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Lecture 1: Review

• Information is physical: The ability of a machine to perform,

e.g., computation is constrained by the laws of physics.

• Information: what we know.

•Bayesian probability assignments based on prior knowledge.

• Quantum theory has its own logical rules.

• Assign complex amplitude to quantum process.

• Add amplitudes for indistinguishable processes.

• Absolute square of amplitude gives probability of finding

outcome --> Interference of outcomes.

• Measurement “collapses” state assignment.

• No local realistic description of “hidden variables”.
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The Ingredients of Quantum Theory

(Pure) States:

Assignments based on (maximal)

knowledge of quantum system.

Observables:

Measurable physical quantities 

Intrinsically stochastic

Measurement 

outcomes

probability

Mathematical Structure (Hilbert space).

Vector space over complex numbers with inner product.
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Review:  Real vector space (Euclidean)
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Complex Vector Space: Analytic Signals
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Motivation: Polarization Optics
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Measurement in another basis (1)
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Measurement in another basis (2)

V

H

  

� 

r 
! = cos"e

V
+ sin"e

H

� 

I
0

� 

I
R

� 

I
L

Malus’s Law:

  

� 

E
R ,L

= e
R ,L
e

R,L

* !E
0( ) = e

R ,L
e

R ,L

* !
r 
" ( )E0

= e
D±

cos# m isin#
2

$ 

% 
& 

' 

( 
) E0

= e
D±

e
m i#

2

$ 

% 
& 

' 

( 
) E0

  

� 

I
R ,L

=
1

2
E
R ,L

* !E
R ,L

= e
R ,L

!
r 
" 
2 1

2
E
0

2# 

$ 

% 

& 
=
1

2
I
0

L

R

� 

e
R

=
e
H

+ ie
V

2

� 

e
L

=
e
H
! ie

V

2



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Repeated measurement
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Repeated measurement
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Repeated measurements

don’t “commute”

Malus’s Law:
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From wave intensity to photon events

Light beam = “stream of photon”   
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From Malus’s Law to Born’s Rule
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From Photon Polarization to “Hilbert Space”

Complex vector space of dimension d. 

(Hilbert space can be infinite dimensional)

“Kets” = vectors. “Bras” = dual vectors.

� 

V

� 

V

Inner product = braket

� 

V V = V
2

Dirac Notation:

Like    and     for photon polarization,  

� 

r 
!   

� 

r 
! 
*

  

� 

r 
! 

2

=
r 
! 
*
"
r 
! 



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Matrix Representation
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Linear Operators

Maps
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Special Operator Relations

Characteristic vectors/values (eigenvectors, eigenvalues)
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The Postulates of QM (I)

• A “pure state” of the system, representing some maximal

knowledge, is a normalized ket in Hilbert space      .
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Notes
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Notes

• The set of possible measurement outcomes for an

observable “span” the space              complete set.
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• Not all operators share the same eigenvectors

Impossible to measure all observables simultaneously.

Measurement of one observable disturbs the other.
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Postulates of QM (II)

• In the absence of any measurement, a closed system evolves

according to a unitary map (preserving inner products).
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Example: Photon Polarization

• State: Normalized complex polarization vector    ,    
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Incomplete Information

Suppose someone prepares a photon by flipping a coin.

H

V

State?

Statistical Mixture: 

50% H, 50% V

(H,V)

� 

pH = 1/2� 

pV = 1/2



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Incomplete Information
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Quantum Computing vs. Wave Computing

• Analog vs. Digital.

• Quantum phenomena involve discrete events

(e.g.  photon detection).

• Wave and Particle !  Analog and Digital.

• Possibility of error correction.

• Physical space vs. Hilbert space

• Modes of field require physical resources.

• Exponential number of modes not scalable.

• Quantum mechanics allows exponentially large

dimension with polynomial physical resources.

• Entangled states!
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Summary

• Quantum Mechanics predicts the outcomes of experiments.

• States = Vectors in a complex linear space.

• Observables = Matrices (operators) on the space

• Eigenvalues = possible measurement outcomes.

• Eigenvectors = the state after the measurement is done.

• Probability of finding a measurement value = square of

complex amplitude (Born rule).

• In a closed system, the system dynamics described by

unitary matrices.

• Quantum “coherent superpositions” differ from “statistical

mixtures”.   Noise can “decoher” a system.

• Quantum computing not equivalent to wave computing.


