
Casa2003 Mobile conversational agents 1

2.1 An abstract model of reactive agents
with sensing

Following Wooldridge & Lomuscio, a (simplified)
environment Env is a tuple 〈E, τe ,e0 〉 , where

• E={e1,e2,…} is a set of states for the environment

• τe : E × Act → E is a state transformer function for the
environment, with Act a set of actions

• e0 ∈ E is the initial state of the environment

Casa2003 Mobile conversational agents 2

2.1 An abstract model of reactive agents
with sensing

and an agent Ag is a tuple 〈L,Act,see,τa,do,l0 〉, where

• L={l1, l 2,…} is a set of local states for the agent

• Act={a1,a2, …} is a set of actions

• see: E→ P is the perception function

• τa : L × P → L is the state transformer function

• do: L → Act is the action selection function,

• l0 ∈ L is the initial state for the agent

Casa2003 Mobile conversational agents 3

2.1 An abstract model of reactive agents
with sensing

An agent system is a pair {Ag,Env}, its set of global
states G is any subset of L× E i.e., gi = 〈 li , ei 〉
A run of a agent system is a (possibly infinite)
sequence of global states (g1, g2, …) over G such
that

∀ i , gi = 〈 τa(li-1 , see(ei-1)), τe(ei-1 , do(li))〉

Casa2003 Mobile conversational agents 4

2.2 A concrete model of reactive agents
with sensing

Let S be the set of sentences of first order logic with
arithmetic whose set of predicates includes the
predicate do/1, and let P=S and L=℘(S). If we
incorporate the perception function and selection of
actions within the functions τa and τe , then we get
two new functions

• τa,see : L × E → L

• τe,do : E × L → E

Casa2003 Mobile conversational agents 5

2.2 A concrete model of reactive agents
with sensing

Equivalently, these new functions can be seen as
procedures with side effects i.e.,

• τa,see : L × E → L ⇒ procedure sense(l,e)

with side effects on l.

• τe,do : E × L → E ⇒ procedure react(e,l)

with side effects on e

We can define these procedures as follows:

Casa2003 Mobile conversational agents 6

2.2 A concrete model of reactive agents
with sensing

• procedure sense(l,e)

if “the agent receives the percept p”

then l ← τa(l,p)

• procedure react(e,l)

if l ⊢ do(a)

then e ← τe(e,a)

Casa2003 Mobile conversational agents 7

2.2 A concrete model of reactive agents
with sensing

We write l ⊢ do(a) to mean that the formula do(a)
can be proved from the formula l, meaning in turn
that a is an applicable action: we thus define a
logical agent model

An agent’s run is then defined as follows

procedure run(e,l)

loop sense(l,e);

react(e,l)

Casa2003 Mobile conversational agents 8

2.2 A concrete model of reactive agents
with sensing

Although environments are supposed to evolve
deterministically, the choice to be made among
applicable actions is left unspecified. Consequently,
the run procedure can be seen as a non-deterministic
abstract machine generating runs for logical agents
(=a concrete model of non-deterministic agents)

Casa2003 Mobile conversational agents 9

2.3.1 A concrete model of a reactive
agents with sensing and plans

Intuitively, an agent’s plan can be described as an
ordered set of actions that may be taken, in a given
state, in order to meet a certain objective. As the
choice among applicable plans will be left
unspecified, agent will remain non-deterministic

Casa2003 Mobile conversational agents 10

2.3.1 A concrete model of a reactive
agents with sensing and plans

We assume a set P = {p1, p2, …} of non-
deterministic plan names (nd-plan in short) and three
predicates plan/1, do/2 and switch/2.

For any agent, its current nd-plan p ∈ P refers to a
set of implications “conditions” ⇒ do(p, a) or
“conditions” ⇒ switch(p, p′), where a is an action.

We further assume that an agent’s initial nd-plan p0

can be deduced from l i.e., that l ⊢ plan(p0).

Casa2003 Mobile conversational agents 11

2.3.1 A concrete model of a reactive
agents with sensing and plans

Example: a vacuum cleaner robot

To illustrate these concepts, let us consider a vacuum
cleaner robot that can choose either to work i.e.,
move and suck any dirt on sight, or to go home and
wait. Let us further assume that the robot must stop
whenever an alarm condition is raised. These three
behaviors correspond to three possible nd-plans, i.e.
work, home and pause.

Casa2003 Mobile conversational agents 12

2.3.1 A concrete model of a reactive
agents with sensing and plans

Example: a vacuum cleaner robot
The robot behavior can be represented by a decision tree
rooted at a single initial plan

plan(initial)

alarm ⇒ switch(initial,pause)
¬alarm ⇒ switch(initial,start)

dirt(_,_) ⇒ switch(start,work)
¬dirt(_,_) ⇒ switch(start,home)

do(pause,stop)
in(X,Y)∧ dirt(X,Y) ⇒ do(work,suck(X,Y))
in(X,Y)∧ ¬dirt(X,Y) ⇒ do(work,move(X,Y))
in(X,Y) ⇒ do(home,back(X,Y))

Casa2003 Mobile conversational agents 13

2.3.1 A concrete model of a reactive
agents with sensing and plans

Let us further extend the definition of an agent’s
global state to include its current active nd-plan p.
We finally have the following new procedures:
procedure react(e,l,p) procedure run(e,l)

if l ⊢ do(p, a) loop sense(l,e);

then e ← τe (e,a) if l ⊢ plan(p0)

else if l ⊢ switch(p, p′) then react(e,l,p0)

then react(e,l,p′)

Casa2003 Mobile conversational agents 14

2.3.1 A concrete model of a reactive
agents with sensing and plans

At each run cycle, procedure react will be called
with the (possibly variable) initial plan p0 deduced
for the agent. In each recursive react call, the agent’s
first priority is to deduce and carry out an action a
from its current plan p. Otherwise, it may switch
from p to p′.

Casa2003 Mobile conversational agents 15

2.3.1 A concrete model of a reactive
agents with sensing and plans

If the switch predicate defines decision trees rooted
at each p0, then react will go down this decision tree.
As a result, actions will be chosen one at a time. The
mechanism just described allows an agent to adopt a
new plan whenever a certain condition occurs, and
then to react with an appropriate action.

Casa2003 Mobile conversational agents 16

2.3.1 A concrete model of a reactive
agents with sensing and plans

This extended virtual machine constitutes a model of
reactive and proactive agents, this latter capability
deriving from the deduction of initial plans p0

Casa2003 Mobile conversational agents 17

2.3.2 A concrete model of a reactive
agents with priority processes

Similarly to plans, processes of explicit priority n are
defined by implications “conditions” ⇒ do(n, a).

Consider then the following procedure
procedure process(e,l,n)
if l ⊢ do(n, a)
then (e,l) ← τ(e,l,a);

process(e,l,n)
else if n >0

then process(e,l,n-1)

Casa2003 Mobile conversational agents 18

2.3.2 A concrete model of a reactive
agents with priority processes

The procedure process, when called with an agent’s
highest priority n0, , will execute, in descending
order of priorities, all processes whose conditions
are satisfied.

We shall further assume that n0 can be deduced from
l i.e., that l ⊢ priority(n0).

Casa2003 Mobile conversational agents 19

2.3.3 A Prolog implementation

We need to represent

• the deduction of plans and actions i.e.,

l ⊢ plan(p0) and l ⊢ do(p, a)

• the state transformer functions i.e. ,

τe (e,a) and τa(l,p)

• the capture of perceptions

Casa2003 Mobile conversational agents 20

2.3.3 A Prolog implementation

• Agents will be represented as simple objects
encapsulating the formulas that hold in their local
state l .

• These formulas will include the agent’s
representation of the environment i.e., both
transforming functions will affect the agent’s local
state.

Casa2003 Mobile conversational agents 21

2.3.3 A Prolog implementation

An ADT for objects holding logical formulas

Basic types

O : the set of objects

L : the language of formulas

ListL : the set of lists of formulas of L

Casa2003 Mobile conversational agents 22

2.3.3 A Prolog implementation

An ADT for objects holding logical formulas

predicate
instance : O× L→ boolean true if the object contains an

instance of the formula

operations
new : → O creates an empty object
insert : O× L → O inserts a formula into the object
remove : O× L → O removes all instances of a formula
insertList : O× ListL→ O inserts a list of formulas

Casa2003 Mobile conversational agents 23

2.3.3 A Prolog implementation

An ADT for objects holding logical formulas
implementation

any formula P of agent A is asserted as instance(A,P)
(where A is the actual name of the agent)

new(A) :- retractall(instance(A,_)).
insert(A,P) :- assert(instance(A,P)).
remove(A,P) :- retractall(instance(A,P)).
insertList(A,Name):- forall((Name:List,

member(P,List)),
insert(A,P)).

Casa2003 Mobile conversational agents 24

2.3.3 A Prolog implementation

An ADT for objects holding logical formulas
example

plans:
[plan(initial),

alarm => switch(initial,pause),
not alarm => switch(initial,start),
dirt(_,_) => switch(start,work),
not dirt(_,_) => switch(start,home),
…].

insertList(robot,plans).

Casa2003 Mobile conversational agents 25

2.3.3 A Prolog implementation

A meta-interpreter for simple deductions in objects
(i.e., implementing a restricted form of l ⊢ P)

ist(A,P) :- instance(A,P).

ist(A,Q) :- instance(A,P=>Q),

ist(A,P).

ist(A,(P,Q)) :- ist(A,P),

ist(A,Q).

ist(A,not P) :- \+ ist(A,P).

Casa2003 Mobile conversational agents 26

2.3.3 A Prolog implementation

A meta-interpreter for simple deductions in objects
(i.e., implementing a restricted form of
l ⊢ p)

ist(A, P is Q) :- P is Q.

ist(A, P = Q) :- P = Q.

ist(A, P < Q) :- P < Q.

ist(A, P > Q) :- P > Q.

ist(A, P \= Q) :- P \= Q.

Casa2003 Mobile conversational agents 27

2.3.3 A Prolog implementation

Representing state transformer functions

An agent’s actions will be represented by methods to
be encapsulated in the object representing the agent

Format: method(Agent.Call,Body)
where Agent = the agent’s name

Call = the method’s name with its parameters

Body = Prolog code for the action

Casa2003 Mobile conversational agents 28

2.3.3 A Prolog implementation

Representing state transformer functions

example

actions:

[method(Agent.suck(X,Y),

(remove(Agent,dirt(X,Y)))),

…].

insertList(robot,actions).

Casa2003 Mobile conversational agents 29

2.3.3 A Prolog implementation

Representing state transformer functions

Methods can be called using messages
Format: Agent.Call

Example: robot.suck(1,1)

Messages are interpreted as
Agent.Call :- instance(Agent,

method(Agent.Call,Body),
call(Body).

Casa2003 Mobile conversational agents 30

2.3.3 A Prolog implementation

Implementing the virtual machine itself

The virtual machine itself is implemented as a list of agent
methods plus a bootstrap procedure

machine:
[method(Agent.sense,

(interrupt(Call)
-> (instance(Agent,

method(Agent.Call,Body))
-> call(Body);
insert(Agent,Call));

true)),

Casa2003 Mobile conversational agents 31

2.3.3 A Prolog implementation

Implementing the virtual machine itself

method(Agent.react(Plan),

(ist(Agent,do(Plan,Action))

-> Agent.Action;

(ist(Agent,switch(Plan,NewPlan))

-> Agent.react(NewPlan);

Agent.noOp(noAction)))),

Casa2003 Mobile conversational agents 32

2.3.3 A Prolog implementation

Implementing the virtual machine itself

method(Agent.run,

(loop((Agent.sense,

(ist(Agent,plan(Plan))

-> Agent.react(Plan);

Agent.noOp(noPlan))))))].

Casa2003 Mobile conversational agents 33

2.3.3 A Prolog implementation

Implementing the virtual machine itself

Extra-logical simulations:

interrupt(P) :- getb(C),

(C =13

-> read(P);

false).

This will allow to simulate an external interrupt by hitting the
enter key, and the passing of time by hitting any other key.

Casa2003 Mobile conversational agents 34

2.3.3 A Prolog implementation

Implementing the virtual machine itself

Extra-logical simulations:

loop(P) :- repeat, call((P,!)),fail.

Don’t ask how it works !!!

Casa2003 Mobile conversational agents 35

2.3.3 A Prolog implementation

Implementing the virtual machine itself
Bootstrap:

Agent.newAgent:- new(Agent),

insertList(Agent,machine),

insertList(Agent,actions),

insertList(Agent,plans).

Casa2003 Mobile conversational agents 36

2.3.3 A Prolog implementation

Implementing the virtual machine itself

Example:
| ?- robot.newAgent. robot . turndown
yes robot . forward
| ?- robot.run. robot . suck
|:in(0,0). robot . forward
|:facing(north). robot . turn
robot . pause robot . forward
robot . pause robot . turn
|: dirt(1,1). robot . pause
robot . forward robot . pause
robot . forward …

