EE572 – Advanced Logic Synthesis

VHDL Implementation Report

By Ana Stefanovic

Fall 1999 Group Project

Instructor: Dr. Marek Perkowski

Project Title: Variable Partitioning in Functional Decomposition

Our project focuses on the variable partitioning, which is the first stage of functional decomposition. Our previous work has included research about functional decomposition methods (presentation #1), development of possible algorithms to be implemented, as well as hardware consideration and tools (presentation #2). The presentation #3 includes final algorithm implementation, prototyping and testing in a higher-level language (C++), hardware description and VHDL implementation, and final test results including test bench (to be submitted by third group member, Leonardo Lecca).

This document focuses on hardware description and VHDL implementation of the algorithm that has been described in greater detail in report by Steven Hutsell.

Simulation tool and device

The simulation tool used is Warp4, software available in our lab. Device that has been chosen for this implementation is CPLD from Cypress, that is available with Warp4 software. CY7C346 device is a 128 macrocell EPLD (Erasable Programmable Logic Device) that uses CMOS EPROM technology. Device has 20 dedicated input pins, and 64 bidirectional I/O pins.

Device Package Description

Our package has 13 input pins and 34 output pins as shown below.

Input/Output Signal Description

INPUTS:

· Clk – device clock

· Start – for device to get out of the initial state this signal has to be asserted

· Reset – global reset for the device, when asserted the initial state becomes the current state

· Cofactor[1:0] – input vector that holds the value of the cofactor returned from memory (“00” = 0; “01” = 1; other = X)

· N_inputs – number of function variables

· N_free – number of variables in the free set

OUTPUTS:

· Ready – asserted when variable partitioning is finished and free set is valid at the output

· Addr_strobe – asserted when valid address is on the address bus

· Address – contains the address of the cofactor that needs to accessed in the memory

· Free – output vector that encodes the free and bound set (‘1’ = free variable, ‘0’ = bound variable)

Internal Signals

· i – loop counter that counts for the number of free variable

· j – loop counter that counts for the number of inputs

· temp_bound – counter that holds the number of input variables that need to be weighed (this variable equals to the number of inputs at the beginning and it is decreased every time a new free variable is selected, because the number of inputs that we get to chose next free variable from is one less)

· Y – weight function holds the weight of the variable that currently evaluated

· C1, C2 – positive and negative cofactors when input variable is ‘1’

· C3, C4 – negative and positive cofactors when input variable is ‘0’

· Count – internal counter that keeps track of the currently accessed address

· Temp_free – internal vector that keeps track of the input variable that is currently evaluated as potential free variable

State Diagram

According to the algorithm requirements and timing requirements also, the state diagram has been developed, and it is shown below:

Below is a more detailed description of all the states including parts of the VHDL code.

INIT

· This is the initial state, device is idle and address buss, data buss and the output free bus are floated

· Addr_strobe <= ‘0’; there is no valid data at the output

· Ready <= ‘0’; there is no valid address at the output

· IF (start = ‘1’) THEN

 next_state <= CTRL;

· device is active while this signal is asserted, if it is

 deasserted, device stays in the current state

CTRL

· In this state the input control data is read (n_inputs and n_free), number of input variables and number of free variables.

· Next_state <= LoopI;

Loop I

· Counts the number of free variables that we require – loops “n_free” times

· IF (j < n_free) THEN

 next_state <= LoopJ;

 ELSE

 next_state <= DONE;

· if there is more free variables to select, we continue

 through the loop, otherwise, if we have the required number of free variables,

 next state is the final state – DONE.

Loop J

· Counts the number of input variables that we need to choose from – loops “temp_bound” times.

· C1, C2, C3, C4 (variables holding the current cofactor weights) are set to zero,

So that new potential free variable can be evaluated.

· IF (j < temp_bound) THEN

 nNext_state <= COUNT;

 ELSE

 next_state <= SELECT;

· if we have gone through all the inputs that we can

 choose from next state is the selection of the free variable based on the highest

 weight, otherwise we continue through the truth table and next state is

 COUNT

Count

· IF (count = maximum) THEN

 Next_state <= WEIGH;

 ELSE

 Next_state <= STROBE;

· In this state the check is done if the internal counter has reached the end of thruth table. If it is, then next state is WEIGH, where the weight function is calculated and decision on next free variable is made. Otherwise, next state is STROBE, where memory is accessed for the next cofactor, and “count” is assigned to “address”

Strobe

· Address <= count;

· Addr_strobe <= ‘1’;

· Next_state <= DATA;

Address strobe signal is asserted to indicate there is a valid address present, and next

state is DATA, where the data will be accessed from the memory.

Data

· Data < = cofactor;

· next_state <= SUM;

· In this state, valid data is at the output and it read to the internal “data” variable. Next state is SUM, where input data is evaluated and added to appropriate variables (C1-C4).

Sum

· IF (free != temp_free) THEN …

· In this state, we first check if the input variable currently evaluated (and held in “temp_free”) has been already chosen or not. If it has been already chosen, we skip the calculation. If this is a new free variable, then we continue.

· Result <= temp_free AND count;

· IF (result = temp_free) THEN

IF (data = “01”) THEN

 C1 <= C1 + 1;

ELSE IF (data <= “00”) THEN

C3 <= C3 +1;

· This shows that in the case that “result = temp_free” we have cofactors for positive input variable

· IF (result = zero) THEN

IF (data = “00”) THEN

 C2 <= C2 + 1;

ELSE IF (data <= “01”) THEN

C4 <= C4 +1;

· If the “result = zero” we have cofactors for zero input variables.

Temp_count

· count <= count + one;

· next_state <= COUNT;

· In this state internal counter is increased, and the process goes to the next state

Weigh

· Weight is calculated for the current (potential) free variable

· Y = ABS((C1 + C4) – (C2 + C3));

· IF (Y > max) THEN

 Max <= Y;

· If Y is the highest weight so far, it is assigned to “max” – variable max holds the highest weighted value so far.

Weigh_1

· In this state, only j-loop counter is increase, and next state becomes Loop J, where internal counters are reset and check for new free variable is started again.

Select

· free <= free OR temp_free;

· Temp_bound <= temp_bound –1;

· next_state <= LoopI;

· In the state, new selected free variable is added to the vector holding the free/bound set encoding (done by “Oring” the two vectors). Temp_bound variable is decreased, so that going through the next_loop there is one less input to evaluate.

Done

· Variable partitioning is finished

· “ready” signal is asserted – valid data is at the output. Output vector “free” holds the free/bound set (1s indicate the free variables, 0s indicate the bound variables)

In order to have more extensive testing, we need to have a test bench to simulate the memory access and vectors that represent the address of the cofactors. This part of the project will be submitted by a third member of our group.

N_free [3:0]

N_inputs [3:0]

Cofactor [1:0]

Start

Reset

> Clk

Free [15:0]

Address [15:0]

Addr_strobe

Ready

Decompositionnnnn

count =max

j <temp_bound

i n_free

Start

DONE

SELECT

Weigh_1

WEIGH

T_count

SUM

DATA

 Strobe

COUNT

Loop J

Loop I

CTRL

INIT

