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Qubits and Quantum Gates: Review

Qubits: 

Gates:

Pauli matrices:

Rays in Hilbert space
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Qubits and Quantum Gates: Review

Quantum circuit notation: 
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Qubits and Quantum Gates: Review

More gates: 

CNOT

Measure

SWAP

a ^= b ^= a ^= b

C/C++ code:
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Qubits and Quantum Gates: Review

Controlled-U: 

CU
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Qubits and Quantum Gates

Universal gate bases: 

Simple: Good for  building quantum algorithms.

Discrete: Good for robust/computable implementations.

Abstract: Good for  existence proofs.

Other interesting universal gate sets exist, e.g., measurement-and-state

only sets.  Current research area!

Any                       can be approximated to arbitrary precision by

using                          gates from the basis.

Solovay-Kitaev Theorem proves that only                               gates

are needed for this precision.

Examples: 
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Approximate counting

Bernstein-Vazarani problem

Collision problem

Deutsch-Jozsa problem

Discrete logarithm

Element distinctness

Gauss sum approximation

Gradient estimation

Hidden shift problem

Hidden subgroup problem

Integer factoring

Jones polynomial evaluation

Matrix commutativity testing

Matrix multiplication verification

Maze solving

Mean estimation

Median estimation

Mode estimation

Order finding

Ordered search

Local Hamiltonian simulation

Parity evaluation

Pell’s equation

Period finding

Phase estimation

Shifted Legendre symbol problem

Simon’s problem

Sparse Hamiltonian simulation

Spatial search

Triangle finding

Unordered search

Quantum Algorithms
Why this field exists. 
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Deutsch’s Problem

input bit output bit

Question: Is f constant or balanced?

[D. Deutsch, 1985]

(David)
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Deutsch’s Problem

input bit output bit

Example: Do the Deutsch’s like the same kind of chile or not?

Problem: I only have time to query the function once.

Solution: Use a quantum black box!

David or Ivan

Red or Green
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Deutsch’s Problem

First attempt:

Not unitary (noninvertible)

Second attempt:

Aha!
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(David) Deutsch’s Algorithm

Superposition

sent to input

Controlled by

superposition

Output post-

processed
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Quantum transforms

What is the Hadamard transform doing?

J. Hadamard

(1865-1963)

Walsh-Hadamard Transform

(Fourier transform in square waves)

steps: matrix transform 
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Quantum transforms

Discrete Fourier transform:

J. Fourier

(1768–1830)

Naïve Fourier Transform:

Caveat: QFT is in the amplitudes.

Fast Fourier Transform:

Quantum Fourier Transform:

http://jan.moesen.nu/media/images/fun/
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Fast Fourier transform

Must multiply     by     for      values of    .

Fast Fourier Transform:

     multiplications for       terms in sum:

Binary expansion.:

Example:
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Quantum Fourier transform

Example:

N.B. It is possible to modify the circuit to use only single-qubit gates with adaptive computation.
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Quantum Fourier transform

Complexity of QFT:

Hadamard gates

Controlled-        gates

SWAP   gates

QFT  “algorithm”
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Phase estimation “algorithm”

Solution: Phase 1 A. Kitaev

Given:  Controlled-       gates,  

Eigenstate        of      such that   

Problem:  Estimate     to     bits of precision.
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Phase estimation “algorithm”

Given:  Controlled-       gates,  

Eigenstate        of      such that   

Problem:  Estimate     to     bits of precision.

Solution: Phase 2 A. Kitaev
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Phase estimation “algorithm”: Analysis

Caveat:  If       is not exactly      bits, error analysis is subtle.

For details see:
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Factoring

“The problem of distinguishing prime numbers from composite

numbers and of resolving the latter into their prime factors is

known to be one of the most important and useful in arithmetic.

[…]  Further, the dignity of science itself seems to demand that

every possible means be explored for the solution of a problem

so elegant and so celebrated.”

—Carl Friedrich Gauss
Disquisitiones Arithmeticæ, 1801
(translation: A.A. Clarke)
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Factoring Problem

Input:  Positive integer     .

Output:  Positive integer           that divides    , 

              if      is a composite number.

Best-known classical algorithm:

Number field sieve  [Pollard, 1988]

Best-known quantum algorithm:

Shor’s factoring algorithm  [Shor, 1994]

N.B. Very parallelizable!

-sized circuit with depth.  [Cleve & Watrous, 2000] 
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Factoring in Theory

FACTORING

Input:  Positive integers     and            .

Output:  Does     have a factor less than    ?

NP co-NP

FACTORING

Can verify YES or NO efficiently with a witness
[Agarwal, Kayal, Saxena, 2002]
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Factoring in Practice
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Factoring algorithms

Difference-of-squares technique:

Random          such that

divides

Hope that

Art: Choosing          wisely.



Andrew J. Landahl, University of New Mexico

Short Course in Quantum Information © 2005, Andrew J. Landahl

Factoring in five easy steps

Yes

randomly, uniformly.

Compute            such

that

odd?

Return

?

?

even?

Return

Return

Return

Return

Return

No

No

Yes

Yes

No

No

Yes

Yes

?

(Euclid’s algorithm)

(Quantum order-

finding algorithm)

(Euclid’s algorithm)

[Miller, 1976]
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Factoring from order finding: Analysis
Only way to fail is if order is odd or an even order doesn’t yield a nontrivial gcd.

Proof: Uses Chinese Remainder theorem.  See one of the below for details:
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1.     even?  No.

2.                ?  No.

3.

4.

5.

Factoring from order finding: Example

[Vandersypen et al., 2001]

have

All possible orders are even.

Every possibility but one yields a nontrivial factor of     .
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Order finding from phase estimation
Consider the unitary operator

Some of its eigenstates are of the form

where    is the order of     in       .

Why?  Because
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Order finding from phase estimation

We can construct              using the                      modular exponentiation

algorithm.  Given        , we can then run the phase estimation algorithm

to find                to                        bits of precision:

Given this, we can use the           continued fractions algorithm to

obtain        in irreducible form exactly because    and     are bounded

by    .
For details on the classical

algorithms MEA and CFA, see:
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Order finding from phase estimation

Given       in irreducible form         for several values of   , we can find

with high probability:

Any prime    divides         of all numbers.

     and     are coprime  iff there is no prime    that divides both.
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Order finding from phase estimation

Using the identity

We know that

E.g.,

Im

Re

We’re almost done.  All we need is a way to generate eigenstates         at

random and we can efficiently factor integers!
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Order finding from phase estimation

We could measure       in the         basis and run the phase estimation

algorithm, but since this measurement commutes with       , we can

measure at the end of the circuit, and indeed, we can omit measuring

altogether:
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Factoring: Summary

• Quantum Fourier transform  !  Phase estimation algorithm

• Phase  estimation algorithm +

Continued fractions algorithm +

Modular exponentiation algorithm ! Order finding algortihm

• Order finding algorithm +

Euclid’s algorithm ! Factoring
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Tune in next time…

• Nov. 16:  No lecture, but….

       Sankar das Sarma: Physics, Chemistry, & Nanosciences Colloquium

       Topic: Spintronic quantum computing  (9:15 a.m., building 897, Rms. 1010-1012).

• Nov. 23:  Next lecture on Quantum Error Correction by Ivan Deutsch.


