
In Proc. 2002 IEEE Int’l Conf. on Robotics and Automation (ICRA 2002) 1

Self-Collision Detection and Prevention for Humanoid Robots

James Kuffner1,2 Koichi Nishiwaki1 Satoshi Kagami2

Yasuo Kuniyoshi1 Masayuki Inaba1 Hirochika Inoue1

1 Dept. of Mechano-Informatics, School of Information Science and Technology, Univ. of Tokyo.
7–3–1, Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan.

{kuffner,nishi,kuniyosh,inaba,inoue}@jsk.t.u-tokyo.ac.jp

2 Digital Human Lab., National Institute of Advanced Industrial Science and Technology
2-41-6, Aomi, Koto-ku, Tokyo, 135-0064, Japan.

s.kagami@aist.go.jp

Abstract

We present an efficient approach to self-collision
detection suitable for complex articulated robots such
as humanoids. Preventing self-collisions is vital for
the safe operation of robots that generate body tra-
jectories online. Our approach uses a fast distance
determination method for convex polyhedra in order
to conservatively guarantee that a given trajectory is
free of self-collision. Experimental results using an on-
line joystick control application for the humanoid robot
“H7” demonstrate the feasibility and effectiveness of
the method.

1 Introduction

In order for humanoid robots to become practical,
they must be able to operate safely and reliably. Self-
collisions occur when one or more of the links of a
robot collide. Self-collisions can result in damage to
the robot itself, or through a loss of balance or control,
cause human injury or damage to its surrounding envi-
ronment. Thus, detecting and avoiding self-collisions
is fundamental to the development of robots which can
be safely operated in human environments.

This paper describes an efficient geometric ap-
proach to detecting link interference suitable for com-
plex articulated robots such as humanoids. We rely on
fast, feature-based minimum distance determination
methods for convex polyhedra[9] in order to conserva-
tively guarantee that a given trajectory is free of self-
collision. Threshold values can be set on the allowable
minimum distance between links in order to provide
a safety margin that accounts for errors in modeling
and control. Full body trajectories can be checked in
advance for potentially self-colliding postures prior to
being executed on the robot.

Our previous experiments concerned detecting and
preventing leg collisions[7]. In our current implemen-
tation, the minimum distances between all possible

(a) Full Body (b) Body Pruned
(435 pairs) (76 pairs)

(c) Full Legs (d) Legs Pruned
(79 pairs) (19 pairs)

Figure 1: Four different self-collision detection modes for

the H7 humanoid. Minimum distances are maintained be-

tween active pairs of link protective hulls.

relevant body link pairs (Figure 1(a)) for a 30 DOF hu-
manoid (435 pairs) can be calculated in approximately
2.5 milliseconds on average on an 866 MHz Dual Pen-
tium III (see Section 5). Although we have focused
on detecting self-collisions for biped humanoids, the
technique can generally be applied to any robot with
articulated appendages (arms or legs). It is also ap-
plicable to detecting inter-robot collisions for multiple
manipulators which share a common workspace (e.g.
crowded factory workcells).

2 Background

Collision detection in robotics has arisen primarily
in the context of obstacle avoidance and path plan-
ning, in which the robot geometry is tested for col-
lision with geometric models of environment obsta-
cles. Articulated robots must also avoid self-collision,
though most serial-chain manipulators are designed
mechanically to minimize potential link interference.
Self-collision is typically not an issue for mobile robots.

In the case of serial-chain manipulators, immedi-
ately adjacent links cannot collide if proper joint angle
limits are defined. Other pairs of links can be ruled
out due to geometric reachability constraints. The
remaining link pairs must be checked for collision ex-
plicitly. For a manipulator with six or seven degrees
of freedom (DOF), performing these remaining checks
can usually be accomplished using any number of effi-
cient model-based collision detection algorithms from
computational geometry (e.g. [8, 11, 3, 1, 9, 4, 2]).

Humanoid robots, however, pose a particular chal-
lenge for self-collision detection. A humanoid gener-
ally consists of a tree of connected links. This tree
can be conceptually viewed as a set of five serial chain
manipulators (2 arms, 2 legs, and 1 neck-head chain)
all attached to a free-floating trunk. Each chain must
avoid self-collision as well as collisions with the trunk
and all other chains. Assuming that joint limits pre-
vent collision between a given link and its parent link,
the number of pairs P that must be checked explicitly
in tree-like structure with N links is given by:

P = (

N−1∑

i=1

i) − (N − 1) =

N−2∑

i=1

i

P =
N2 − 3N + 2

2
(1)

The H7 humanoid developed in our laboratory has
a total of 31 links and 30 DOF. For N = 31, the
maximum number of remaining pairs to be checked
according to Equation 1 is P = 435. The burden of
this computation is no longer trivial.

Clearly, the number of pairs which must be checked
in practice can be substantially reduced by consider-
ing kinematic reachability constraints. For example,
it is impossible for the neck and head links of H7 to
collide with the leg links. Through heuristic or exhaus-
tive search methods, a table of all potentially colliding
pairs of links can be pre-computed [6]. However, even
after eliminating unnecessary pairs, the number of re-
maining active pairs is still considerable. In the case
of H7, a total of 76 pairs must be checked in order to
verify an arbitrary posture is free of self-collision (see
Figure 1). For verifying walking trajectories for H7
that involve only the leg joints, checking fully all links
yields 79 pairs, while checking only selected links still
demands 19 pairs. Clearly, efficient underlying tech-

niques for collision detection between pairs of geomet-
ric primitives are required.

3 Interference Detection

Collision detection can be included under the more
general term interference detection. Interference de-
tection and the related problem of minimum distance
determination between two or more geometric objects
has been the subject of extensive research in both
robotics and computer graphics. The important fea-
tures of a given algorithm include: 1) efficiency, 2)
generality (e.g. ability to handle non-convex models,
models with holes, polygon “soups”, etc.) 3) numer-
ical stability and robustness, and 4) exploitation of
spatial and temporal coherence. Performance trade-
offs in terms of both speed and memory exist between
each of these features.

Trajectory Sampling: In its simplest form, inter-
ference detection returns a binary result (whether or
not two or more geometric objects overlap). This im-
plies that checking for collision between objects fol-
lowing continuous motion trajectory necessitates ei-
ther: 1) computing the swept volumes of the object
motions and checking for interference, or 2) discretiz-
ing the trajectory into a finite set of samples which
are individually tested for collision.

Since swept volume computations are difficult and
expensive, discretization is usually preferred due to
simplicity. However, regardless of the discretization
resolution one selects, it is always possible to construct
a case in which a potentially dangerous collision goes
undetected due to an insufficient number of samples.

Bounds and Collision-free Guarantees: The ad-
vantage of knowing a conservative measure of the min-
imum distance between two objects over a purely bi-
nary collision detection result, is that it allows one to
formulate collision-free guarantees over bounded rela-
tive motions of the objects.

Let dist(A,B, TAB) 7→ < be a function that re-
turns a real number representing a lower bound on
the minimum distance between two objects A and B
at a given relative transformation TAB ∈ SE(3). Let
τ(t) 7→ TAB be a continuous function that parame-

terizes the relative motion between A and B in <3.
For our humanoid robot, bounds on the maximum

joint velocities |q̇| < q̇max determine bounds on the
maximal velocities of the robot geometry in <3 via
the Jacobian ∂x = J(q)∂q which maps velocities in the
joint space into the workspace. Thus, given a contin-
uous joint trajectory τ(t) 7→ q and an interval of time
∆t, the maximal displacement xmax(q, q̇, q̇max) 7→ <
in the workspace can be computed along with the min-
imum distance information to guarantee collision-free

2

CAD Model Convex Hull Bounding Box
(314,588 triangles) (2,702 triangles) (432 triangles)

Figure 2: Approximate geometric models of H7.

CAD Model Protective Hull Combined View

Figure 3: Protective Convex Hull for the head link.

motion during the time interval ∆t. For efficiency,
conservative bounds can also be formulated in advance
by using a fixed Dmax per ∆t representing the maxi-
mal displacement for all postures, though this is cur-
rently not done in our system.

Protective Hulls: Computational efficiency and
conservative bounds are also considered when repre-
senting the link geometry for interference detection.
Approximate convex protective hulls of each link are
derived from the original CAD models, which repre-
sent inherently closed surface models of solid objects.
These protective hulls serve as conservative approx-
imations to the complicated geometry of individual
links (see Figure 3). The hulls completely enclose
the underlying geometry, and provide a safety mar-
gin around each link.

Our experiments have shown these hulls to nicely
approximate the geometry relative to other possible
bounding volumes (such as bounding boxes). Should
a link have severe non-convex geometrical features,
it can always be subdivided into a rigid collection of
convex pieces. This was not necessary for our robot.
Figure 2 shows three different approximate geometric
models of the H7 humanoid robot (30 DOF, 137cm,
55kg). The left image shows tesselated CAD data for
each link, the center image shows the link convex pro-
tective hulls (used for our experiments), and the right
image shows the link bounding boxes.

Figure 4: Maintaining pairs of closest points between leg

links.

Minimum Distance Determination: The convex
nature of the protective hulls allows us to utilize fast
minimum distance determination methods for convex
polyhedra. We selected the Voronoi-clip (V-clip) al-
gorithm due to its robustness and availability[9]. V-
clip is a feature-based method which improves upon
the Lin-Canny algorithm[8], and has been shown to
compare favorably to simplex-based algorithms such
as Enhanced-GJK[1]. For convex polyhedra, V-clip
does not need to construct hierarchies of bounding
volumes like other methods [11, 3]. The running time
does not depend on the distance between objects; only
on their geometric complexity and motion relative to
the previous query. Since our motion trajectories are
continuous, V-clip is able to exploit spatial and tem-
poral coherency in order to update minimum distance
values and pairs of closest feature points in “almost
constant” time (see [9] for details).

We track the closest points between each active pair
of links over the course of an entire trajectory, and ver-
ify that a positive minimum distance is maintained at
all times (see Figure 4). Forward kinematics is used to
calculate the global position and rotation of each link
from the leg joint angles. The user can set threshold
values for the minimum distances considering errors
in modeling and control, relative to the safety margin
provided by the protective hulls.

4 Safe Walking

Most existing walking biped robots employ local
feedback from force/torque sensors and gyroscopes in
order to maintain dynamic balance. Using this sensor
data and an approximate dynamic model, the joints
of the robot can be adjusted online to satisfy con-
straints, such as center of gravity or ZMP constraints.
(e.g.[13, 5, 12]). This feedback can then be used to
successfully follow pre-calculated walking patterns, as
well as walking trajectories generated online[10].

Although these methods are able to maintain dy-
namic stability, they often do not guarantee safe mo-

3

tion. While trying to satisfy balance constraints, they
may inadvertently cause one leg of the robot to collide
with the other leg (“leg interference”). As mentioned
previously, such collisions can potentially cause the
robot to fall, causing human injury, damage to itself,
or damage to surrounding objects.

Collision Constraints: Theoretically, kinematic
constraints aimed at avoiding self-collision could be
incorporated directly into the balancing scheme. How-
ever, such an approach is currently impractical due to
the numerous complex constraints induced by the ge-
ometry and kinematics of the robot links.

Detection and Prevention: Rather than attempt-
ing to satisfy self-collision constraints directly, we have
focused on detecting potentially dangerous trajecto-
ries before they are executed by the robot. If detected,
the robot can attempt to generate a new trajectory, or
proceed with a safe stopping behavior. Using this ap-
proach, we aim to build internally-consistent walking
systems that are safe, reliable, and practical. Our cur-
rent implementation (described in the following sec-
tion) uses an online joystick control application that
combines dynamically-stable walking pattern genera-
tion with self-collision checking to produce safe walk-
ing trajectories.

5 Experiments

We have implemented a prototype self-collision de-
tection module in C++ on an 866 MHz Dual Pentium
III PC running RT-Linux. Given an input posture
and a robot model (kinematics, joint hierarchy, pro-
tective hull geometry), the minimum distance between
all sets of active links is calculated. The set of active
pairs is determined by the current self-collision check-
ing mode. All modes are shown in Figure 1. Example
postures for each mode are shown: Full body (Fig-
ure 5), and Legs (Figure 6).

Computation Time: Based on the current mode,
we verify that a single posture or an entire trajectory
is free of potentially dangerous self-collisions. For a
single posture of the robot (7 joint angles for each
leg), 19 closest-feature pairs can be updated in less
than 0.13 msec on average, including the forward kine-
matics calculations. This calculation was performed
10,000 times using varying cyclic leg configurations
(both colliding and disjoint) of typical walking tra-
jectories. A summary of the computation times for
repeated runs of for each mode is shown in Table 1.

User Interface: A graphical interface is used to
view the results of the minimum distance computa-
tions (see Figure 7). Lines connecting the closest

(a) Full body all pairs (no pruning)

(b) Full body pruned

Figure 5: Full body self-collision detection.

(a) Legs all pairs (no pruning)

(b) Legs pruned

Figure 6: Legs self-collision detection.

Checking Mode links pairs time (msec)
Full Body 31 435 2.442

Body Pruned 31 76 0.429
Full Legs 14 79 0.441

Legs Pruned 14 19 0.128

Table 1: Computation time for single-posture check in-

cluding forward kinematics(N = 10, 000 trials).

4

Figure 7: Detail of minimum distance calculation (Pruned

body mode): non-colliding (left), colliding (right).

Figure 8: In-place step with in an inter-leg collision.

points between pairs of links are drawn. If the mini-
mum distance between two links falls below zero (col-
lision), the pair is shown in red. Figure 8 and Fig-
ure 9 illustrate two trajectories which are dynamically-
stable, but result in inter-leg collisions.

Online Joystick Control: We have implemented
an online joystick control application running under
RT-Linux that combines dynamically-stable walking
pattern generation with self-collision checking to pro-
duce safe walking trajectories. An overview of the
relevant system components in shown in Figure 10.

The robot begins with a safe 3-step stopping tra-
jectory (a trajectory which will bring the robot to a
complete stop using three steps). Such a trajectory we
refer to as an Emergency Stopping Trajectory, or EST.
The timing for each step trajectory is approximately
one second. The robot begins by executing the first
step of the current 3-step EST. During that time, the
joystick is queried and a new dynamically-stable EST
to bring the robot from the end of the first step is cal-
culated. The new motion is calculated according to
the commanded joystick direction, and will bring the
robot to a full stop (3 steps total). This new trajec-

Figure 9: Forward-turning step with inter-leg collisions.

KERNEL
LAYER

(RT-Linux)

USER
LAYER

ROBOT HARDWARE
(motors, encoders, gyro, inclinometer, force sensors)

Robot I/O Board (RIF-01 x 2)

PD servo
1 msec (1000 Hz)

Online Balance
Compensator

Online Walking
Trajectory Generator

(3-step EST)

Walking Trajectory
Sequence Manager

desired
joint angles

gyro data
6-axis FS

motor
torque

joint
angles

desired
trajectory

Joystick ServerOnline Collision Checker FIFO
 Q

ueue C
om

m
unication

Trajectory Generation
65 samples, 50 ms spacing

(60 - 105 msec)

Collision Check (10mm tol)
including joint position and

joint velocity limit check
(10 - 30 msec)

Figure 10: Software and Control System Components.

Joystick
Command

Cycle

Time (1 step = 1 second)

0 1 2 3

1 2 3 4

2 3 4 5

3 4

6 7

5 6

INITIAL
POSTURE

FINAL
POSTURE

Always maintains
3-step Emergency

Stopping Trajectory

DURING EACH CYCLE:

• Read joystick command

• Calculate new 3-step
trajectory

• Check new trajectory for
self-collision

3-step Trajectory

54

Collision
Detected

Figure 11: 3-step EST trajectory generation timeline.

5

Figure 12: Online self-collision checking during joystick

control experiment.

tory is sent via FIFO queue to a self-collision checking
server which calculates the overall minimum distance
between all active pairs. If the minimum distance falls
below the given threshold, the new trajectory is dis-
carded and the robot continues to follow the previous
EST and comes to a halt. A graphical diagram of the
behavior of the walking system is shown in Figure 11.

Figure 12 shows an online joystick experiment. The
self-collision checking module (bottom left and right
windows) detects a potentially dangerous knee-knee
collision, and automatically causes the robot to fol-
low a safe stopping trajectory. Experimental timing
results collected from the RT kernel over hundreds of
walking steps reveal that self-collision checking (Legs
Pruned mode) for a three-step trajectory can be per-
formed in roughly 10-30 msec on average using our
current CPU hardware.

6 Discussion

We have presented an overview of an efficient ap-
proach to detecting self-collision for humanoid robots
aimed at providing safety guarantees for full-body tra-
jectories (both offline and online). We employ efficient
minimum distance determination methods for main-
taining the closest pair of features on conservative
convex protective hull models of the leg links. We
have incorporated the algorithm into an online joy-
stick control application for the H7 humanoid robot,
and demonstrated its efficiency and effectiveness.

For future work, we would like to use the software
to automatically calculate active pairs for given joint
angle ranges in order to reduce the combinations of
pairs that must be checked dynamically. We are also
currently investigating the use of alternative minimum
distance determination methods[2], which may allow
us to use non-convex protective hulls, or even the CAD

data directly for situations in which the exact mini-
mum distance information is required.

Acknowledgments

This research is supported in part by a Japan Society for
the Promotion of Science (JSPS) Postdoctoral Fellowship
for Foreign Scholars in Science and Engineering.

References

[1] S. Cameron. Enhancing GJK: Computing minimum
and penetration distances between convex polyhedra.
In Proc. IEEE Int’l Conf. on Robotics and Automa-
tion (ICRA’97), pages 3112–3117, April 1997.

[2] S. A. Ehmann and M. C. Lin. Accelerated proxim-
ity queries between convex polyhedra by multi-level
voronoi marching. In Proc. of 2000 IEEE/RSJ Int.
conf. on Intelligent Robots and Systems (IROS’00),
2000.

[3] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree:
A hierarchical structure for rapid interference detec-
tion. In SIGGRAPH ’96 Proc., 1996.

[4] L. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchi-
cal distance computation for moving convex bodies. In
Proc. ACM Symposium on Computational Geometry,,
pages 265–273, 1999.

[5] Kazuo Hirai. Current and future perspective of honda
humanoid robot. In Proc. of 1997 IEEE/RSJ Int.
conf. on Intelligent Robots and Systems (IROS’97),
pages 500–508, 1997.

[6] F. Kanehiro and H. Hirukawa. Online self-collision
checking for humanoids. In Proc. 19th Annual Conf.
of Robotics Society of Japan, Tokyo, Japan, Septem-
ber 2001.

[7] J.J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi,
M. Inaba, and H. Inoue. Efficient leg interference de-
tection for biped robots. In Proc. 19th Annual Conf.
of Robotics Society of Japan (RSJ’01), Tokyo, Japan,
September 2001.

[8] M. Lin. Efficient Collision Detection for Animation
and Robotics. PhD thesis, U.C. Berkeley, Dept. of
Electrical Eng. and Comp. Sci., Berkeley, CA, 1993.

[9] B. Mirtich. VClip: Fast and robust polyhedral col-
lision detection. ACM Transactions on Graphics,
17(3):177–208, July 1998.

[10] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba,
and H. Inoue. Online generation of desired walking
motion on humanoid based on a fast method of mo-
tion pattern that follows desired zmp. In 19th Annual
Conf. of Robotics Society of Japan, 2001.

[11] S. Quinlan. Efficient distance computation between
non-convex objects. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 3324–3329, 1994.

[12] Y. Tamiya, M. Inaba, and H. Inoue. Realtime bal-
ance compensation for dynamic motion of full-body
humanoid standing on one leg. Journal of the Robotics
Society of Japan, 17(2):268–274, 1999.

[13] J. Yamaguchi, A. Takanishi, and I. Kato. Devel-
opment of a biped walking robot compensating for
three-axis moment by trunk motion. In Proceedings of
IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS ’93), pages 561–566, 1993.

6

