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Abstract
The goal in reinforcement learning is to learn the value of taking each action from each possible state in order to maximize the total reward.
In scaling reinforcement learning to problems with large numbers of states and/or actions, the representation of the value function becomes
critical. We present a decision tree based approach to function approximation in reinforcement learning. We compare our approach with
table lookup and a neural network function approximator on three problems: the well known mountain car and pole balance problems as well
as a simulated automobile race car. We find that the decision tree can provide better learning performance than the neural network function
approximation and can solve large problems that are infeasible using table lookup.

1 Motivation

Reinforcement learning is an approach to learning by in-
teracting with the environment. It is modeled on the type of
learning that occurs in nature. When we do something that
brings a positive reward (pleasure) we tend to do the same
thing again. Likewise, actions that bring negative reward are
avoided. The ability to link cause and effect (sometimes in-
correctly) is a basic ability shared by even the simplest ani-
mals. The central idea of reinforcement learning algorithms
is Temporal Difference (TD) learning.

An agent based on reinforcement learning receives inputs
from the environment and uses them to select what action to
take. In the simplest case, the inputs are assumed to give
complete information about the state of the agent in its world.
As shown in Figure 1, the agent receives a reinforcement sig-
nal from the environment along with the current state at each
time step. At each time step, the reinforcement can be posi-
tive, negative or zero. The goal is for the agent to maximize
the average reinforcement that it receives over time by creat-
ing an optimal action selection policy. A policy is a function
that maps states to actions. The reinforcement learning agent
finds a policy by learning an estimate of the value of each
possible state. Another way to say this is that the agent learns
to approximate the value function. A value function is simply
some function that maps inputs representing the current state
s to a real number v that is the expected long-term reward that
can be earned when starting from that state.

A popular approach for representing the value function in
reinforcement learning is the table lookup method. This ap-
proach is guaranteed to converge, subject to some restrictions
on the learning parameters [11]. However, table lookup does
not scale well with the number of inputs. Some variations of
this approach, such as sparse coarse coding and hashing [10],
have been used to improve scalability somewhat. Another
approach is to use a neural network to learn the value func-
tion. That approach scales better, but is not guaranteed to
converge and often performs poorly even on relatively sim-

ple problems [2]. Our alternative is to use a decision tree to
represent the value function.

We began investigating this problem because we are build-
ing a reinforcement learning based agent for two simulated
robotic environments: Robot Automobile Racing Simulator
(RARS) and Khepera, a desktop robot. The dimensionality
of these problems was too large for a table lookup method.
We found that a major drawback to a standard neural net-
work based reinforcement learning implementation was its
tendency to over-train on the portion of the state space that
it visits often and forget the value function for portions of the
state space that it has not visited recently. This behavior is a
direct result of the fact that backpropagation networks using
sigmoidal transfer functions perform non-local updates to the
function that they are learning. This leads to a cycle where it
learns to perform well for a time and then begins to perform
poorly. In this paper, we show empirically that our approach
avoids this problem by providing stable and reliable conver-
gence to the estimated value function.
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Figure 1. An agent using reinforcement learning interacts
with its environment by receiving states and rewards from the
environment, and generating actions that change the environ-
ment.



2 Approachesto Value Function Estimation

The goal in reinforcement learning is to find the optimal pol-
icy. The optimal policy is the mapping from inputs (states)
to actions that maximizes the sum of the rewards. The value
of a state is defined as the sum of the rewards received when
starting in that state and following the policy to a terminal
state. The value function can be approximated using any gen-
eral function approximator such as neural network, look-up
table, or decision tree.

2.1 Table Lookup

Table lookup is the simplest approach to reinforcement learn-
ing. Each dimension is quantized into a number of bins. If
there are n inputs and each input is quantized into m bins,
then there are n™ entries in the table that is used to store the
value function approximation. Unfortunately, table lookup
does not scale well with the number of dimensions in the
space. For example, even the simplest implementation for
our RARS robot has six inputs. Table lookup with each input
dimension divided into 20 regions would result in 206 table
entries. This is obviously not feasible. Each action requires a
table, so it would take several megabytes of storage to repre-
sent the value functions. Also, the rate of learning would be
very slow, since each table entry must be visited many times
before the approximation becomes accurate.

2.2 Neural Network

A back-propagation neural network with a sigmoidal activa-
tion function can be used to learn the value function. This
approach can solve larger problems than table lookup but it
is not guaranteed to converge. Although there have been
some impressive successes using neural networks as func-
tion approximators for reinforcement learning [12], the neu-
ral network approach often performs poorly even on rela-
tively simple problems [2]. The problems associated with
using standard backpropagation neural networks in reinforce-
ment learning stem from the fact that these networks perform
non-local changes to the value function, while reinforcement
learning requires that updates to the value function be local.
When updating the value of a specific state or state action
pair, the network can destroy the learned value of some other
state. Thrun and Schwartz [13] discuss another problem with
using back-propagation networks. Due to the nature of back-
propagation and reinforcement learning, it is very easy for the
system to consistently over-estimate the utility of state-action
pairs, resulting in improper credit assignment. For these and
other reasons, the back-propagation approach with sigmoidal
activation functions is not guaranteed to converge. This prob-
lem is alleviated somewhat by using experience replay and
other techniques, but at the cost of much higher computation.

One promising approach is the use of radial basis func-
tions (RBFs) instead of sigmoidal activation functions [5].
This approach alleviates the problems of non-local update,

Decision Nodes

State Nodes

Figure 2: Dividing the state space with a decision tree.

but tends to have problems representing the value function at
the edge of the state space and introduces some waviness in
the value function. Also, selecting the widths and centers of
the RBFs can be difficult.

2.3 Decision Tree-Based

The straightforward table lookup method subdivides the input
space into equal intervals. Each part of the state space has the
same resolution. A better approach would allow high resolu-
tion only where needed. Some attempts have been made to
use variable resolution tables, with limited success [2]. De-
cision trees [7] allow the space to be divided with varying
levels of resolution. Figure 2 shows an example of a decision
tree that divides the state space into five regions. The tree
can be used to map an input vector to one of the leaf nodes,
which corresponds to a region in the state space. Reinforce-
ment learning can be used to learn the values of taking each
action in each region.

Using a decision tree to approximate the value function is
not a new idea. Ultile Distinction Memory (UDM) [6] uses
batched analysis of statistics gathered over many steps to par-
tition the state space by splitting states of a finite state ma-
chine. The resulting state space representation can be repre-
sented as a decision tree. UDM uses the t-test to determine
when to split a state.

The G-learning algorithm [4] uses a decision tree to gener-
ate a variable resolution discretization for a space with binary
inputs. This algorithm starts by representing the world as a
single state and then recursively splits states where necessary.
G-learning determines when to split a node by performing a
t-test on historical data.

The U Tree [15] algorithm, which was developed by Uther
and Veloso, extends G-learning to work in continuous state
space. Like G-learning, our algorithm keeps historical infor-



mation and occasionally performs batch processing to deter-
mine what states need to be split. Uther and Veloso evalu-
ated the Kolmogorov-Smirnov test and sum-squared error as
a means to determine where and when to split a leaf node, but
did not evaluate using the t-test.

Our approach also extends G-learning to work in a con-
tinuous state space, while requiring less historical informa-
tion than UDM. The goal is to provide robust convergence
along with scalability. The decision tree is learned along
with the policy. Our work is very similar to the U Tree algo-
rithm, but we explore some alternative metrics for determin-
ing when and where to subdivide the space and we analyze
performance in different domains. Also, the U Tree algo-
rithm uses batched updating of the state space representation
while we do continuous updating. With batch updating, all
leaf nodes are inspected periodically. Continuous updating
inspects leaf nodes whenever they are visited, which results
in a more uniform distribution of evaluations over time, and
avoids evaluating leaf nodes that have not been visited re-
cently.

2.4 Overview of Algorithm

At the core of our algorithm, we use a variation of reinforce-
ment learning known as Q-learning [16, 17], which maps
state-action pairs instead of states. At each time step, the
change in the estimated value Q(s;, a;) of a state-action pair
is calculated as

Ao [Tt+1 +y max Q(st41,a) — Q(Staat):| , (@

where ¢ is the current time step, r;4 is the immediate reward
received at time ¢ + 1, s; is the state at time ¢, and a; is the
action performed at time ¢. « is a learning parameter such
that 0 < a < 1. « controls the ratio of immediate reward
to return from future states. The value of Q(s¢,a¢) is then
updated by Q(s¢, at) < Q(s¢, ar) + A.

Our decision tree contains two types of nodes: decision
nodes and leaf nodes. A decision node represents a single
decision about one input variable. This decision determines
which branch is taken to find the next node. Each leaf node
stores the estimated values for its corresponding region in the
state space. We use Q-learning, so each leaf node stores one
value for each possible action that can be taken, along with a
history of the inputs and rewards that have been received. The
history list is used to decide whether the region represented
by the node should be split.

The decision tree starts out with only one leaf node that
represents the entire input space. As the algorithm runs, the
leaf node gathers information in its history list. When the list
reaches a threshold length, a test is performed to determine
whether the leaf node should be split (see section 2.5). If a
split is required, the test also determines the decision bound-
ary. A new decision node is created to replace the leaf node,
and two new leaf nodes are created and attached to the deci-
sion node. The old leaf node is then deleted. In this manner,

1. Receive input vector v and reward r for time ¢.

2. Use input vector v to find a leaf node representing
state sq.

3. Select the action a with the largest value of Q(s:, a),
or select a random action with some small probability.

4. If the action was not chosen at random, calculate
AQ(s¢—1,a:—1) and update Q(s¢—1,ar—1).

5. Add AQ(st—1,a:—1) and v to the history list for the
leaf node corresponding to s;—1.

6. Decide if s;—1 should be divided into two states by
examining the history list for s;_1.

(a) if history_list_length < history_list_min_size
then split := False
(b) else
i. calculate average p and standard deviation
o of AQ(s¢—1, a¢—1) in the history list
ii. if |p] < 20 then split := True
iii. else split := False

7. Perform split, if required

8. Save r:, a: and s; so that they can be used for
training on the next iteration.

9. Return a;.

Figure 3: Algorithm for decision tree based reinforcement
learning.



the tree grows from the root downward, continually subdivid-
ing the input space into smaller regions. Figure 3 summarizes
our algorithm.

2.5 When and Whereto Split a L eaf Node

The decision about when a node should be split and where to
place each decision boundary is crucial. We investigated three
methods from the decision tree literature plus a new method
that is similar to G-learning. All four of the methods use
mean and standard deviation of AQ(s;_1,a; 1) to determine
if a node should be split (see Figure 3), but they use different
algorithms to choose a decision boundary.

Information Gain This is the classic method used in Quin-
lan’s ID3 [9]. It measures the information gained from
a particular split.

Gini Index This metric is based on the Gini Criterion by
Breiman [3], but modified as in OC1 by Murthy [8].
The Gini Index measures the probability of misclassi-
fying a set of instances.

Twoing Rule This metric, which was also used in Murthy’s
OC1 and proposed by Breiman, compares the number
of examples in each category on each side of the pro-
posed split.

T-statistic Our approach is based on the t-statistic. The al-
gorithm calculates the means and variances for each
input variable. If the node has not received any pos-
itive AQ(s¢—1,a¢—1) in its history list, then the input
variable with the highest variance is chosen as the de-
cision variable for the new decision node. Otherwise,
the decision is made by calculating the T statistic for
each variable and selecting the variable with the high-
est T statistic. This approach is similar to that used in
G-learning, although we remove the restriction that all
inputs be binary, allowing our algorithm to learn in a
continuous state space.

3 Empirical Performance Study

To assess the performance of our decision tree based rein-
forcement learning algorithms, we compared them to table
lookup and neural network reinforcement learning on three
problem domains. Our study focused on answering the fol-
lowing questions:

1. How quickly does each algorithm learn?

2. Which reinforcement learning algorithm performs best
after training?

3. Is the decision tree based approach less prone to the
over-training cycle than the neural network approach?

3.1 Problem Domains

Mountain car is a classic reinforcement learning task where
the goal is to learn the proper acceleration to get out
of a valley and up a mountain [2]. The car does not
have enough power to simply climb up the mountain,
s0 it has to rock back and forth across the valley until it
gains enough momentum to carry it up the mountain.

Pole balance is another classic problem where the goal is to
balance a pole that is affixed to a cart by a hinge [1].
The cart moves in one dimension on a finite track. At
each time step, the controller decides whether to push
the cart to the left or to the right.

RARS is an environment where a simulated race car driver
is responsible for controlling acceleration and steering
as the car races against other cars [14]. This domain
is more difficult than the others, since there are two
control signals and more inputs.

3.2 Results

For each problem domain, we ran all of the reinforcement
learning algorithms and then divided the total run time for
each algorithm into four periods. The number of iterations
in each problem domain was determined by how many trials
were needed for the algorithms to reach a stable policy. In
the mountain car problem domain, we ran each algorithm for
a total of 10,000 trials; each trial lasted for 10,000 time steps
or until the car reached the goal state. In the pole balancing
problem domain, we ran each algorithm for 20,000 trials of
2,000 time steps or until the controller failed to maintain the
pole in a balanced position. In the RARS problem domain,
each algorithm was run for 300 laps around the track, regard-
less of how many time steps were required.

All algorithms were run 10 times in each domain, and we
calculated the average performance for each trial. For the
mountain car domain, we collected the number of steps taken
to reach the goal. For pole balancing, we collected the time
that the pole remained balanced. For the RARS domain, we
collected the time taken to complete a lap and the number of
times that the car crashed. We processed the data using a 9
mean smooth to show longer trends and constructed graphs.

3.21 Timetolearn

We are interested in how each algorithm performed during
learning. In particular, how long does it take for each algo-
rithm to reach a good, stable solution? Figures 4—6 show the
performance of the various algorithms.

Mountain car: This is the easiest of the three problem do-
mains, having only two inputs and three possible ac-
tions. As shown in Figure 4, all of the decision tree
methods converged to about the same level of perfor-
mance, with little difference in the time that they took
to find a good solution.
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Pole balance: This domain is a little more difficult than the
mountain car problem. Figure 5 shows the relative per-
formance of the various algorithms on this problem.
The t-test decision tree method converged to a stable
solution after less than 2,000 trials and successfully
balanced the pole thereafter. The table lookup method
took a little longer, but still found a solution in only
5,000 trials. Only the neural network approach failed
to find a stable solution within the time limit.

RARS: This problem is too large to be solved using the ta-
ble lookup method; so we only compare the perfor-
mance of the various decision tree methods and the
neural network approach. Figure 6 shows the perfor-
mance of these algorithms. The t-test decision tree
method quickly finds a good state-space representation
and achieves good performance. The neural network
approach also finds a good policy. The other decision
tree methods do not perform as well; they were still
searching for suitable state-space representations at the
end of the run.

Overall, it appears that the t-test decision tree method per-
forms best. The neural network approach worked well in two
of the three domains, but performed poorly for pole balanc-

ing.

3.2.2 Performance after learning

For each problem domain, we ran all of the reinforcement
learning algorithms and then divided the total run time for
each algorithm into four periods. ANOVA is a statistical tech-
nique which tests differences in mean values of a dependent
variable between two or more categories of independent vari-
ables. We calculated a one way ANOVA on each period with
algorithm as the independent variable and performance as the
dependent variable. For all problems, P < 0.01, indicat-
ing statistically significant performance differences (moun-
tain car: F' = 113.45, pole balance: F' = 219.67, RARS
lap time: F = 506.13, and RARS crashes: F = 29.43).
Table 1 shows the performance for each algorithm over the
fourth period, where learning should be complete and perfor-
mance should be stable.

Mountain car: The table lookup method performed better
than any other method. However, information gain and
t-test decision tree methods also performed well. We
performed a one tailed t-test of information gain vs. t-
test methods and found no significant difference (¢t =
1.35,p < 0.18). The table lookup method had higher
standard deviation than either information gain or t-
test, indicating that the state space representation of the
decision tree approaches may have been better suited to
the problem than the fixed grid representation used in
table lookup.

Pole balance: Information gain, table lookup and t-test all
achieved perfect performance and were able to balance

the pole for 2,000 time steps for every trial in period
four. The neural network approach did not converge
well and was rather unstable. The twoing decision tree
converged to a stable solution during period four.

RARS: The t-test approach shows significantly better per-
formance than the other methods. The neural network
approach performed well, but crashed a great deal more
often than any of the top three decision tree methods.

Overall, the t-test method performed best. It provided
the best lap times and the lowest humber of crashes in the
RARS domain, and gave perfect performance in pole bal-
ancing. On the mountain car problem, the t-test method was
slightly worse on average than table lookup, but performance
had far less variation from one trial to the next.

3.2.3 Over-Training cycle

The major motivation for this work was to overcome the over-
training cycles that we had encountered using the neural net-
work approach. We assessed whether or not a method suf-
fered from the over-training cycle by examining the learning
curves and comparing standard deviation (shown in Table 1)
in its ultimate (period four) performance.

Mountain car: The neural network method initially found a
good policy, but became over-trained after about 6,000
trials. The high standard deviations show that the neu-
ral network and twoing value approaches were unsta-
ble. Figure 4 shows that the performance of the neural
network method actually deteriorated noticeably dur-
ing period four. The t-test, Gini, and information gain
methods had low standard deviations, indicating that
they had reached a stable solution.

Pole balance: The t-test, table lookup, and information gain
methods all had zero standard deviation and perfect
performance. The twoing method found a good solu-
tion during period four, as shown in Figure 5. The neu-
ral network approach never found a good solution to
this problem.

RARS: The t-test method had the lowest standard deviation
in both performance measures indicating that it had
found a stable solution. The neural network approach
performed almost as well as the t-test based decision
tree method for some time. However, after about 250
trials, the neural network became over-trained. Its high
standard deviation indicates that it did not converge to
a stable solution at that time. Figure 6a shows that the
performance of the neural network approach was good
throughout period three and actually decreased during
period four.

In two of the three domains, the neural network approach
showed signs of over-training, and in the remaining domain
it failed to find a good solution at all. The t-test approach



Table 1: Performance during the fourth period: each column shows average and standard deviation.

Mountain Car | Pole Balance | RARS Crashes | RARS Times

Ave. Sd | Ave. Sd | Ave. Sd | Ave. Sd
Gini 206 0.7 No result 15.7 22.4 | 3617 7518
Info Gain | 170 2.2 | 2000 0 1.1 1.9 | 2956 82.8
NN 328 454 | 1008 225.6 2.8 46 | 1172 566.0
Table 160 13.6 | 2000 0 No result No result
t-test 170 0.3 | 2000 0| 0.01 0.1 723 14.8
Twoing 219 53.4 | 1848 360.2 14 2.7 | 1869 418.0

performed best in two of the domains and was outperformed
by table lookup in one domain. The table lookup method gave
the best performance in the mountain car and second best on
pole balancing, but could not be used on the RARS domain.
Overall, the t-test approach was the clear winner.

4 Future Work and Conclusions

Following recent work in the decision tree literature, we will
augment our approach to use oblique instead of axis parallel
decision boundaries [8]. Oblique boundaries lead to smaller
decision trees by allowing each node to use several input vari-
ables.

We have evaluated four methods for selecting the decision
boundaries. In our future work, we plan to explore some al-
ternative approaches with a view to characterizing how well
each approach works in a given domain. In particular, we
will compare our work to the methods and domains used by
Chapman and Kaelbling [4]. We do not expect to find a single
method that works best in all cases.

Decision tree based reinforcement learning provides good
learning performance and meets our needs for more reliable
convergence than the neural network approach. It also has
lower memory requirements than the table lookup method,
and scales better to large input spaces. The t-test method for
selecting the decision boundary gave the best performance
overall in the domains that we studied.
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