## Short Course in Quantum Information Lecture 2

Formal Structure of Quantum Mechanics

## Course Info

- All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html
- Syllabus

Lecture 1: Intro
Lecture 2: Formal Structure of Quantum Mechanics
Lecture 3: Entanglement
Lecture 4: Qubits and Quantum Circuits
Lecture 5: Algorithms
Lecture 6: Error Correction
Lecture 7: Physical Implementations
Lecture 8: Quantum Cryptography

## Lecture 1: Review

- Information is physical: The ability of a machine to perform, e.g., computation is constrained by the laws of physics.
- Information: what we know.
-Bayesian probability assignments based on prior knowledge.
- Quantum theory has its own logical rules.
- Assign complex amplitude to quantum process.
- Add amplitudes for indistinguishable processes.
- Absolute square of amplitude gives probability of finding outcome --> Interference of outcomes.
- Measurement "collapses" state assignment.
- No local realistic description of "hidden variables".


## Course Info

- All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html
- Syllabus

Lecture 1: Intro
Lecture 2: Formal Structure of Quantum Mechanics
Lecture 3: Entanglement
Lecture 4: Qubits and Quantum Circuits
Lecture 5: Algorithms
Lecture 6: Error Correction
Lecture 7: Physical Implementations
Lecture 8: Quantum Cryptography

## The Ingredients of Quantum Theory



Mathematical Structure (Hilbert space).
Vector space over complex numbers with inner product.

## Review: Real vector space (Euclidean)

$$
\mathbf{W}=c_{1} \mathbf{V}+c_{2} \mathbf{U}
$$

Basis vectors

$$
\mathbf{V}=V_{x} \mathbf{e}_{x}+V_{y} \mathbf{e}_{y}
$$



Inner product $\quad\|\mathbf{V}\|^{2} \equiv \mathbf{V} \cdot \mathbf{V}$

$$
\mathbf{Y} \cdot \mathbf{W}=\mathbf{Y} \cdot\left(c_{1} \mathbf{V}+c_{2} \mathbf{U}\right)=c_{1} \mathbf{Y} \cdot \mathbf{V}+c_{2} \mathbf{Y} \cdot \mathbf{U}
$$

Orthonormal basis $\quad \mathbf{e}_{x} \cdot \mathbf{e}_{x}=\mathbf{e}_{y} \cdot \mathbf{e}_{y}=1 \quad \mathbf{e}_{x} \cdot \mathbf{e}_{y}=0$

$$
V_{x}=\mathbf{e}_{x} \cdot \mathbf{V} \quad V_{y}=\mathbf{e}_{y} \cdot \mathbf{V} \quad\|\mathbf{V}\|^{2}=V_{x}^{2}+V_{y}^{2}
$$

## Complex Vector Space: Analytic Signals

Consider an oscillating electric vector, $\mathbf{E}(t)=E_{0} \cos (\omega t) \mathbf{e}_{x}$

$$
\text { Intensity: } \quad I=\frac{1}{T} \int_{0}^{T}|\mathbf{E}(t)|^{2}=\frac{1}{2} E_{0}^{2}
$$

Complex signal: $\tilde{\mathbf{E}}(t)=E_{0} \mathbf{e}_{x} e^{-i \omega t} \quad \mathbf{E}(t)=\operatorname{Re}(\tilde{\mathbf{E}}(t))$

$$
\tilde{\mathbf{E}}^{*} \cdot \tilde{\mathbf{E}}=\left(E_{0} \mathbf{e}_{x} e^{+i \omega t}\right) \cdot\left(E_{0} \mathbf{e}_{x} e^{-i \omega t}\right)=E_{0}^{2}\left(e^{+i \omega t} e^{-i \omega t}\right)=E_{0}^{2} \Longrightarrow I=\frac{1}{2} \tilde{\mathbf{E}}^{*} \cdot \tilde{\mathbf{E}}
$$

Circular polarizaton: $\quad \mathbf{E}(t)=E_{0}\left(\cos (\omega t) \mathbf{e}_{x}+\sin (\omega t) \mathbf{e}_{y}\right)=\operatorname{Re}(\tilde{\mathbf{E}}(t))$

$$
\tilde{\mathbf{E}}(t)=E_{0}\left(\mathbf{e}_{x}+i \mathbf{e}_{y}\right) e^{-i \omega t} \quad I=\frac{1}{2} \tilde{\mathbf{E}}^{*} \cdot \tilde{\mathbf{E}}=\frac{1}{2} E_{0}^{2}\left(\mathbf{e}_{x}-i \mathbf{e}_{y}\right) \cdot\left(\mathbf{e}_{x}+i \mathbf{e}_{y}\right)=E_{0}^{2}
$$

Normalized polarization

$$
\mathbf{e}_{ \pm} \equiv \frac{\mathbf{e}_{x} \pm \mathbf{e}_{y}}{\sqrt{2}}
$$

$$
\left\|\mathbf{e}_{ \pm}\right\|^{2}=\mathbf{e}_{ \pm}^{*} \cdot \mathbf{e}_{ \pm}=1
$$

$$
\mathbf{e}_{+}^{*} \cdot \mathbf{e}_{-}=0
$$ vector.

## Motivation: Polarization Optics



Malus's Law: $\quad \mathbf{E}_{V}=\mathbf{e}_{V}\left(\mathbf{e}_{V} \cdot \mathbf{E}_{0}\right)=\mathbf{e}_{V}\left(\mathbf{e}_{V} \cdot \vec{\varepsilon}\right) E_{0}=\mathbf{e}_{V} E_{0} \cos \theta$

$$
I_{V}=\frac{1}{2} \mathbf{E}^{*} \cdot \mathbf{E}=\left|\mathbf{e}_{V} \cdot \vec{\varepsilon}\right|^{2}\left(\frac{1}{2}\left|E_{0}\right|^{2}\right)=\cos ^{2} \theta I_{0}
$$

## Measurement in another basis (1)



Malus's Law:

$$
\begin{gathered}
\mathbf{E}_{D \pm}=\mathbf{e}_{D \pm}\left(\mathbf{e}_{D \pm} \cdot \mathbf{E}_{0}\right)=\mathbf{e}_{D \pm}\left(\mathbf{e}_{D \pm} \cdot \vec{\varepsilon}\right) E_{0}=\mathbf{e}_{D \pm}\left(\frac{\cos \theta \pm \sin \theta}{\sqrt{2}}\right) E_{0} \\
I_{D \pm}=\frac{1}{2} \mathbf{E}_{D \pm}^{*} \cdot \mathbf{E}_{D \pm}=\left|\mathbf{e}_{D \pm} \cdot \vec{\varepsilon}\right|^{2}\left(\frac{1}{2}\left|E_{0}\right|^{2}\right)=\left(\frac{\cos \theta \pm \sin \theta}{\sqrt{2}}\right)^{2} I_{0}
\end{gathered}
$$

## Measurement in another basis (2)



Malus's Law:

$$
\begin{gathered}
\mathbf{E}_{R, L}=\mathbf{e}_{R, L}\left(\mathbf{e}_{R, L}^{*} \cdot \mathbf{E}_{0}\right)=\mathbf{e}_{R, L}\left(\mathbf{e}_{R, L}^{*} \cdot \vec{\varepsilon}\right) E_{0}=\mathbf{e}_{D \pm}\left(\frac{\cos \theta \mp i \sin \theta}{\sqrt{2}}\right) E_{0}=\mathbf{e}_{D \pm}\left(\frac{e^{\mp i \theta}}{\sqrt{2}}\right) E_{0} \\
I_{R, L}=\frac{1}{2} \mathbf{E}_{R, L}^{*} \cdot \mathbf{E}_{R, L}=\left|\mathbf{e}_{R, L} \cdot \vec{\varepsilon}\right|^{2}\left(\frac{1}{2}\left|E_{0}\right|^{2}\right)=\frac{1}{2} I_{0}
\end{gathered}
$$

## Repeated measurement



Malus's Law:

$$
\begin{array}{ll}
\mathbf{E}_{V}^{\prime}=\mathbf{e}_{V}\left(\mathbf{e}_{V} \cdot \mathbf{E}_{V}\right)=\mathbf{e}_{V} E_{V} & \mathbf{E}_{H}^{\prime}=\mathbf{e} \\
I_{V}^{\prime}=\frac{1}{2} \mathbf{E}_{V}^{*} \cdot \mathbf{E}_{V}^{\prime}=I_{V} & I_{H}^{\prime}=0
\end{array}
$$

$$
\mathbf{E}_{H}^{\prime}=\mathbf{e}_{H}\left(\mathbf{e}_{H} \cdot \mathbf{E}_{V}\right)=0
$$

## Repeated measurement



Malus's Law:

$$
\begin{aligned}
& \mathbf{E}_{V}^{\prime}=\mathbf{e}_{V}\left(\mathbf{e}_{V} \cdot \mathbf{E}_{D+}\right)=\mathbf{e}_{V}\left(\mathbf{e}_{V} \cdot \mathbf{e}_{D+}\right)\left(\mathbf{e}_{D+} \cdot \mathbf{e}_{V} E_{V}\right)=\frac{1}{2} \mathbf{E}_{V} \Rightarrow I_{V}^{\prime}=\frac{1}{4} I_{V} \\
& \mathbf{E}_{H}^{\prime}=\mathbf{e}_{H}\left(\mathbf{e}_{H} \cdot \mathbf{E}_{D+}\right)=\mathbf{e}_{H}\left(\mathbf{e}_{H} \cdot \mathbf{e}_{D+}\right)\left(\mathbf{e}_{D+} \cdot \mathbf{e}_{V} E_{V}\right)=\frac{1}{2} \mathbf{E}_{V} \Rightarrow I_{H}^{\prime}=\frac{1}{4} I_{V}
\end{aligned}
$$

## Repeated measurements don't "commute"



Malus's Law:

$$
\begin{aligned}
& \mathbf{E}_{D+}=\mathbf{e}_{D+}\left(\mathbf{e}_{D+} \cdot \mathbf{E}_{V}^{\prime}\right)=\mathbf{e}_{D+}\left(\mathbf{e}_{D+} \cdot \mathbf{e}_{V}\right)\left(\mathbf{e}_{V} \cdot \mathbf{e}_{V} E_{V}\right)=\mathbf{e}_{D+} \frac{E_{V}}{\sqrt{2}} \Rightarrow I_{D+}=\frac{1}{2} I_{V} \\
& \mathbf{E}_{D-}=\mathbf{e}_{D-}\left(\mathbf{e}_{D-} \cdot \mathbf{E}_{V}^{\prime}\right)=\mathbf{e}_{D-}\left(\mathbf{e}_{D-} \cdot \mathbf{e}_{V}\right)\left(\mathbf{e}_{V} \cdot \mathbf{e}_{V} E_{V}\right)=\mathbf{e}_{D-} \frac{E_{V}}{\sqrt{2}} \Rightarrow I_{D-}=\frac{1}{2} I_{V}
\end{aligned}
$$

## From wave intensity to photon events

## Light beam $=$ "stream of photon" $\quad I=\Phi \hbar \omega$

In the "law of large numbers"
Fraction of intensity in given alternative

Probability of measuring photon in that alternative


$$
p_{o u t}^{(i)}=\frac{I_{o u t}^{(i)}}{I_{i n}}
$$

## From Malus's Law to Born's Rule



Malus's Law: $\quad I_{V}=\frac{1}{2} \mathbf{E}_{V}^{*} \cdot \mathbf{E}_{V}=\left|\mathbf{e}_{V} \cdot \vec{\varepsilon}\right|^{2}\left(\frac{1}{2}\left|E_{0}\right|^{2}\right)=\cos ^{2} \theta I_{0}$

$$
p_{V}=\frac{I_{V}}{I_{0}}=\left|\mathbf{e}_{V} \cdot \bar{\varepsilon}\right|^{2}=|\cos \theta|^{2}
$$

Generalize: Given photon prepared in polarization $\vec{\varepsilon}_{i n}$, probability of finding $\vec{\varepsilon}_{\text {out }}$,

Born's Rule

## From Photon Polarization to "Hilbert Space"

Complex vector space of dimension d. (Hilbert space can be infinite dimensional)

Dirac Notation:

$$
\begin{array}{ll}
\text { "Kets" = vectors. } & |V\rangle
\end{array} \quad \text { "Bras" }=\text { dual vectors. }\langle V|
$$

Like $\vec{\varepsilon}$ and $\vec{\varepsilon}^{*}$ for photon polarization, $\|\vec{\varepsilon}\|^{2}=\vec{\varepsilon}^{*} \cdot \vec{\varepsilon}$

## Matrix Representation

Orthonormal basis $\quad\left\{\left|e_{i}\right\rangle \mid i=1, \ldots, d\right\} \quad\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}$

$$
|V\rangle=\sum_{i} V_{i}\left|\mathbf{e}_{i}\right\rangle \quad V_{i}=\left\langle e_{i} \mid V\right\rangle
$$



| bra $=$ |
| :---: |
| row vector conjugated (adjoint) |

$$
\langle V| \doteq\left[\begin{array}{lll}
V_{1}^{*} & \cdots & V_{d}^{*}
\end{array}\right]=|V\rangle^{\dagger}
$$

$\begin{aligned} & \text { Inner product via } \\ & \text { matrix multiplication }\end{aligned}\langle U \mid V\rangle=\left[\begin{array}{lll}U_{1}^{*} & \cdots & U_{d}^{*}\end{array}\right]\left[\begin{array}{c}V_{1} \\ \vdots \\ V_{d}\end{array}\right]=\sum_{i} U_{i}^{*} V_{i}$

## Linear Operators

Maps $\quad \hat{A}|U\rangle=|V\rangle \quad \hat{A}|W\rangle=|Y\rangle$
Linear $\quad \hat{A}(a|U\rangle+b|W\rangle)=a \hat{A}|U\rangle+b \hat{A}|V\rangle=a|V\rangle+b|Y\rangle$
Matrix Representation $\hat{A} \doteq\left[\begin{array}{ccc}A_{11} & \cdots & A_{l d} \\ \vdots & \ddots & \vdots \\ A_{d 1} & \cdots & A_{d d}\end{array}\right]$

$$
\begin{gathered}
A_{i j}=\left\langle e_{i}\right|\left(\hat{A}\left|e_{j}\right\rangle\right) \equiv\left\langle e_{i}\right| \hat{A}\left|e_{j}\right\rangle \\
\left\langle e_{1}\right| \hat{A}\left|e_{2}\right\rangle=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
A_{12} \\
A_{22}
\end{array}\right]=A_{12}
\end{gathered}
$$

## Special Operator Relations

## Characteristic vectors/values (eigenvectors, eigenvalues)

$$
\hat{A}\left|V_{a}\right\rangle=a\left|V_{a}\right\rangle
$$

Hermitian operator: $\quad \hat{A}^{\dagger}=\hat{A} \quad$ Real eigenvalues, Orthogonal eigenvectors

Unitary: $\quad \hat{U}^{\dagger} \hat{U}=\hat{I} \quad$ Preserves the inner product

$$
\begin{aligned}
& \hat{U}|V\rangle=\left|V^{\prime}\right\rangle \quad \hat{U}|W\rangle=\left|W^{\prime}\right\rangle \\
& \left\langle V^{\prime} \mid W^{\prime}\right\rangle=\langle V| \hat{U}^{\dagger} \hat{U}|W\rangle=\langle V \mid W\rangle
\end{aligned}
$$

## The Postulates of QM (I)

- A "pure state" of the system, representing some maximal knowledge, is a normalized ket in Hilbert space $|\psi\rangle$.

$$
\langle\psi \mid \psi\rangle=\|\psi\|^{2}=1
$$

- To every observable we associate a Hermitian operator $\hat{A}$.
- The possible values of an observable that one finds in a measurement are its eigenvalues, $\{a\}$.
- The probability of finding a value $a$ is given by the square of the amplitude in that eigenvector.

$$
P_{a \mid \psi}=\left|\left\langle e_{a} \mid \psi\right\rangle\right|^{2}
$$

## Notes

- The kets $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle=e^{i \phi}|\psi\rangle$ are the same state.

$$
P_{a \mid \psi^{\prime}}=\left|\left\langle e_{a} \mid \psi^{\prime}\right\rangle\right|^{2}=\left|\left\langle e_{a} \mid \psi\right\rangle\right|^{2}=P_{a \mid \psi}
$$

- The relative phase in a superposition is very important.

$$
\begin{aligned}
&|\psi\rangle=r_{1} e^{i \phi_{1}}\left|u_{1}\right\rangle+r_{2} e^{i \phi_{2}}\left|u_{2}\right\rangle \\
& P_{a \mid \psi}=\left|\left\langle e_{a} \mid \psi\right\rangle\right|^{2}= r_{1}^{2}\left|\left\langle e_{a} \mid u_{1}\right\rangle\right|^{2}+r_{2}^{2}\left|\left\langle e_{a} \mid u_{2}\right\rangle\right|^{2} \\
&+r_{1} r_{2}\left(e^{i\left(\phi_{1}-\phi_{2}\right)}\left\langle e_{a} \mid u_{1}\right\rangle^{*}\left\langle e_{a} \mid u_{2}\right\rangle+e^{-i\left(\phi_{1}-\phi_{2}\right)}\left\langle e_{a} \mid u_{1}\right\rangle\left\langle e_{a} \mid u_{2}\right\rangle^{*}\right) \\
&= p_{1} p_{a \mid 1}+p_{2} p_{a \mid 2}+\text { inteference }
\end{aligned}
$$

## Notes

- The set of possible measurement outcomes for an observable "span" the space $\longmapsto$ complete set.

$$
\begin{aligned}
& |\psi\rangle=\sum_{a} c_{a}\left|e_{a}\right\rangle \quad c_{a}=\left\langle e_{a} \mid \psi\right\rangle \quad p_{a \mid \psi}=\left|\left\langle e_{a} \mid \psi\right\rangle\right|^{2}=\left|c_{a}\right|^{2} \\
& \langle\psi \mid \psi\rangle=\sum_{a}\left|c_{a}\right|^{2}=\sum_{a} p_{a \mid \psi}=1 \quad \text { Total probability = } 1 \\
& \left.\langle A\rangle_{\psi}=\sum_{a} a p_{a \mid \psi}=\sum_{a} a\left|e_{a}\right| \psi\right\rangle\left.\right|^{2}=\langle\psi| \hat{A}|\psi\rangle \quad \text { Expectation value }
\end{aligned}
$$

- Not all operators share the same eigenvectors
$\longmapsto$ Impossible to measure all observables simultaneously. Measurement of one observable disturbs the other.


## Heisenherg Uncertainty princinle

## Postulates of QM (II)

- After a measurement, the state of the system is updated to the eigenvector associated with the measurement outcome.

$$
|\psi\rangle \underset{a}{\Rightarrow}\left|e_{a}\right\rangle \quad \text { (Bayesian) }
$$

- In the absence of any measurement, a closed system evolves according to a unitary map (preserving inner products).

$$
|\psi(t+\tau)\rangle=\hat{U}(\tau)|\psi(t)\rangle
$$

- Physics determines the dynamics $\frac{d}{d t} \hat{U}(t)=\frac{-i}{\hbar} \hat{H} \hat{U}(t)$


## The (time denendent) Schrödinger Equation

## Example: Photon Polarization

- State: Normalized complex polarization vector $\vec{\varepsilon}, \vec{\varepsilon}^{*} \cdot \vec{\varepsilon}=1$
- Orthonormal bases: $\left\{\mathbf{e}_{H}, \mathbf{e}_{V}\right\} \quad\left\{\mathbf{e}_{D_{H}}, \mathbf{e}_{D-}\right\} \quad\left\{\mathbf{e}_{R}, \mathbf{e}_{L}\right\} \quad$ Let us call $\{\mathrm{H}, \mathrm{V}\}$

$$
\mathbf{e}_{H}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathbf{e}_{V}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \mathbf{e}_{D+}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathbf{e}_{D-}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \mathbf{e}_{R}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right] \quad \mathbf{e}_{L}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

- Three (incompatible) observables:


$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Pauli matrices with eigenvalues $\pm 1$

## Incomplete Information

Suppose someone prepares a photon by flipping a coin.

## State?

Statistical Mixture: 50\% H, 50\% V


## Incomplete Information

## State?

Statistical Mixture: 50\% H, 50\% V


$$
\begin{aligned}
& p_{D+}=p_{H} p_{D+\mid H}+p_{V} p_{D+\mid V} \\
& p_{D+}=\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Unpolarized!

## Density Operator

## Quantum Computing vs. Wave Computing

- Analog vs. Digital.
- Quantum phenomena involve discrete events (e.g. photon detection).
- Wave and Particle $\Leftrightarrow$ Analog and Digital.
- Possibility of error correction.
- Physical space vs. Hilbert space
- Modes of field require physical resources.
- Exponential number of modes not scalable.
- Quantum mechanics allows exponentially large dimension with polynomial physical resources.
- Entangled states!


## Summary

- Quantum Mechanics predicts the outcomes of experiments.
- States = Vectors in a complex linear space.
- Observables = Matrices (operators) on the space
- Eigenvalues = possible measurement outcomes.
- Eigenvectors = the state after the measurement is done.
- Probability of finding a measurement value = square of complex amplitude (Born rule).
- In a closed system, the system dynamics described by unitary matrices.
- Quantum "coherent superpositions" differ from "statistical mixtures". Noise can "decoher" a system.
- Quantum computing not equivalent to wave computing.

