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Qubits and Quantum Gates: Review

Qubits: 0) = (é) ) = |0) + B|1)

1) = ((1’) ol + 18 = 1

Gates: Rays in Hilbert space
A U= R(e) = e
i
su,ij_: L i 3 n-o :nxO'x—I-nyO'y—l—-nza'z

. . 0 1 0 —1 (1 0
Pauli matrices: ax:<1 O) Uy:<z' O) Uz—<0 _1)
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Qubits and Quantum Gates: Review

Quantum circuit notation:

{Ra(0) |- =R (2m) = (3 (1))
—x}- =ik —{H}= R _%G —D
[y} =ik(m [P} =R = (é S)
|z} =ik Hr}= R = (63/8 6i2/8>
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Qubits and Quantum Gates: Review

More gates:
CNOT |00)|01)|10)|11) SWAP
1 0 0 0\ [00) N 100 0
lo 1 0 o] o) b loo 10
“ o 0o 0o 1| [0 “lo 10 0
D 00 1 0/ |11 D 00 0 1
P &P C/C++ code:
_ l T L e b e a e
P NP, D
Measure (1

i

3
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Qubits and Quantum Gates: Review

Controlled-U: U=R.(a)Ry(B)R.(7)
CU
1 0 0 O
T B L L _ 0O 1 0 O
— 0 0
— U — — C N B N A— (O 0 v )

ABC = I
AXBXC = R.(a)R,(B)R.(7)
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Qubits and Quantum Gates

Universal gate bases:

Any U € SU(n) can be approximated to arbitrary precision by ¢
using O(f(n) - 1/&°) gates from the basis.

Solovay-Kitaev Theorem proves that only O(f(n) - log®1/e) gates
are needed for this precision.

Examples:
{CNOT,{U}{,|0), M}  Simple: Good for building quantum algorithms.

{CNOT,H,T,|0), M} Discrete: Good for robust/computable implementations.

{U 2, generic’ |O>, ./\/l} Abstract: Good for existence proofs.

Other interesting universal gate sets exist, e.g., measurement-and-state
only sets. Current research area!

Andrew J. Landahl, University of New Mexico

Short Course in Quantum Information |+> © 2005, Andrew J. Landahl




~— Quantum Algorithms
Bgfnstein-Vaza:Jani pgroblem Why this field eXiStS.

Collision problem

Deutsch-Jozsa problem

Discrete logarithm

Element distinctness

Gauss sum approximation
Gradient estimation

Hidden shift problem

Hidden subgroup problem

Integer factoring

Jones polynomial evaluation
Matrix commutativity testing A B o C ?
Matrix multiplication verification i
Maze solving

Mean estimation

Median estimation

Mode estimation

Order finding

Ordered search

Local Hamiltonian simulation
Parity evaluation

Pell’'s equation

Period finding

Phase estimation

Shifted Legendre symbol problem
Simon’s problem

Sparse Hamiltonian simulation
Spatial search

Triangle finding

Unordered search
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Quantum Algorithms
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(David) Deutsch’s Problem

“ 7& | [D. Deutsch, 1985]
3 e el

r —> — f(z)
input bit output bit
r | f1 Jo Jz3 Ja

Question: Is f constant or balanced?

-]
-]
-]
p—
p—




Deutsch’s Problem

the

Red 2 = David or lvan Green
Chile ,l ]

Bible Chile
b gl f Jow— Red or Green Bible

Example: Do the Deutsch’s like the same kind of chile or not?

Problem: | only have time to query the function once.

Solution: Use a quantum black box!

A —_— f(x)

input bit output bit

2 )




Deutsch’s Problem

First attempt: IQZ‘> —Us— | f(x))

f(0) = f(1) = Not unitary (noninvertible)

Second attempt: |£L’> T £L’>
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(David) Deutsch’s Algorithm

Controlled by Output post- o L (1 1)
superposition processed V2 \1 -1

~ = " —

0) i H|—<&— |£(0) ® f(1))

0) —[x{u U 22(10) — 1))
N—— ——

Superposition
sent to input

0710y — [0)[1) =1(-1)¥O)0}(|0y — 1))+
— 1(10) + [1))([0y — 1)) S(=D/1)(j0) - 1))
—310)(1£(0)) — L@ £(0)))+ =(-1)7OL(j0) + (=1)F O/ W)1))
sIDAFQ) = 1@ f(1)) (10) = [1))
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(David) Deutsch’s Algorithm

Controlled by Output post- o L (1 1)
superposition processed B \d =1
~ N e e
0 H |y <= () ® /(1)
O X E 75(10) — 1)
N, e’

Superposition
sent to input

5(10) + (=1)7O%7 D 1))(j0) 1))

= gL+ (=IO W)0) + (1 — (=1)7 O D)1))](j0) - |1))

\¥}

{|0>%(0> —1)) i fO)® f(1) =0
1) 2=(10) — 1)) if fF(0) @ £(1) = 1.

Andrew J. Landahl, University of New Mexico

Short Course in Quantum Information |+> © 2005, Andrew J. Landahl



Quantum transforms

What is the Hadamard transform doing?

HIb) = Z =550 )

J. Hadamard
% 1 Z S (1865-1963)
H n|bl,...,bn>: — (—1) LE “z"|z1,...,zn>
2 Z1y--+3%n
2" —1
n -k
H®"|j) = \/Q—n Z 1)7* k)
2" —1
Tj = \/Z_n Z Walsh-Hadamard Transform

(Fourier transform in square waves)

n steps: 2™ x 2™ matrix transform

Andrew J. Landahl, University of New Mexico
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Quantum transforms

written by Jos

Fourier Transform

eph "Jqules-With-Numbors: " Fourier

Discrete Fourier transform:

1 2n 1
:z,j . = Z e27mgk/2 T
V2 k=0 Fast Fourier Transform: (’)(nQ”)

Naive Fourier Transform: (9(22”)

A Reference
for the

h :
Rest of Us!

Joseph Fourier
Famous French mathematician 7
and bringer of great pain

http://jan.moesen.nu/media/images/fun/

2" —1

: 1 2mijk /2™
J) — Jon Z e” ) Quantum Fourier Transform: O(n2)
k=0

Caveat: QFT is in the amplitudes.

J. Fourier
(1768-1830)

= 4




Fast Fourier transform
T; — ! Z_ e%ijkmn%k Must multiply 5 by k for 2" values of k.

V2" k=0

Fast Fourier Transform:

J = Jn—1---Jo | .
Binary expansion.:

k=k,_1...ko

ik . - . .

on = kn—1(0.50) + kn—2(0.51J0) + - + ko(0.jn—1 ... jo)

Example: n=3, =2, k=3
2-3
n multiplications for 2™ terms in sum: O(n2") 3 = 0(0.1) +1(0.10) + 1(0.010)

=0.11
=1/2+1/4
=3/4
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Quantum Fourier transform

. [ 2mijk /2"
- ; eI |k
= = (0) + O - [0) 4 27O
R, = eiw/2k+1Rz(21k) = ((1) 67)770/2k>
Example:n = 3
j2> — H—Ri— R 75(|0) 4 203201700 1))
i) l -k, 25(10) + T3 1)
jo) . l H — 5(0) + 2050 1))

N.B. It is possible to modify the circuit to use only single-qubit gates with adaptive computation.
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Quantum Fourier transform

Complexity of QFT:

n Hadamard gates

nin —1
( 5 ) Controlled-Ry, gates O(n2) QFT “algorithm”

SWAP gates

| S

L (]0) + e2miC9290) 1))

]2> —H Ry Ro
]1> l H Rl \}§(|0> _|_€27ri(0.j1j0)|1>>
j0> ® l H \}5(’0> _|_627ri(0.j0)|1>)
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Phase estimation “algorithm”

Given: Controlled- 72" gates, Cp .,k € {1,...,n}

Eigenstate [¢) of U such that Ul|y) = 2™ |¢). ’y g
"
Problem: Estimate ¢ to n bits of precision. =" _ E
Solution: Phase 1 A. Kitaev
0) — H —5(10) + e )
10) Hi— ° * —5(10) + 22720 1))
0) — H ’ 25 (10) + 2™ |1))
) 2 —? U )
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Phase estimation “algorithm”

Given: Controlled- 72" gates, Cp .,k € {1,...,n}
Eigenstate [¢) of U such that Ul|y) = 2™ |¢).

Problem: Estimate ¥ ton bits of precision.

Solution: Phase 2

75(10) + 22 9)|1)) — o)
1 QFT™!
2(10) + " )|1)) — Pn—2)
([0 + 2@ 9)1)) Pr1)
) ¥)
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Phase estimation “algorithm”: Analysis

0) A=y —{orr T |—<ai— l)
—~—

)

Caveat: If @ is not exactly n Dbits, error analysis is subtle.
For details see:

Classical

and Quantum 3
Quantum Computation

ComPUtation and Quantum Informatio,_g";g}.:,

Andrew J. Landahl, University of New Mexico | +>
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Factoring
ﬁepmblem of distinguishing prime numbers from Composite\

numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic.
[...] Further, the dignity of science itself seems to demand that
every possible means be explored for the solution of a problem
so elegant and so celebrated.”

GS0650036G3

—Carl Friedrich Gauss

Disquisitiones Arithmeticee, 1801
(translation: A.A. Clarke)

ZEHN DEUTSCHE MARK

Andrew J. Landahl, University of New Mexico
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Factoring Problem

Input: Positive integer NV .
Output: Positive integer p > 1 that divides N, n = log N
if N is a composite number.

Best-known classical algorithm:
Number field sieve [Pollard, 1988]  €XD [nl/ 3. 1og?3n - (’)(1)]

==y -

2310 £

23 5
Ny 1

Shor’s factoring algorithm [Shor, 1994] C’)(n?’)

Best-known quantum algorithm:

N.B. Very parallelizable!
O(n® log?® n)-sized circuit with O(logn) depth. [Cleve & Watrous, 2000]

Andrew J. Landahl, University of New Mexico
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Factoring in Theory

FACTORING
Input: Positive integers N and &k < N .
Output: Does N have a factor less than k ?

FACTORING

Can verify YES or NO efficiently with a witness
[Agarwal, Kayal, Saxena, 2002]

Andrew J. Landahl, University of New Mexico
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Factoring in Practice

General Purpose Factoring Records - Mozilla'Firefox:
File Edit View Go Bookmarks Tools Help

é - - ?& ﬁ H_x http://www.crypto-world.com/FactorRecords. html E] 9 Go ‘VIC!,

> Getting Started [ Latest Headlines

[»]

General Purpose Factoring Records

Below is a chart of general purpose factoring records going back to 1990. By "general purpose”, we mean a factoring algorithms whose running time is dependent upon only the size of the number
being factored (i.e. not on the size of the prime factors or any particular form of the number).

Sieving is typically the dominant factorization run time in practice. All sieving times below are approximate. Early versions of factoring records estimated time in MIPS years, which is the number
of years it would take a computer that operates at one million instructions per second to factor the number. More recently, almost everybody uses Pentiums or AMDs. Thus, we scale some timings
to Pentium 1GHz CPU years: the number of years it would take a 1GHz Pentium (or AMD) to complete sieving.

| number | digits | date completed I sieving time | algorithm
|C116 ‘ 116 I 1990 1275 MIPS years Impqs
IRSA-IZO ‘ 120 IJune, 1993 |83O MIPS years |mpqs
IRSA-129 ‘ 129 |April, 1994 ISOOO MIPS years |mpqs
IRSA-IBO ‘ 130 IApril, 1996 I 1000 MIPS years 'gnfs
IRSA-M-O ‘ 140 February, 1999 ]2000 MIPS years Ignfs
|RSA-ISS ‘ 155 IAugust, 1999 |8000 MIPS years |gnfs
IM ‘ 158 |January, 2002 '3.4 Pentium 1GHz CPU years |gnfs
]RSA-160 ‘ 160 IMarch, 2003 IZJ Pentium 1GHz CPU years |gnfs
|RSA-576 ‘ 174 IDecember, 2003 l 13.2 Pentium 1GHz CPU years ' gnfs
I% ‘ 176 | May, 2005 |48.6 Pentium 1GHz CPU years Ignfs
IRSA-ZOO ‘200 May. 2005 I 121 Pentium 1GHz CPU years [ ] Ignfs

[*] In regard to RSA-200, Thorsten Kleinjung writes: we spend 25% of the total time for the matrix step. If one considers the total time we spent about 170 CPU years.

For more factorization results, please see the Factorization Announcements page or Paul Zimmermann's Factor Records page. ‘ ‘

Done
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Factoring algorithms

Difference-of-squares technique:

Random x,y such that

22 =y* mod N

N divides z? — y2 = (:U + y)(CE‘ — y)

Hope that ged(x —y, V) > 1.

Art: Choosing x,y wisely.

Andrew J. Landahl, University of New Mexico
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Factoring in five easy steps witer 1976]
\ 4

Return 2 ]

Return m]

xre{2,...,N -1} 5
randomly, uniformly. O(n”)
Y = ng x, N (Euclid’s algorithm)

Compute min r such
that " =1 mod N

< .i
7R

[ Return 1 ]

3
O(n”)
(Quantum order-
finding algorithm)

Return 1 ]

O(n?)

(Euclid’s algorithm)

Return d ]




Factoring from order finding: Analysis

Only way to fail is if order is odd or an even order doesn’t yield a nontrivial gcd.
N = pclll - .ka

Pr|r is odd or r is even and d = 1]

|
7\
N | —
N
>
!

S —

Proof: Uses Chinese Remainder theorem. See one of the below for details:

Classical
and Quantum

Computation Quantum Computation

and Quantum Information™

in Mathematics

N,
{ 71§ American Mathematical Society
L=
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Factoring from order finding: Example

N = 15 = 3.5 [Vandersypen et al., 2001]

1. IN even? No.
2. N =m*? No.

5. y=ged(z, N). z€{2,434,5,6,7,8,9,10,11,12,13,14}
x €4{2,4,7,8,11,13,14} have y = 1.

4. 2" =1 mod N. 2" ={2% 42 7* 8% 11%,13* 14*}

All possible orders are even.
5. d =ged(z"/? —1,N) = {3,3,3,3,5,3,1}.
Every possibility but one yields a nontrivial factor of V.
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Order finding from phase estimation

Consider the unitary operator
U, vly) = lzy mod N)

Some of its eigenstates are of the form
v;) = Z e *TIET|zF mod N),

where 7 is the order of x in Z .

Why? Because

U, le] \/_Z —27rzgk/r|wk—l—1 oot N>

2T

Andrew J. Landahl, University of New Mexico

Short Course in Quantum Information |+> © 2005, Andrew J. Landahl




Order finding from phase estimation

We can construct

ok
UCI:,N

using the O([log N1%) modular exponentiation

algorithm. Given |¢;), we can then run the phase estimation algorithm

to find ¢ = j/r to 2n = 2[log N| bits of precision:

0) 4~ H ZMT QFT™!

-

Vi) U*

Given this, we can use the O(n?) continued fractions algorithm to
obtain j/r in irreducible form exactly because j and r are bounded

by N.

For details on the classical
algorithms MEA and CFA, see:
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Order finding from phase estimation

Given j/r in irreducible form j'/r’ for several values of j, we can find r

with high probability:  (r = lem(r],75) if j1 and j5 are coprime.)

Any prime p divides 1/p of all numbers.
= Pr[p divides both j| and j] = 1/p*

71and jjare coprime iff there is no prime p that divides both.

1
= Pr[j; and j5 are coprime] = (1 — —)
and (-

prime p

Andrew J. Landahl, University of New Mexico 'ﬁ‘
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Order finding from phase estimation

We're almost done. All we need is a way to generate eigenstates |¢;) at

random and we can efficiently factor integers!

Using the identity BOyr=8w=e/® uf g
6
r—1 A v8 w8
e—27r'ijk/’l” — 7). Im% wg wsg
70 Re w§
8
k=0
- G« Y - G ~ R < Y < S < i

We know that

%iw By
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Order finding from phase estimation

We could measure |1) in the |¢;) basis and run the phase estimation
algorithm, but since this measurement commutes with U2k, we can

measure at the end of the circuit, and indeed, we can omit measuring

altogether:

0) 4 H T QFT~! —<— |)
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Factoring: Summary

* Quantum Fourier transform = Phase estimation algorithm

* Phase estimation algorithm +
Continued fractions algorithm +

Modular exponentiation algorithm = Order finding algortihm

 Order finding algorithm +

Euclid’s algorithm = Factoring

Andrew J. Landahl, University of New Mexico
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Tune in next time...

* Nov. 16: No lecture, but....

Sankar das Sarma: Physics, Chemistry, & Nanosciences Colloquium

Topic: Spintronic quantum computing (9:15 a.m., building 897, Rms. 1010-1012).

\ have r 'have
L Clashe g
) .
- @ »

(s,

A

Schrodinger's computer,

* Nov. 23: Next lecture on Quantum Error Correction by lvan Deutsch.
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