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Postulates of QM

• In a closed system the state dynamics is determined by the

Schrödinger equation ---> Unitary map that preserves in product.
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 • A (pure) state of the system describing our knowledge of the

system is given by a vector in Hilbert space,     .
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ˆ A • A physical observable is a Hermitian linear operator     whose (real)

eigenvalues        determine the possible measurement outcomes.
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a• Upon finding value a the state “collapses”,
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Example: Photon Polarization (I)
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Example: Photon Polarization (II)

• State: Normalized complex polarization vector    ,    
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• Three (incompatible) observables:

(H,V)(D+,D-)
(R,L)
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Eigenstates of General

Linear Polarization Analyzer
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Basic Measurement Statistics (I)
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Joint Probabilities for Multiple Events

Example:  Spontaneous Parametric Downconversion

BBO

Coincidence

Counter

PHH=?

Correlations: Joint Probability
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Multipartite Systems and Tensor Product

Multiple Degrees of Freedom

Consider a physical system with many degrees of freedom

(e. g. many particles.)

Pure states of the ith subsystem is described by a vector in a Hilbert

space hi ,             .

Joint state of whole system is a vector in the tensor product space:

Example: Bipartite System of Two Photons
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Tensor Product: Formal Structure

  

� 

e
i A

i = 1,K,d
A{ }   

� 

f j
B
j = 1,K,dB{ }

� 

Ei, j
AB

= ei A
! f j

B
= ei f j = ei, f j = ij{ }

General state vector: 

� 

!
AB

= cij ei A
"

ij

# f j
B

� 

cij = ei A ! f j
B

( ) " AB
= ij "

AB

  

� 

HAB = hA !hB

Orthonormal basis for
  

� 

hA
Orthonormal basis for

  

� 

hB

Orthonormal “product basis” for joint space

� 

p(i and j) = ij !
AB

2

= cij
2

Joint Bipartite Hilbert space:



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Uncorrelated Probabilities

 Consider a “product state” in the joint Hilbert Space HAB

Product state !" Statistically Uncorrelated Events
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Entangled States

BBO

“Quantum Correlated” events = Superposition of joint processes.

Feynman: Add probability amplitudes for indistinguishable processes.

Pump

Signal

Idler

“Type II” Downconversion:  Signal and Idler have opposite polarization.

But which?  Process does not distinguish them --> superposition.
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Bob
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Entanglement and correlated collapse

Suppose a measurement of the signal photon’s polarization is made in

the H-V basis and the result “H” is found.

What is the post-measurement state?
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The state of the idler photon “collapses” due to measurement of the signal.

What Alice knows about the Bob’s photon is effected by her measurement

because she knows the photons are correlated.
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Classical Correlation
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Classical Correlation

I got red.

Alice must have gotten green.
I got green.

Bob must have gotten red.
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Classical Correlation

I got green.

Alice must have gotten red.
I got red.

Bob must have gotten green.

Note: Alice and Bob’s results are random, but perfectly correlated.
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“Singlet”: Anticorrelated in any basis

BBO

Pump

Signal

Idler

(D +
,D -

)

(D
+ ,D

- )
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“Singlet”: Anticorrelated in any basis

BBO

Pump

Signal

Idler

(D +
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“Singlet”: Anticorrelated in any basis

Proof:

  

� 

!
si
" 1#

s

1# !
si

=
1

2
1#

s

1# H
s

cos#
1 2 3 

$ V
i
% 1#

s

1# V
s

sin#
1 2 3 

$ H
i

& 

' 

( 
( 

) 

* 

+ 
+ 

" 1#
s

$ cos# V
i
% sin# H

i
( ) = 1#

s

$ %1#
i

If signal photon is found linear along #, idler is found in
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Classical Correlation
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Classical Correlation

I got red.

Alice must have gotten green.
I got green.

Bob must have gotten red.
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Classical Correlation

I got blue.

Alice must have gotten orange.
I got orange.

Bob must have gotten blue.

But....

(R,L) (H,V)(D+,D-)
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INCOMPATIBLE.

Cannot be measured

simultaneously.
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Classical Correlation

I got red.

Alice must have gotten green.
I got green.

Bob must have gotten red.
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Classical Correlation

I got purple.

Alice must have gotten yellow.
I got yellow.

Bob must have gotten purple.
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Classical Correlation

Results are uncorrelated.

I got red.

Alice must have gotten green.
I got yellow.

Bob must have gotten purple.

(random result)



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

EPR Paradox
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)

. 

If, without in any way disturbing a system,

we can predict with certainty (i.e., with

probability equal to unity) the value of a

physical quantity, then there exists an

element of physical reality corresponding

to this physics quantity

EPR argue that, by their definition of “realistic properties”, quantum

mechanics “incomplete” as it cannot give definite predictions of

measurement results that have some definite value (hidden variables).
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The EPR Argument
(Version due to Bohm, 1951)

• Consider entangled state, 
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•If Alice were to measure     on her photon, she can, without in any way

effecting Bob, determine whether he will find H or V should he perform a

    measurement.          Bob’s value of      is an “element of reality”.
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•If Alice were to measure     on her photon, she can, without in any way

effecting Bob, determine whether he will find D+ or D- should he perform a

    measurement.          Bob’s values of      is an “element of reality”.
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• Quantum mechanical states cannot give a simultaneous definite

value of both      and      since these operators don’t commute.
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Quantum mechanical sates are not a “complete” description of the

physical world and can be completed by some “hidden variables”.
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John Bell:

Putting Hidden Variables to the Test

Bell took EPR seriously, 30 years

after they published their original

paper and asked when the EPR

assumption had any measurable

significance.  Amazingly...YES!

Bell’s Inequality.

J.S. Bell, Physics 1 195 (1964).
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Formal Statement of EPR

Consider measurement of,      linear polarization at angle #.
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ˆ ! "

According to EPR, the value that Alice measures is a function of

her polarizer setting #a and the “realistic hidden variables” $.

Similarly for Bob, and his polarizer setting #b.

Measured values:
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A(!
a
,") = ±1
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B(!
b
,") = ±1

The crucial assumption is that A is not a function of #b, and B  is

not a function of #a. “Local hidden variable theory”.

These functions show produce the same statistics as quantum

mechanics for some suitable distribution of $.  They should reproduce

the quantum mechanical results.
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Hidden Variable Model for Single Photon

Linear Polarization Measurement
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Correlation functions

For quantum mechanical singlet state
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Can the local hidden variable theory mimic the QM prediction? 

(Expectation value)
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Measuring Correlation Functions

BBO
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Idler
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Coincidence counting
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Bell/CHSH Inequality
(Clauser-Horne-Shimony-Holt version, Phys. Rev. Lett. 23 880 (1969))

Alice and Bob can choose to measure in one of two local basis
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QM Violates LHV
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Experimental Verification

• First definitive test: 

Aspect et al. 1982, Phys. Rev. Lett. 49 1804. 

• Modern tests:

P.G. Kwiat et al. 1995, 75 4337  

100 standard 

deviations in <5 min.

Bright source of 

entangled photons

S

P

S

Atomic cascade
6 standard deviations

averaged for hours.
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Implications

• Quantum mechanics cannot be described by a local realistic theory.

• Nonlocal hidden variables?

• No “realistic properties” of observed quantities.

• Entanglement CANNOT be used to communicate faster than the speed

of light.

• Alice and Bobs results are random but correlated.

• Entanglement as a resource.

• Quantum correlations are special and destroyed by “eavesdropper”.

•  Communication tasks aided by shared entanglement:

• Quantum dense coding.

• Teleportation.

•  Distributed computation (e.g. appointment problem).


