Short Course in Quantum Information Lecture 6

Decoherence, Errors,
 Error Correction

Course Info

- All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html
- Syllabus

Lecture 1: Intro
Lecture 2: Formal Structure of Quantum Mechanics
Lecture 3: Entanglement
Lecture 4: Qubits and Quantum Circuits
Lecture 5: Algorithms
Lecture 6: Decoherence and Errors
Lecture 7: Quantum Cryptography
Lecture 8: Physical Implementations

Three Main Quantum Algorithms

- Shor's Algorithm (Quantum Fourier Transform)
- O($\left.n^{2} \log n\right)$ for an number an n-bit number.
- Generalizations: "Hidden subgroup".
- Grover's Algorithm (Unstructured database search)
- $\mathrm{O}\left(N^{1 / 2}\right)$ for a database with N entries: Provably optimal.
- Precision measurement.
- Quantum Simulations (Solving Schrödinger's equation)
- Properties of many body quantum systems.
- "Analog" quantum computer.

Course Info

- All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/DeutschClasses.html
- Syllabus

Lecture 1: Intro
Lecture 2: Formal Structure of Quantum Mechanics
Lecture 3: Entanglement
Lecture 4: Qubits and Quantum Circuits
Lecture 5: Algorithms
Lecture 6: Decoherence and Errors
Lecture 7: Quantum Cryptography
Lecture 8: Physical Implementations

Quantum Mechanics: Ideal Picture

Perfectly controlled closed quantum system
I. H. Deutsch, University of New Mexico Short Course in Quantum Information

Quantum Mechanics in the Real World

Noisy controls and coupling to the "environment"

Quantum mechanics in open quantum systems

Review: Coherent Superpositions

Pure State of a Qubit $|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$

$$
\begin{aligned}
p_{a} & =\left.\langle a \mid \psi\rangle\right|^{2}=\left|c_{0}\langle a \mid 0\rangle+c_{1}\langle a \mid 1\rangle\right|^{2} \\
& =\underbrace{\left|c_{0}\right|^{2}|\langle a \mid 0\rangle|^{2}}_{p_{0} p_{a 10}}+\underbrace{\left.c_{1}\right|^{2}\left\langle\left.\langle a \mid 1\rangle\right|^{2}\right.}_{p_{1} p_{a 11}}+\underbrace{c_{0} c_{1}^{*}\langle a| 0\langle 1 \mid a\rangle+c_{1} c_{0}^{*}\langle a \mid 1\rangle\langle 0 \mid a\rangle}_{\text {Interference }}
\end{aligned}
$$

Quantum interference between 0 and 1 governed by

$$
c_{0} c_{1}^{*}=\left|c_{0}\right|\left|c_{1}\right| \exp \left[i\left(\phi_{0}-\phi_{1}\right)\right]
$$

Well defined phase difference \longmapsto Coherence

From Qubits to Bits

Qubit pure state $\quad|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$

Open quantum system: Decoherence

Classical probabilistic bit $\left\{p_{0},|0\rangle ; p_{1},|1\rangle\right\}$

Incoherent Statistical Mixture

Statistical Mixture $\left\{p_{0},|0\rangle ; p_{1},|1\rangle\right\}$

$$
p_{a}==\underbrace{p_{0}|\langle a \mid 0\rangle|^{2}}_{p_{0} p_{a \mid 0}}+\underbrace{p_{1}|\langle a \mid 1\rangle|^{2}}_{p_{1} p_{a \mid 1}}
$$

No Interference

Some White Lies

Quantum states are vectors in Hilbert Space.
Quantum states are density operators.
Quantum dynamics are unitary maps.
Quantum dynamics are completely positive maps.

Measurements are projectors onto orthogonal subspaces. Measurements are "POVMS".

Density Operators

Consider again pure state: $|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$

$$
\begin{gathered}
p_{a}=\left|c_{0}\right|^{2}\langle a \mid 0\rangle\langle 0 \mid a\rangle+\left|c_{1}\right|^{2}\langle a \mid 1\rangle\langle 1 \mid a\rangle+c_{0} c_{1}^{*}\langle a \mid 0\rangle\langle 1 \mid a\rangle+c_{1} c_{0}^{*}\langle a \mid 1\rangle\langle 0 \mid a\rangle \\
p_{a}=\langle a| \hat{\rho}|a\rangle
\end{gathered}
$$

Density operator for a pure state:

$$
\begin{aligned}
\hat{\rho} & =\left|c_{0}\right|^{2}|0\rangle\langle 0|+\left|c_{1}\right|^{2}|1\rangle\langle 1|+c_{0} c_{1}^{*}|0\rangle\langle 1|+c_{1} c_{0}^{*}|1\rangle\langle 0| \\
& =\left[\begin{array}{ll}
\left.c_{0}\right|^{2} & c_{0} c_{1}^{*} \\
c_{1} c_{0}^{*} & \left|c_{1}\right|^{2}
\end{array}\right]=\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]\left[\begin{array}{ll}
c_{0}^{*} & c_{1}^{*}
\end{array}\right]=|\psi\rangle\langle\psi|
\end{aligned}
$$

From pure states to mixed states

- Unknown preparation procedure (e.g. thermal state)

$$
\begin{gathered}
\left\{p_{i}\left|\psi_{i}\right\rangle\right\} \Rightarrow \hat{\rho}=\sum_{i=1}^{N} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \\
\hat{\rho}=\sum_{i} p_{i}\left[\begin{array}{cc}
\left|c_{0}^{i}\right|^{2} & c_{0}^{i} c_{1}^{i *} \\
c_{1}^{i} c_{0}^{i^{*}} & \left|c_{1}^{i}\right|^{2}
\end{array}\right]=\left[\begin{array}{ll}
\overline{\left.c_{0}\right|^{2}} & \overline{c_{0} c_{1}^{*}} \\
\overline{c_{1} c_{0}^{*}} & \overline{\left|c_{1}\right|^{2}}
\end{array}\right]
\end{gathered}
$$

Statistic mixture of states can wash out interference
Decoherence

From pure states to mixed states

- Noise in control fields

Hamiltonian parameterized by control pulses: $\hat{H}(\lambda(t))$

$$
\hat{\rho}(t)=\sum_{\lambda} p_{\lambda}\left[\begin{array}{cc}
\left|c_{0}^{\lambda}(t)\right|^{2} & c_{0}^{\lambda}(t) c_{1}^{\lambda *} \\
c_{1}^{\lambda}(t) c_{0}^{\lambda *}(t) & \left|c_{1}^{\lambda}(t)\right|^{2}
\end{array}\right]=\left[\begin{array}{cc}
\overline{\left.c_{0}\right|^{2}}(t) & \overline{c_{0} c_{1}^{*}}(t) \\
\overline{c_{1} c_{0}^{*}}(t) & \overline{\left|c_{1}\right|^{2}}(t)
\end{array}\right]
$$

Exponential decay processes:
Population relaxation: T_{1}

Dephasing rate: T_{2}

From pure states to mixed states

- Entanglement with the environment

Consider bipartite system two qubits: $|\Psi\rangle_{A B}$
Joint Probability Distribution $P_{A B}(i, j)=\left|\left\langle i, j \mid \Psi_{A B}\right\rangle\right|^{2}$
$\begin{array}{ll}\text { Marginal Probability Distributions } & P_{A}(i)=\sum_{B} P_{A B}(i, j) \\ P_{B}(j)=\sum_{i} P_{A B}(i, j)\end{array}$

What is the state of the individual qubits?

From pure states to mixed states

- Entanglement with the environment

Consider bipartite Bell state: $\left|\Phi^{(+)}\right\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)$

$$
\begin{gathered}
P_{A B}(0,0)=P_{A B}(1,1)=1 / 2 \quad \begin{array}{l}
P_{A B}(0,1)=P_{A B}(0,1)=0 \\
P_{A}(0)=P_{A}(1)=1 / 2 \\
P_{B}(0)=P_{B}(1)=1 / 2
\end{array} \\
\hat{\rho}_{A}=\left[\begin{array}{cc}
1 / 2 & ? ? \\
? ? & 1 / 2
\end{array}\right] \quad \hat{\rho}_{B}=\left[\begin{array}{cc}
1 / 2 & ? ? \\
? ? & 1 / 2
\end{array}\right]
\end{gathered}
$$

From pure states to mixed states

$$
\left|\Phi^{(+)}\right\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

Consider probability distribution in X-basis: $\quad| \pm\rangle \equiv \frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$

$$
\begin{gathered}
P_{A B}(+,+)=P_{A B}(-,-)=1 / 2 \quad P_{A B}(+,-)=P_{A B}(-,+)=0 \\
\longrightarrow \begin{array}{l}
P_{A}(+)=P_{A}(-)=1 / 2 \\
P_{B}(+)=P_{B}(-)=1 / 2
\end{array}
\end{gathered}
$$

True in any basis.

From pure states to mixed states

Lessons:

1. Given a pure entangled state of the joint system of particles, e.g. two qubits, the state of the subsystems is mixed.

The sum is greater than its parts.
2. Entanglement of the "system" degrees of freedom with the environment leads to decoherence of the system.
3. The environment can store a "record" of the state of the system thus making the alternatives in-principle distinguishable.

$$
\left|\Phi^{(+)}\right\rangle_{S E}=\frac{1}{\sqrt{2}}\left(|0\rangle_{S} \otimes|0\rangle_{E}+|1\rangle_{S} \otimes|1\rangle_{E}\right)
$$

Where are the Schrödinger Cats?

"Cat State" $=$ N-qubit GHZ

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)
$$

Where are the Schrödinger Cats?

Totally mixed state

Implication for Quantum Computing Errors!

- Quantum algorithms rely on quantum parallelism.
- Decoherence destroys interference between computational paths.
- The rate of decoherence can occur faster with the number of qubits (environment can distinguish a dead from a live cat much faster than a spin up vs. down nucleus).

Quantum Computing: Dream or Nightmare?

Classical Error Correction

- Digital vs. Analog: robustness to noise!
- Bits stable to perturbations up to a threshold.

Error on a bit: Bit flip $0 \Rightarrow 1,1 \Rightarrow 0$

- Protect against errors through redundancy.

$$
0_{L} \equiv 000,1_{L} \equiv 111
$$

With small probability p one bit flips

$$
\begin{array}{r}
0_{L} \Rightarrow 001,010,100 ; 1_{L} \Rightarrow 110,101,011 \\
0_{\mathrm{L}} \text { and } 1_{\mathrm{L}} \text { are still distinguishable. }
\end{array}
$$

- Majority voting: Two out of three determine the logic state.
- Diagnose the error (minority) and recover (flip the bad egg).
- Code can correct for single bit-flip as long as $p<1 / 2$.

Quantum Error Correction

- Digital vs. Analog: Which is it for quantum systems?

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- Continuous set of errors to correct?
- No cloning theorem.

$$
|\psi\rangle \Rightarrow \lambda\rangle\rangle\rangle\langle\psi\rangle
$$

- Collapse of the wave function:

Measurement of a quantum bit can destroy the quantum coherence.
I. H. Deutsch, University of New Mexico

Short Course in Quantum Information

Quantum Error Correction

- Digital vs. Analog: Which is it for quantum systems? It's a floor wax AND a dessert topping!!

As quantum are both particles and waves, quantum information is both analog AND digital.

- Analog.

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

continuous variables

- Digital

If measured in standard basis, $|0\rangle$ or $|1\rangle$
Errors can be discretized!

No Cloning Theorem

Seek the following transformation:

$$
\begin{aligned}
&|\psi\rangle|0\rangle\Rightarrow|\psi\rangle\rangle \psi\rangle \\
&\rangle_{\text {fiducial state }}
\end{aligned}
$$

All dynamical processes are linear maps:

$$
\begin{gathered}
\text { Consider }|\psi\rangle=\alpha\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle \\
|\psi\rangle|0\rangle=\alpha\left|\psi_{1}\right\rangle|0\rangle+\beta\left|\psi_{2}\right\rangle|0\rangle \Rightarrow \alpha\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle\left|\psi_{2}\right\rangle \neq|\psi\rangle|\psi\rangle
\end{gathered}
$$

Quantum Copying

Distinguishable (orthogonal) states can be copied

$$
|0\rangle|0\rangle \Rightarrow|0\rangle|0\rangle,|1\rangle|0\rangle \Rightarrow|1\rangle|1\rangle \quad \text { CNOT }
$$

Quantum Three Qubit Bit-Flip Code

Possible Quantum Error:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow \alpha|1\rangle+\beta|0\rangle
$$

Map qubit onto three qubit
Logical qubits: $\quad|0\rangle_{L}=|0\rangle|0\rangle|0\rangle$

$$
|1\rangle_{L}=|1\rangle|1\rangle|1\rangle
$$

$$
|\psi\rangle_{\text {encoded }}=\alpha|0\rangle_{L}+\beta|1\rangle_{L}
$$

Measure the Error not the Data

We cannot measure whether a given physical qubit is $|0\rangle$ or $|1\rangle$ without destroying the state.

Measure a joint property:
Parity $Z_{i} Z_{j}+1$ if bit i,j equal -1 unequal

Error diagnosis: Measure $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$ (commuting)

Syndrome: | $+1,+1$ |
| :---: |
| $+1,-1$ |
| $-1,+1$ |
| $-1,-1$ |

Do nothing
Recovery: Flip bit 3
Flip bit 1
Flip bit 2

Performing a joint measurement

Quantum Three Qubit Phase-Flip Code

Possible Quantum Error:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow \alpha|0\rangle-\beta|1\rangle
$$

Equivalent to bit flip in X-basis $|+\rangle \Rightarrow|-\rangle, \quad|-\rangle \Rightarrow|+\rangle$
Map qubit onto three qubit
Logical qubits: $\quad|0\rangle_{L}=|+\rangle|+\rangle|+\rangle$

$$
|1\rangle_{L}=|-\rangle|-\rangle|-\rangle
$$

Syndrome Diagnosis

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle-0 \cdot 0
$$

General signal qubit error

An arbitrary single qubit error:
Bit flip: X
Phase flip: Z
Both: $Y=i X Z$
Peter Shor: Lightning Strikes Twice

9 qubit error correcting code

$$
\begin{aligned}
& \left.|0\rangle_{L}=(|0\rangle|0\rangle\langle 0\rangle+|1\rangle|1\rangle|1\rangle)(|0\rangle\langle 0\rangle|0\rangle+|1\rangle|1\rangle|1\rangle)(|0\rangle|0\rangle|0\rangle+|1\rangle|1\rangle 1\rangle\right) \\
& \left.\left.\left.\left.\left.\left.\left.|1\rangle_{L}=(|0\rangle|0\rangle|0\rangle-|1\rangle|1\rangle|1\rangle)(|0\rangle 0\rangle 0\right\rangle-|1\rangle 1\right\rangle|1\rangle\right)(|0\rangle\rangle 0\right\rangle 0\right\rangle-|1\rangle|1\rangle 1\right\rangle\right)
\end{aligned}
$$

General Error Correction

Basic Ingredients

- Define a "logical subspace".
- Discrete errors map to orthogonal subspaces.
- Measure the subspace, not the state.
- Subspace measurement = "Syndrome" diagnosis.
- Apply a recovery procedure conditional on syndrome.

Why does this work?

Logical states -- Entangled and nonlocal.
Errors -- Local and don't measure the state.
The Walmart approach: Encode globally, perturb locally.

Fault Tolerance

The procedure we described assume the syndrome diagnosis, and recovery were error free. To make the system fully "fault tolerant", we must:

- Account for errors in gate operations, measurement.
- Requires discrete set of gates.

Threshold theorem: If error probability per qubit is sufficiently small, can perform quantum computation forever. We can the threshold error probably $p_{\text {threshold }}$

The threshold rate depends heavily on the "error model".
Current thought -- for a depolarizing channel: $p_{\text {threshold }}>10^{-5}$

