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Qubits: The binary quantum system

Quantum object in a two-dimensional Hilbert Space, 

Logical Basis: Two chosen orthogonal states:
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Spin 1/2

Intrinsic Magnetic Moment of Particles (e.g. proton)  

Like spin ball of charge
Angular momentum
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Stern Gerlach: Measurement of spin along z-axis (two possible outcomes)
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Spin 1/2:  Repeated Measurement

z-axis
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General State: 
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“spin up (along x)”

“spin down (along x)”

Isomorphic to photon polarization measurement: HV followed by D+D-

Spin-up/down along some axis
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Bloch Sphere Representation

Two parameters needed to specify state: relative probability and phase 

Let 
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Bloch Sphere Representation

Two parameters needed to specify state: relative probability and phase 
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Bloch Sphere Representation

Two parameters needed to specify state: relative probability and phase 

Let 
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Pauli Matrices
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For spin-1/2, these correspond to observables that can be measured in a

Stern-Gerlach analysis along x,y,or z axis respectively.

Eigenvalues, ±1.    Eigenvectors, 

� 

!x,y,z , "x,y,z{ }

Incompatible Measurements.  Commutator:
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e.g.
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Other useful properties:

• Anticommute:
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• Hermitian and Unitary:
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General Pauli Observable
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Eigenvalues: ±1.   Eigenvectors

Quantum Dynamics (closed system):   Unitary Matrix

Rotation on the Bloch Sphere (axis/angle)
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Example:  Hadamard Matrix
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Example:  Pauli Operations as Unitaries
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Note:  Action of X and Z reversed in “Hadmard Basis” 
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Multiple Qubits

n qubits = n two-level quantum systems (e.g. n spin-1/2 particles)

Tensor product Hilbert space:

Dimension orthogonal states

Logical Basis:   
  

� 

x x = 0,1,K,2
n
!1{ } x in binary.
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0 ! 0 0 0 , 1 ! 0 0 1 , 2 ! 0 1 0 , 3 ! 0 1 1

4 ! 1 0 0 , 5 ! 1 0 1 , 6 ! 1 1 0 , 7 ! 1 1 1

E.g.
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Bell Basis

Bipartite (two qubits) Logical Basis:
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Simulate Eigenvectors of: 
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Global Properties in Joint Operators
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Entanglement as a Resource:

Suppose Alice and Bob share prior entanglement.

Can Alice communicate with Bob in ways not possible classically?
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Entanglement as a Resource:

Suppose Alice and Bob share prior entanglement.

Yes!  But no information transfer faster than speed of light (causality).

 

E.g. Superdense Coding

Can Alice communicate with Bob in ways not possible classically?

Alice
Bob

� 

!
(+)
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Superdense Coding

• Alice wants to send Bob two bits of information.

• Message one of four secrets: {00 = I,  01=X,  10=Z, 11=Y}.

• She has in her possession one qubit.  If she manipulates it any way

she likes, sends this to Bob, and he measures it, he can learn no

more than ONE bit of information.

• If Alice’s qubit is entangled with one already in Bob’s possession,

and he performs a joint measurement, he can extract TWO bits of

information.

• Alice thus encodes a two-bit message in her one qubit, correlated

with Bob’s qubit ---> superdense coding!  Like effecting a four sized

die while only manipulating a two-sized object.
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Local operation changes global state

� 

X
A
! I

B
"
(+)

= X
A
0 ! I

B
0 + X

A
1 ! I

B
1 = 1,0 + 0,1 = #

(+)

� 

Z
A
! I

B
"
(+)

= Z
A
0 ! I

B
0 + Z

A
1 ! I

B
1 = 0,0 # 1,1 = "

#( )

� 

Y
A
! I

B
"
(+)

= Y
A
0 ! I

B
0 +Y

A
1 ! I

B
1 = i 0,0 # 1,1( ) = i$

#( )

irrelevant overall phase

• By acting on her qubit locally, Alice can effect the state of the joint state.

• Bob can detect this action with ONLY his qubit.  Must measure BOTH

qubits.
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0 0

I got $(+), 

Alice must have applied I 

(identity) to her qubit. 

Superdense Coding

Alice
Bob

parityphase
Bell meter

� 

!
(+)
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0 1

I got $(-), 

Alice must have applied X 

to her qubit. 

Superdense Coding

Alice
Bob

parityphase
Bell meter
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1 0

I got %(+), 

Alice must have applied Z 

to her qubit. 

Superdense Coding

Alice
Bob

parityphase
Bell meter
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1 1

I got %(-), 

Alice must have applied Y 

to her qubit. 

Superdense Coding

Alice
Bob

parityphase
Bell meter
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Quantum Teleportation

Alice wants to send Bob a qubit in an unknown (pure) state.  The quantum

channel connecting them is noisy so the qubit would be corrupted if she

transmitted.  She cannot measure the qubit and then call Bob to have give

make his own copy because her measurement will project it onto an

eigenstate.

AliceBob Classical Channel

Quantum Channel
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Quantum Teleportation

AliceBob Classical Channel

Clean Quantum Channel
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Quantum Teleporation: The Math

Three qubit  joint state of Alice, Bob, and “Victor” who prepared      :

� 

! = "
V
# $(+)

AB
= % 0

V
+ & 1

V
( ) # 0

A
# 0

B
+ 1

A
# 1

B
( )

� 

=
1

2
0

V
! 0

A
+ 1

V
! 1

A
( ) ! " 0

B
+ # 1

B
( ) + 0

V
! 0

A
$ 1

V
! 1

A
( ) ! " 0

B
$ # 1

B
( )[

+ 0
V
! 1

A
+ 1

V
! 0

A
( ) ! " 1

B
+ # 0

B
( ) + 0

V
! 1

A
$ 1

V
! 0

A
( ) ! " 1

B
$ # 0

B
( )]

� 

! =
1

2
"(+)

VA
# $

B
+ "(%)

VA
# Z$

B
+ &(+)

VA
# X $

B
% i&(%)

VA
#Y $

B
( )

A measurement by Alice in Bell-basis leaves Bob’s qubit in one of four states:
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B
, X !

B
, Y !
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{ }

Alice uses the classical channel to tell Bob which Bell state she found.

Bob can then put his qubit in the unknown state, through application of a Pauli.
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Digital (Classical) Information Processing

Classical Computing:  Function on n-bit string

� 

F {0,1}
N( ) = {0,1}

M

Function constructed from operations on small collections of bits

NOT
XOR NAND

“Logic Gates”
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Note:  Not is reversible.  XOR and NAND are not.  

Can be made reversible with extra bits.

NAND (plus copy) is UNIVERSAL for computation.
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Digital Quantum Information Processing

Map on n-qubits is a 2nX2n unitary matrix - Reversible.

Single qubit logic gates:  Rotations on the Bloch sphere.

E.g.

� 

NOT = X = iR
x
(! ) =

0 1

1 0

" 

# 
$ 

% 

& 
' 

� 

NOT = e
i! / 4

R
x
(! /2) =

e
i! / 4

2

1 "i

"i 1

# 

$ 
% 

& 

' 
( 

� 

H =
1 1

1 !1

" 

# 
$ 

% 

& 
' Hadamard



I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Logic Tables and Quantum Circuits

Action of unitary determined by action on logical basis: 
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X x = x 
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H x = x + (!1)
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Two Qubit Logic

Classical XOR:

� 

(x,y)! y" x (binary addition)

Classical Reversible XOR:

� 

(x,y)! (x, y" x)

Transformation on logical basis states is a unitary matrix!

“Control NOT”:

Flip the target when

Control is 1.

control target

0 0
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1 1

0 0
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1 1

1 0

C T C T
in out
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Controlled Unitaries: If-Then in QC

U

Apply U to the second qubit when

the first qubit is logical-1.

Matrix in logical basis:
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CNOT is Entangling

Consider the following circuit

H
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1
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1

= 0 + 1( ) 0 = 0 0 + 1 0� 

!
out
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out

= 0 0 + 1 1 = "(+)
Entangled State

By putting the control in a quantum super position, the circuit

undergoes a superposition of classical computations.

Quantum Parallelism
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Universal Quantum Logic

An arbitrary unitary matrix on n-qubits can be constructed from

a sequence of unitaries on subsets of qubits.

Universal set.

All single qubit rotations + one entangling two-qubit unitary 

(e.g. CNOT) acting between pairs on a connected graph.

Note:  Any single qubit unitary can be constructed from discrete set.

E.g.  

� 

H, T ! R
z
(" /4){ }

Note: Arbitrary unitary will require exponential number of gates.

Quantum algorithm = Efficiently implementable useful 

unitary that scales like a polynomial in n, for which the answer can

be found by measuring in logical basis with high probability.


