

Future sensors - planetary prospective

Yoseph Bar-Cohen, JPL/Caltech, Pasadena, CA Group Leader, NDEAA Technologies 818-354-2610, yosi@jpl.nasa.gov http://ndeaa.jpl.nasa.gov/

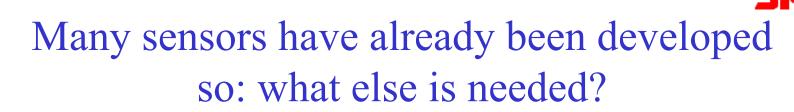
National Workshop on Future Sensing Systems Lake Tahoe, California, August 26-28, 2002.

NDEAA Technologies at JPL

• Sensors

- USDC as a platform for bit integrated sensors
- In-process and in-service monitoring (Surface Acoustic Wave (SAW) and Bulk Acoustic Wave (BAW) sensors)
- NDE
 - Materials properties and flaws characterization using leaky Lamb waves (LLW) and polar backscattering

• Ultrasonic Medical Diagnostics and Treatment


- High power ultrasound (FMPUL): blood clot lysing, spine trauma and cancer treatment
- Acoustic Microscopy Endoscope (200MHz)

Advanced Actuators

- Ultrasonic/Sonic Driller/Corer (USDC) for planetary exploration
- Ultrasonic motors (USM), Surface Acoustic Wave (SAW) motors and Piezopump
- Artificial muscles using electroactive polymers

• Applications: Radiation sources, Robotics, etc.

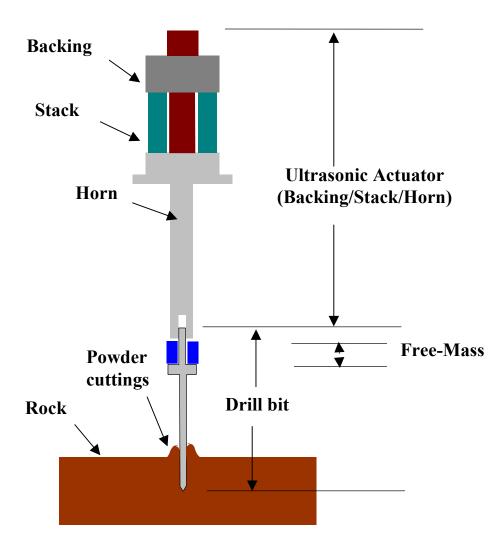
- Ferrosource for multiple radiation types
- Noninvasive geophysical probing system (NGPS)
- Multifunction Automated Crawling System (MACS)
- Adjustable gossamer and membrane structures
- MEchanical MIrroring using Controlled stiffness and Actuators (MEMICA) as Haptic interfaces

WHETE: SENSOR CLASSIFICATION SCHEME

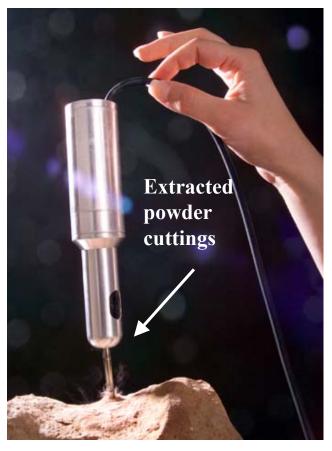
REF: White, R. M., "A sensor classification scheme", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. UFFC-34, No. 2, March 1987, pp. 124-126

TABLE I	TABLE III
A. MEASURANDS Al- Acoustic	C. DETECTION MEANS USED IN SENSORS C1 Biological
A).1 Wave amplitude, phase, polarization, spectrum	C2 Cherrical C3 Electric, Magnetic, or Electromagnetic Wave
A1.2 Wave velocity A1.3 Other (specify)	C4 Heat, Temperature
A2. Biological	C5 Mechanical Displacement or Wave
A2.1 Biomass (identities, concentrations, states)	C6 Redirectivity, Radiation
A2.2 Other (specify)	C? Other (specify)
A3. Chemical A3.1 Components (identifies, concentrations, states)	
A3.2 Other (specify)	
A4. Electric	TABLE IV
A4.1 Charge, current	D. SENSOR CONVERSION PHENOMENA
A4.2 Potential, potential difference A4.3 Electric field (amplitude, phase, polarization, spectrum)	DI. Biological
A4.4 Conductivity	D1.1 Biochemical transformation
A4.5 Permittivity	D1.2 Physical transformation
A4.6 Other (specify)	D1.3 Effect on text organism
A5. Magnetic A5.1 Magnetic field (amplitude, phase, polarization, spectrum)	D1.4 Spectroscopy D1.5 Other (specify)
A5.2 Magnetic flas	D2. Chemical
A5.3 Permeability	D2.1 Chemical transformation
A5.4 Other (specify)	D2.2 Physical transformation
A6. Mechanical	D2.3 Electrochemical process D2.4 Spectroscopy
A6.1 Position (linear, angwlar) A6.2 Velocity	D2.5 Other (specify)
A6.3 Acceleration	D3. Physical
A6.4 Force	D3.1 Thermoelectric
A6.5 Stress, pressure	D3.2 Photoelectric D3.3 Photomagnetic
A6.6 Strain A6.7 Mass, density	D3.4 Magnetoelectric
A6.8 Morrent, torque	D3.5 Elastoragnetic
A6.9 Speed of flow, rate of mass transport	D3.6 Thermoelastic
A5.10 Shape, nzughness, orientation	D3.7 Elastoelectric
A6.11 Stiffness, compliance	D3.8 Thermonugnetic D3.9 Thermooptic
A6.12 Viscosity A6.13 Crystallialty, structural integrity	D3.10 Photoelastic
A6.14 Other (specify)	D3.11 Other (specify)
A7. Optical	
A7.1 Wave amplitude, phase, polarization, spectrum	
A7.2 Wave velocity A7.3 Other (specify)	TABLE V
A8. Radiation	
A8.1 Type	E. SENSOR MATERIALS
A8.2 Energy	E1 Inorganic E2 Organic
A8.3 Intensity A8.4 Other (specify)	E2 Organic E3 Conductor
A9. Thermal	E4 Insulator
A9.1 Temperature	E5 Semiconductor
A9.2 Plax	E6 Liquid, gas or plasma
A9.3 Specific heat A9.4 Thermal conductivity	ET Biological substance ES Other (specify)
A9.5 Other (specify)	20 Olive (specify)
A10. Other (specify)	
	TABLE VI
	F. FIELDS OF APPLICATION F1 Agriculture
TABLE II	F2 Automotive
	F3 Civil tagineering, construction
B. TECHNOLOGICAL ASPECTS OF SENSORS	F4 Distribution, commerce, finance
B1 Sensitivity	F5 Domestic appliances F6 Energy page
B2 Measurand range B3 Stability (short-term, long-term)	F6 Energy, power F7 Environment, meteorology, security
B4 Resolution	F8 Health, medicine
B5 Selectivity	F9 Information, tolecommunications
B6 Speed of response	F10 Marafacturing
B7 Ambient conditions allowed B8 Overload characteristics	F11 Marine F12 Military
B8 Overload characteristics B9 Operating life	F13 Scientific measurement
B10 Output format	F14 Space
B11 Cost, size, weight	F15 Transportation (excluding automotive)
B12 Other (specify)	F16 Other (specify)

125


- Planetary in-situ sample analysis
 - Ultrasonic drill (high temp, sensing, probing, gopher)
 - Lab-on-chip
- Gossamer and adjustable shape membranes
- Aerospace structures
- Biologically-inspired robotics
- Electroactive Polymers (EAP)
- Haptic interfaces

Sensors categories that are considered

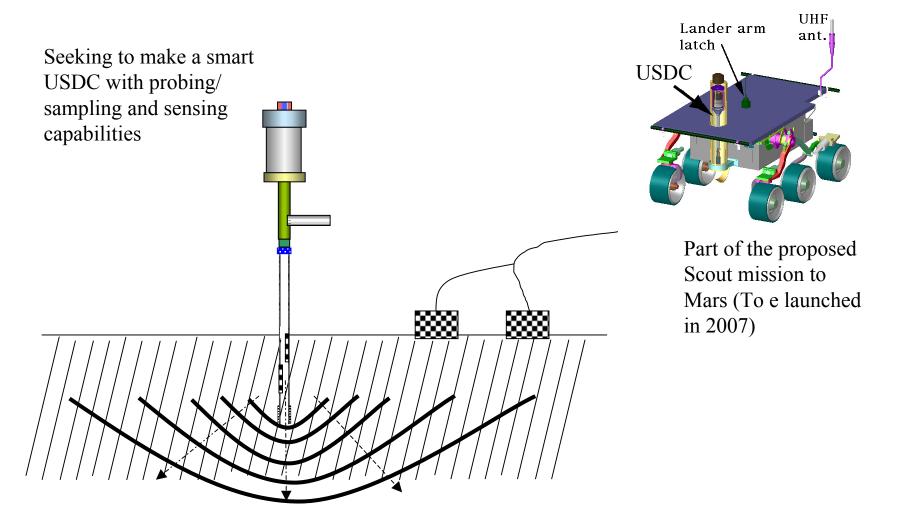

- Imbedded sensors (localized or distributed)
- Surface coated (e.g., bruising paint, brittle coating)
- Attached sensors (e.g., cracking fuse, strain gage, fiber optics)
- Adjacent/inductive (e.g., eddy current, ultrasonic, magnetic, visual)
- Remote sensors (e.g., visual, sonic, infrared)

Ultrasonic/Sonic Driller/Corer (USDC)

Ultrasonic/Sonic Drill and Corer (USDC)

Ultrasonic rock abrasion tool

Ultrasonic Gophers for deep drilling



USDC is a drill that uses low axial force and does not require bit sharpening

Smart USDC

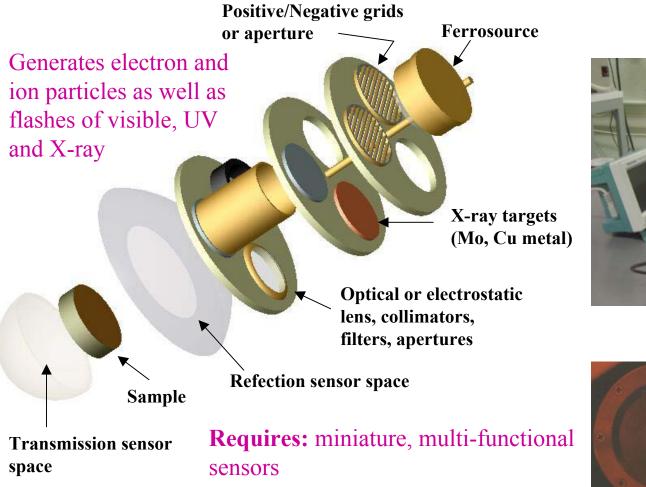
Probing, sampling and sensing

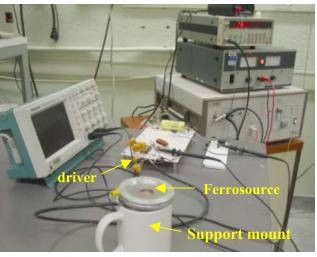
The USDC is being studied as a probing device that can sample cores, powdered cuttings and gases as well as operate as a platform for sensors

- <u>Noninvasive probing</u> The reflection and transmission of imparted elastic waves (bulk and surface) were measured to establish means of rocks characterization. Also, the effect of loading the actuator by the sample were monitored by measuring the change in impedance and resonance frequency.
- <u>Sampling techniques</u> Methods of operating the bit as an all-in-one unit for extraction of cored rocks (including basalt) with maximum integrity were developed. A device for the acquisition of powdered cutting and gases is being produced by Cybersonics and is expected to be delivered soon.

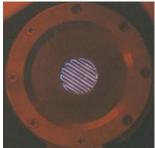
Integrated sensors

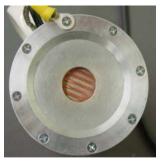
- An integrated thermocouple showed great potential in determining the hardness of drilled rocks using the heating rate and maximum temperature rise. Assuming relatively similar heat transfer to rocks, this should provide an effective sensing technique. It would also help protecting cored samples from thermal damage.
- We demonstrated the integration of an optical-fiber into a bit. Currently, we are working with two fiberoptic companies to determine what is feasible using integrated optical-fibers. These companies are: Ocean Optics and Research International.


Sensor requirements


The characteristics of the required sensors are

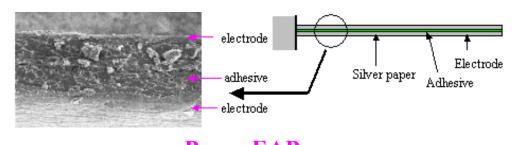
- Detect life, biological markers and water
- Support mineralogy, chemical, physical properties, crystallography and/or geological content analysis
- Small cross-section and low mass
- Driven by minimal power
- Operational at high (Venus: 460°C) and low (Titan ~ 200°C) temperature
- Durable to harsh environment and cyclic impacts




Ferrosource and fixtures for emission of multiple radiation types

Ferrosource

IPL

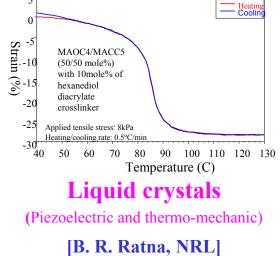

Yoseph Bar-Cohen, 818-354-2610, yosi@jpl.nasa.gov

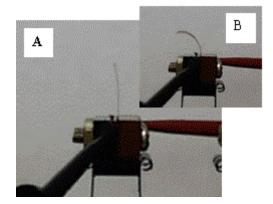
Electronic EAP

Electric field or coulomb forces driven actuators

Ferroelectric

[Q. Zhang, Penn State U.]


Voltage Off



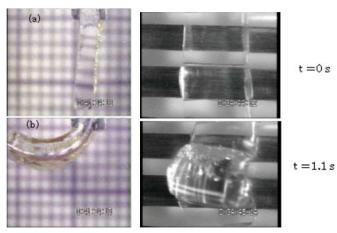
Voltage On

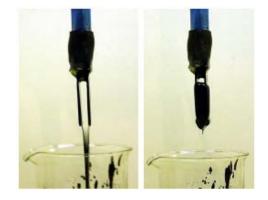
Dielectric EAP

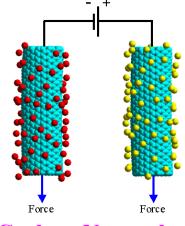
[R. Kornbluh, et al., SRI International]


Graft Elastomer [J. Su, NASA LaRC]

Yoseph Bar-Cohen, 818-354-2610, yosi@jpl.nasa.gov




Ionic EAP Turning chemistry to actuation


IPMC [JPL using ONRI, Japan & UNM materials]

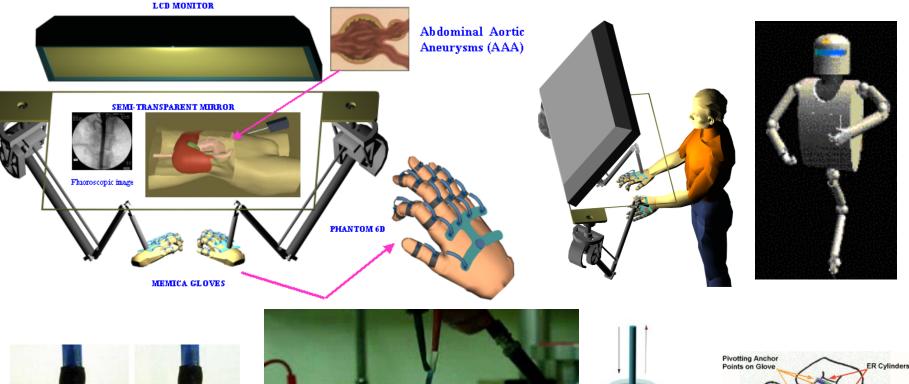
Ionic Gel [T. Hirai, Shinshu University, Japan]

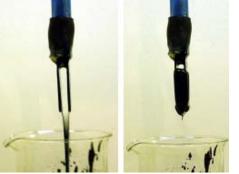
ElectroRheological Fluids (ERF) [ER Fluids Developments Ltd]

Carbon-Nanotubes [R. Baughman et al, Honeywell, et al]

Applications

Underway or under consideration


• Mechanisms


- Lenses with controlled configuration
- Mechanical lock
- Noise reduction
- Flight control surfaces/Jet flow control
- Anti G-suit
- Robotics, Toys and Animatronics
 - Biologically-inspired robots
 - Toys and Animatronics
- Human-Machine Interfaces
 - Haptic interfaces
 - Tactile interfaces
 - Orientation indicator
 - Smart flight/diving suits
 - Artificial nose
 - Active Braille display
- Planetary Applications
 - Sensor cleaner/wiper
 - Shape control of gossamer structures

- Medical Applications
 - EAP for biological muscle augmentation or replacement
 - Miniature in-vivo EAP robots for Diagnostics and microsurgery
 - Catheter steering mechanism
 - Tissues growth engineering
 - Interfacing neuron to electronic devices Using EAP
 - Active bandage
- Liquid and Gases Flow Control
- Controlled Weaving
 - Garment and clothing
- MEMS
- EM Polymer Sensors & Transducers

Haptic Interfacing – MEMICA System

(MEchanical MIrroring using Controlled stiffness and Actuators)

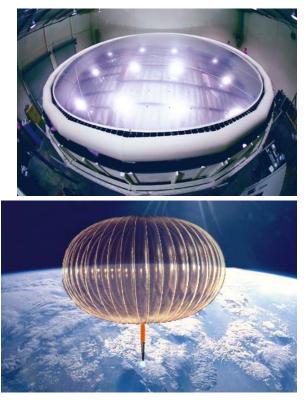
Electro-Rheological Fluid at reference (left) and activated states (right). Yoseph Bar-Cohen, 818-354-2610, yosi@jpl.nasa.gov [Smart Technology Group, UK] ER Fluid

Emerging biomimetic technologies

- Biologically inspired robots
- Nano-bio technologies
- Scalable and/or reconfigurable robots
- Artificial muscle actuated mechanisms

Required sensors

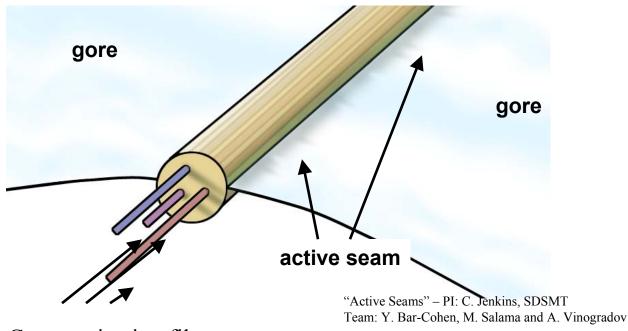
- Flexible
- Light weight
- Imbeddable
- Miniature distributable
- Easy to multiplex
- Easy to connect and integrate
- Self powered or utilize the equivalence of biologically system (use resources from the adjacent environment)



Enabling Fabrication, Deployment, and Control of Precision Gossamer Apertures (PGA) Through Adaptive Gore/Seam Architectures

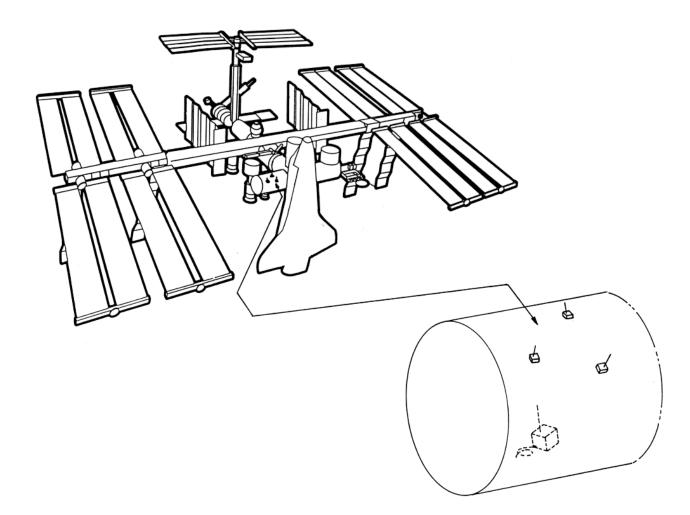
The problem

- Large PGAs have been made in the past by seaming together smaller segments or gores
- This is likely to continue for the near-term.


"Active Seams" – PI: C. Jenkins, SDSMT Team: Y. Bar-Cohen, M. Salama and A. Vinogradov

The solution

Shifting the paradigm to: "let's take advantage of the opportunities that seams present!"



- Communication filaments
- Power filaments
- Misc. active elements
- Sensors

Tele-stick-on sensor system

Sensors for ultrasonics and acoustic emission NDE

We need the equivalence of the ear in a miniature sensor/instrument

<u>Namely</u>: acquire the phase and amplitude of signals over a very broadband with minimal roll-off on both ends and very high signal to noise and fidelity.

There is a need for sensors that can:

operate at

- Harsh environments and extreme conditions (physical, mechanical, chemical or biological)
- Areas that are beyond reach

perform

- Test large-areas at high-speeds
- Real-time operation from cradle to retirement
- Broadband with phase and amplitude spectral data
- Accurately acquire nonlinear data
- Distributed sensing
- Multifunction

<u>be</u>

- Reliable and robust
- Scalable (MEMS, Miniaturizable to nano levels, etc.)
- Wireless
- Self powered or utilize the equivalence of biologic system (e.g., use resources from the adjacent environment, etc.)