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Three Main Quantum Algorithms

• Shor’s Algorithm (Quantum Fourier Transform)

– O(n2logn) for an number an n-bit number.

– Generalizations: “Hidden subgroup”.

• Grover’s Algorithm (Unstructured database search)

– O(N1/2) for a database with N entries:  Provably optimal.

– Precision measurement.

• Quantum Simulations (Solving Schrödinger’s equation)

– Properties of many body quantum systems.

– “Analog” quantum computer.
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Quantum Mechanics: Ideal Picture

Quantum System

Perfectly controlled closed quantum system
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Quantum Mechanics in the Real World

Quantum System

Noisy controls and coupling to the “environment” 

Quantum mechanics in open quantum systems
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Review: Coherent Superpositions

Pure State of a Qubit
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From Qubits to Bits
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Incoherent Statistical Mixture

Statistical Mixture
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Some White Lies

Quantum states are vectors in Hilbert Space.

Quantum dynamics are unitary maps.

Measurements are projectors onto orthogonal subspaces.

Quantum states are density operators.

Quantum dynamics are completely positive maps.

Measurements are “POVMS”.
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Density Operators
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From pure states to mixed states

• Unknown preparation procedure (e.g. thermal state)
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Statistic mixture of states can wash out interference

Decoherence
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From pure states to mixed states

• Noise in control fields

Hamiltonian parameterized by control pulses:
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Exponential decay processes:

Population relaxation: T1

Dephasing rate: T2
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From pure states to mixed states

• Entanglement with the environment

Consider bipartite system two qubits: 

Joint Probability Distribution
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What is the state of the individual qubits?
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From pure states to mixed states

• Entanglement with the environment

Consider bipartite Bell state: 
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From pure states to mixed states

Consider probability distribution in X-basis:  
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From pure states to mixed states

Lessons:  

1. Given a pure entangled state of the joint system of particles,

e.g. two qubits, the state of the subsystems is mixed.

The sum is greater than its parts.

2. Entanglement of the “system” degrees of freedom with the

environment leads to decoherence of the system.

3. The environment can store a “record” of the state of the

system thus making the alternatives in-principle

distinguishable.
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Where are the Schrödinger Cats?
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Where are the Schrödinger Cats?
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Implication for Quantum Computing

Errors!

• Quantum algorithms rely on quantum parallelism.

• Decoherence destroys interference between

computational paths.

• The rate of decoherence can occur faster with the

number of qubits (environment can distinguish a

dead from a live cat much faster than a spin up vs.

down nucleus).

Quantum Computing: Dream or Nightmare?
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Classical Error Correction

• Digital vs. Analog:  robustness to noise!

- Bits stable to perturbations up to a threshold.

Error on a bit:  Bit flip 0 !1, 1!0

• Protect against errors through redundancy.
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With small probability p one bit flips
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- Majority voting:  Two out of three determine the logic state.

- Diagnose the error (minority) and recover (flip the bad egg).

- Code can correct for single bit-flip as long as p<1/2.

0L and 1L are still distinguishable.
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Quantum Error Correction

• Digital vs. Analog:  Which is it for quantum systems?

• No cloning theorem.
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continuous variables

- Continuous set of errors to correct?
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! " ! ! !

• Collapse of the wave function:

  Measurement of a quantum bit can destroy the

quantum coherence .
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Quantum Error Correction

• Digital vs. Analog:  Which is it for quantum systems?

It’s a floor wax AND a dessert topping!!

As quantum are both particles and waves, quantum information

is both analog AND digital.
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continuous variables

If measured in standard basis, 

- Analog.

� 

0 or 1

- Digital

Errors can be discretized!
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No Cloning Theorem

Seek the following transformation:
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Quantum Copying

Distinguishable (orthogonal) states can be copied
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Quantum Three Qubit Bit-Flip Code

Map qubit onto three qubit
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Measure the Error not the Data

We cannot measure whether a given physical qubit is 

� 

0 or 1 without destroying the state.

Measure a joint property: 

        Parity
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Performing a joint measurement
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Quantum Three Qubit Phase-Flip Code

Map qubit onto three qubit
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Syndrome Diagnosis
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General signal qubit error

An arbitrary single qubit error:

Bit flip:  X

Phase flip:  Z

Both:  Y = iXZ

Peter Shor:  Lightning Strikes Twice

9 qubit error correcting code
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General Error Correction

• Define a “logical subspace”.

• Discrete errors map to orthogonal subspaces.

• Measure the subspace, not the state.

• Subspace measurement = “Syndrome” diagnosis.

• Apply a recovery procedure conditional on syndrome.

Logical states -- Entangled and nonlocal.

Errors -- Local and don’t measure the state.

Basic Ingredients

Why does this work?

The Walmart approach:  Encode globally, perturb locally.
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Fault Tolerance

• Account for errors in gate operations, measurement.

• Requires discrete set of gates.

Threshold theorem:  If error probability per qubit is

sufficiently small, can perform quantum computation

forever.  We can the threshold error probably

The procedure we described assume the syndrome

diagnosis, and recovery were error free.  To make the

system fully “fault tolerant”, we must:

The threshold rate depends heavily on the “error model”.

Current thought -- for a depolarizing channel:
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