
``Improving Gate-Level Simulation of Quantum
Circuits'' (quant-ph/0309060), to appear in Quantum
Information Processing, 2004.

