EE572 – Advanced Logic Synthesis

Methodology and Overview Report

By: Steven R. Hutsell (October 18th, 2000)

Fall 1999 Group Project

Members: Steven R. Hutsell, Leonardo Lecca, Ana Stefanovic

Project Title: Variable Partitioning in Functional Decomposition

ABSTRACT

Our design goal is to design the first stage of Functional Decomposition known as Variable Partitioning. This includes developing, implementing, and testing the variable partitioning method and eventually describing the process in a hardware description language.

HISTORY

This project is a continuation of our Fall 1999 ECE572 group project. All previous work and presentations will be included with this project hand-in.

METHODOLOGY

Developing a plan for our design requires many stages:

I. Past-work and Research

II. Algorithm Development

III. Develop presentations

A. Algorithm

B. Hardware Considerations

C. Tools

IV. Prototyping and Testing

V. Implement in Hardware Language

VI. Testing

VII. Produce Final Result

Our past work covers I through III. This document focuses on IV onward.

CONTENT ORGANIZATION

This document is organized in the following way:

1. What is Variable Partitioning

2. How is it Performed

3. Prototyping in a higher-level language: C++

4. Testing and Results

5. Moving to Hardware

I. What is Variable Partitioning?

The details of how Functional Decomposition works are not covered here. However, in Functional Decomposition, we wish to decompose a ‘black-box’ function by first determining which of its inputs can be separated into Bound Sets and Free Sets. A Free Set is a set of inputs that have a dominating effect on the output. The Bound Set is the set of inputs that vary the output with a heavy dependence on the Free Set.

II. How is it Performed?

First we’ll examine an algorithm for determining the Free Set. The algorithm goes by the premise of first looking at one input at a time, and giving it a weight. We’ll describe later how to compute this weight. Once all the variables are given weights, we select the one with the greatest weight and that becomes the first variable in the Free Set. Next, we examine all of the cofactors of the bound set and give those resulting inputs weights. Again, we select the input with the greatest weight and that becomes our second Free Set variable. We continue until we’ve reached our desired number of Free variables. A brief example is shown below:

Example:

Let’s say we have a 4 input function, F = F(ABCD). Our first iteration will examine the cofactors below and give them each a respective weight:

A

B

C

D

Let’s assume that C had the largest weight. In which case we select C as our first free variable and then we examine its cofactors and give them weights:

CA

CB

CD

(Obviously there’s no CC)

If CB had the greatest weight, then CB is our new Free Set. If we only wanted two inputs in our Free Set then we are finished. Otherwise if we have n inputs, we can have 1 to n-1 elements in our Free Set. If we wanted one more Free variable, then we’d find the greatest weight of CB’s cofactors:

CBA

CBD

Developing the Algorithm:

So how do we calculate the ‘weight’ of free set? An input is considered to be a free input if it dominates the output with respects to the other inputs. For example, the function F = A(B+C+D) is dominated by A. Therefore A, in this example, would make a good free variable. A heuristic to determine how much a variable dominates the output of a function is to observe two things:

1) Do the positive cofactors show a preference for a high or low output, possibly indicating a strong connection with the output?

2) Do the negative cofactors show a preference for a high or low output, also indicating a strong connection to the output?

3) Lastly, do the positive and negative cofactors agree or conflict? That is, do positive cofactors result in similar result as the negative cofactors, actually indicating – in general – a weak connection to the output?

Going back to our example of F = A(B+C+D), we can see a possible decomposition of this below:

Looking at (1), we can compute a weight for whether the cofactors of a function result in either a high or low output by noting the expression below:

Wp = SUM(Fs=1) – SUM(Fs=0)

Where Wp stands for the positive cofactor weight and ‘s’ represents the cofactor of function F. To demonstrate using our example, F = A(B+C+D), we can compute Wp for cofactor Fa by summing up the number of entries in the truth table that equal 1 when A=1 and subtracting the number of entries that result in 0 when A=1. From the truth table we see that SUM(Fa=1) = 7 and SUM(Fa=0) = 1. Therefore, Wp = 7-1 = 6. This weight hints to us that function Fa tends to be high (output=1) when A is high (A=1). And in general we can say:

Wp > 0
Fs tends to be high (s may be a good free set)

Wp < 0
Fs tends to be low (s may be a good free set)

Wp = 0
s may not be a good free variable from the positive cofactor view!

Now looking at (2), we examine the negative cofactors and how strongly they influence the output. The weight we are interested in is:

Wn = SUM(Fs’=0) – SUM(Fs’=1)

Relating this expression to our example, s = {a}, therefore, s’ = {a=0} to denote negative cofactors. From the truth table we find that when a=0, there are 8 cofactors that result in lows and 0 cofactors that result in highs. Therefore, Wn = 8 – 0 = 8 for our example. The general rule for Wn applies:

Wn > 0
Fs’ tends to be low (s may be a good free set)

Wn < 0
Fs’ tends to be high (s may be a good free set)

Wn = 0
s may not be a good free variable from the negative cofactor view!

For (3) to come up with a final weight, we want to see how well (1) and (2) agree or disagree each other. For example, if step (1) resulted in a positive Wp, indicating that the positive cofactors were related to a high output, but (2) resulted in negative Wn, indicating that the negative cofactors were, too, related to a high output. This means the positive and negative cofactors have a disagreement because they are both related to the same output level. Ideally we want them to be opposite, for example, if positive cofactors tended to have a high output then we’d like negative cofactors to have a low output, or vice-versa. Therefore, we develop the expression below:

W = Wp + Wn

With the following rules:

W > 0

s is a good free set

W < 0

s is a good free set

W = 0

s is not a good free set

To simplify, we take the absolute value of W to determine our final free set weight:

W = |Wp + Wn|

And applying this to our on-going example, we found Wp=6 and Wn=8, therefore, W = |6+8| = 14. So, as we already knew, A will make an excellent free set variable!

Pseudo-code Algorithm:

Freeset = {};

Loop for number of free-set variables

{

Set Y[] weight array to all –inf

Max = 0

Loop for number of inputs

{

if the input is not already a part of the freeset

{

C1 = the number of positive cofactors that result in a 1

C2 = the number of positive cofactors that result in a 0

C3 = the number of negative cofactors that result in a 1

C4 = the number of negative cofactors that result in a 0

Y[input] = | (C1 – C2) + (C4 – C3) |

If Y[input] > Y[max] then max = input

}

}

// max is now the input with the largest weight, so add it to the free set!

Add_To_FreeSet(max)

}

Free set now contains your desired number of free variables

III. Prototyping the Algorithm in a Higher-Level Language: C++

To get a good understanding of how an algorithm works while gaining insight on eventually porting it over to a lower-level language (and in particular, a hardware description language), it was advantageous to prototype the algorithm in a higher-level language. In this case, we used C++. We were able to develop source code that implemented the variable partitioning algorithm. The nice thing about doing it in a higher-level language is that you can also build-in your own debug and user interface for testing and peaking into the algorithm. While designing the code, we kept in mind that this will eventually port to an HDL, as so stayed away from complex structures, and in fact, tried to keep things at the bit-vector level.

The Resulting Application

Developed using Microsoft’s Visual C++ version 5, the application starts off by asking you how many inputs is the function you want to find a free set for. After which, it prompts you if you want to load a function’s truth table from a file, or if you would like the application to randomly generate on for you (for test purposes obviously). The function generated will be incompletely specified (don’t cares will exist in its truth table!). Next the application will prompt you for the number of variables you want in the free set. After that, it computes your desired number of free set variables, first giving them to you in the order they were found and then giving you the free and bound sets in alpha-order. Lastly, the application asks if you want to dump the function to a file. This is, of course, for randomly generated files and is for testing the application.

Example Run Screen Shot

 ===

 Variable Partitioner by Steven R. Hutsell

 Functional Decomposition Project

 Advanced Logic Synthesis (Fall 1999)

 ===

 Number of Inputs (MAX 16): 14
 These inputs will be labeled in the following manner

 Input_0 = A

 Input_1 = B

 Input_2 = C

 Input_3 = D

 Input_4 = E

 Input_5 = F

 Input_6 = G

 Input_7 = H

 Input_8 = I

 Input_9 = J

 Input_10 = K

 Input_11 = L

 Input_12 = M

 Input_13 = N

 Do you want to load the function from a file?(y/n): n
 Generating Random 14 bit Partially Specified Function...

 Mapping 16384 Entries...

 Generated Successfully!

 How many Free Set variables (1..13): 5
G = 175

L = 164

F = 164

A = 128

C = 108

 Your Free Set Variables are:

 A C F G L

 And your Bound Set Variables are:

 B D E H I J K M N

 Do you wish to dump the function to a file (y/n)?: y
 Enter File to Output to: c:\tmp14_5.tbl
 Opening File...

 Function saved!

 *** DONE ***

The above shot is of the application being asked to find the 5 free set variables of a 14 input randomly generated incomplete function and then dump the resulting function to a file. A glimpse of that file is shown below:

NMLKJIHGFEDCBA | OUTPUT

====================

00000000000000 | 0

00000000000001 | 0

00000000000010 | 0

00000000000011 | 1

00000000000100 | 0

00000000000101 | 0

00000000000110 | X

00000000000111 | X

Specification of the Application:

The application can handle up to a 16 input incompletely specified function. The time it takes to process a 16-bit function on a PIII 500MHz is on the order a few seconds. The roughly 300 lines of code result in a 180kbyte executable. Function table files can be anywhere from 61 bytes for 2 input functions, 179 bytes for 4 inputs, then jumping to 311k for 14 inputs, and up to 1.345Mbytes for 16 inputs.

IV. Testing and Results

We can test the application on a our old example, F = A(B+C+D). To do this we create a truth table and place it in a file. The truth table is shown below:

DCBA | OUTPUT

===============

0000 | 0

0001 | 0

0010 | 0

0011 | 1

0100 | 0

0101 | 1

0110 | 0

0111 | 1

1000 | 0

1001 | 1

1010 | 0

1011 | 1

1100 | 0

1101 | 1

1110 | 0

1111 | 1

FILE: TEST.DMP

When we run the application, we tell it we’re working with a 4 input function instruct it to load the table above from the file we saved it in. We’ll ask it to find 2 free set variables. Almost instantly the results are displayed:

…

Do you want to load the function from a file?(y/n): y

Enter file name: c:\test.dmp

====================

 Function Loaded!

 How many Free Set variables (1..3): 2

A = 14

D = 8

 Your Free Set Variables are:

 A D

 And your Bound Set Variables are:

 B C

And, as we hoped, the application chose A as our main free set variable with the same weighting we obtained, 14. It next chose D for the second, but D also had the same weightings as B and C. When weights are equal, the code chooses the latter input.

V. Moving On To Hardware

Designing the algorithm in a higher-level language helps to develop the algorithm in hardware. This is especially true if you try to use a lower-level language (or the lower-level aspects of the language) and try to keep your algorithm simple with no special function calls, OS routines, etc.

First Considerations: The Package Inputs/Output Pins

Before we can go any further, we need a detailed interface description of the hardware we are going to describe. Below is the package information:

Signal Descriptions:

INPUTS

DESCRIPTION

Start/!Stop

Starts or Stops (halting) the device. This is used to get the

device out of the initial state so that it can read the CTRL.

CTRL[2]

Is a structure composed of two inputs:

Num_Inputs[4]

Defines the number of inputs (1..16)

Num_Free[4]

Defines the number of Free Variables to find (1..15)

Data[2]

The data bus grabs the three possible output states (1,0,X)

CLK

The clock for the device.

Reset

Resets the device to an initial state when asserted.

OUTPUTS

DESCRIPTION

Addr_Strobe

Asserted when address bus has a valid address and is ready

to receive data on the next clock cycle.

Address[16]

Contains the address (or input) for the binary function we

want an output for (A0 = input A, A1 = input B, etc.)

Ready

This output is asserted when the device has found the

desired number of free variables, and that they are valid

on the Free/!Bound output.

Free/!Bound[16]

Corresponds to the function inputs similar to the address

vector. If Free/!Bound[x] is asserted, then Input x is

tagged as a Free Variable.

Generating A State-Diagram:

Using the algorithm source code and the above interface description, we can easily translate the algorithm in a state diagram, taking into consideration data transactions:

ASSUMED GLOBAL RULES:

When “Reset” is asserted, the next state is always “INIT”.

When Start/!Stop is asserted low (Stop), the next state is always the current state

unless the current state contains a loop counter, then go to the top-of-loop state.

State Descriptions:

STATE

DESCRIPTION

INIT

Initial state. Floats the address, data, and free/!bound pins.

Strobe = low. Ready = 0. At Start goes to “CTRL”.

CTRL

Reads Control data. Loads local variables with the

CTRL structure: n_inputs = Num_Inputs, and

n_free = Num_Free. Sets i = 0. Goes to “Loop i”. Free = 0.

LOOP i

Loops n_free times. max = 0. j=0. If i<n_free, goto

“LOOP j”, else goto “Done”.

LOOP j

Loop for n_inputs. C1=C2=C3=C4=0. Tmpfree = free|(1<<j)

Y[j] = -infinity. Count = 0. If j<n_inputs, goto

“Count”, else goto “Select”. If free[j]=1 goto End j.

Count

Loops through the input combinations. If count

== FFF..FFh, goto “Weigh”, else goto “Strobe”.

Strobe

Outputs the Address and asserts the strobe.

Address = count. Addr_strobe = 1; Goto “Data”

Data

Grabs the data off the data bus. F = data.

Addr_strobe = 0. float Address. Goto “Sum”

Sum

Sums up the cofactors.

If (F=1 && count[j]=1) c1++;

If (F=1 && count[j]=0) c3++;

If (F=0 && count[j]=1) c2++;

If (F=0 && count[j]=0) c4++;

Count++. Goto “Count”

Weigh

Computes the weighting for a free var.

Y[j] = ABS((c1+c4) – (c2+c3));

If Y[max] < Y[j], max = j. Goto End j.

End j

j++; Goto “Loop j”

Select

Selects the Free Variable. Free[max] = 1

i++. Goto “Loop i”.

Done

Outputs the final free set and sets Ready.

Free/!Bound = Free. Ready = 1.

Internal Variables/Registers

Of course our machine will have to have internal variables (or registers) to maintain loop counters, summers, weight structure, free set vector, and to store copies of the control information (such as number of inputs and desired number of free variables).

Below is a list of the primary internal variables:

Variable

Description

F[2]

Copy of the value from data bus (1,0,X)

N_inputs[4]

Copy of CTRL.Num_Inputs[4]

N_free[4]

Copy of CTRL.Num_Free[4]

Free[16]

Our Internal Free Set register

Tmp_Free[16]

A temporary Free Set register

I[4]

I-Loop counter (0 .. Num_Free-1)

J[4]

J-Loop countr (0 .. Num_Inputs-1)

Count[16]

Count Loop Counter (0 .. 2^(Num_Inputs)-1)

Max[4]

Keeps track of the highest weighted variable (0 .. Num_Free-1)

Y[4][16]

Weight storage structure Y[input][weight]

C1[16]

Cofactor summers. F = 1 positive cofactors

C2[16]

F = 1 negative cofactors

C3[16]

F = 0 positive cofactors

C4[16]

F = 0 negative cofactors

EXTRA Details:

In the “COUNT” state, the counter is supposed to exit to the “Weigh” state to weight the current proposed Free Variable (indexed by j). This occurs when count = 2^(Num_Inputs) –1. However, this may be awkward to write in HDL, so we might introduce a new variable COUNT_MAX which is initialized at “INIT” to 0 and at “CTRL” when we know Num_Inputs can be initialized by shifted it to the left with all 1’s Num_Inputs-1 times. Then, for the “COUNT” state, we jump to “Weigh” when count = COUNT_MAX.

(END)

SRH

(B+C+D)= G

A*G = F

B

C

D

A

Addr_Strobe

Address[16]

		 Ready

Data[2]	

Start/!Stop

 Free/!Bound[16]

CTRL[2][4,4]

>CLK

Reset VAR_PAR

Strobe

INIT

CTRL

Loop i

Loop j

Count

Data

Sum

Weigh

END j

Select

Done

