
Wednesday February 4th

ECE 485/585

Intelligent Robotics

Introduction to Learning

Outline

● Introduction
● Definitions

● - Supervised learning
● - Unsupervised learning
● -Reinforcement learning

● Conclusion

Why Learning is working?

● Computational learning theory:
– PAC – a system with enough trials will be

doing “probably approximately correct”,
thus has learned something

● error(h) < – after n examples the
system produce approximately correct
outputs

● The solution considered as PAC lies in the
proximity of the solution, similar to monte-
carlo local search

The evaluation according to CLT
Computational Learning Theory

● A bad answer/hypothesis can be
described as:
–

– Probability of a False-False evaluation
● Similalrly:

–

– Probability that Mis-hits contains correct
answers

PhbcorrectNexamples1−N

PHbcontainsaFalse−positive∣Hbad∣1−N∣H∣1−N

Hypothesis evaluation

● Error interpretation:
– False-positive

● A hypothesis answered as valid that in reality
is not

– False-negative
● A hypothesis answered invalid that in reality is

valid one
● This can be visualized as a positive or

negative gradient evaluation durring
learning approaches such as Neural Network

CLT (cont.)

● It can be easily derived from previous
equations:
–

– The probability of correct answer is
smaller than (constant)

● Sample complexity
● Training set and training perisd

complexity
● etc.

∣H∣1−N

Bayesian approach to Learning
A introduction..

● Calculates probability of each hypothesis-
making probabilistic predictions about
events

● Let set I, be the data; i is observed sample,
then where h is the set
of all hypothesis about the observed data
samples i

● Similalrly for some unkown quantity:

–

– Keywords: hypothesis prior: P(h)

 likelihood:

Ph∣i=alphaPi∣hPh

PX∣i=∑
i

PX∣i , hPh∣i=∑
i

PX∣hPh∣i

Pi∣h

Bayesian (cont).

● For IID – independently and identically
distributed observations it simplifies to:

–

– For a set h of hypothesis about the observation
distribution

Pi∣h=∏
j

Pi j∣h

● Maximum a posteriori (MAP) – basing predictions on
the most probable hypothesis so as:

● Maximum Likelihood (ML) hypothesis:

● Specific (MAP) case where the learning is to
maximize: Pi∣Hi

PX∣i≈PX∣hMAP

Bayesian (cont.)

● Parametrized “Maximum-likelihood“
– Parameter can be for example a

probability of an event, thus:

– Evaluation according to maximum
likelihood and log likelihood:

This is valid for discrete models, most useful in science and engineering

Pi∣h=∏
j=1

N

Pi j∣h=p∗1−l

Pi∣h=∏
j=1

N

logPi j∣h=clog l log1−

Bayesian (Cont.)

● Naïve Bayesian:
– Assuming attributes are independent
– Example (we want to predict L):
–

– And the probability for each variable
(model) L is given after training:

– Models these approaches are used in:
Bayesian networks

p=P L=true,pi1=P X i=true∣L=true,pi2=P X i=true∣L=false

P L∣x1 , ... xn=P C∏
i

P xi∣C

BAYESIAN NETWORKS

● Each node contains prior distribution
and thus posterior probability of the
given node can be computed

X

P(U = good)
p

X

P(U = good)
p

Y

F

good

bad

P(V = round|U)

p
1

p
2

Example of a node with
independent probability
from other elements

Example of a node with
conditional probability with
relation to P(U = good)

Reinforcement Learning (RL)

● Agent

● Reactive Agent, autonomous agent, adaptive
agent, etc.

● Agent does not know anything

● exploration/exploitation
● Agent is a interactive entity that reacts according

to its inputs, its internal state and its policy

● A agent is not a simple software but can be
compared to a Demon software/code

Passive RL

● policy fixed (deterministic output)

– learn the utility function
● Utility in this case:

Us=E[∑
t=0

∞

t R St∣ ,s0=s]

Us=R s∑
s'

T s,s , s 'Us '

● Bellman equation:

The approach is: out
expectation must
match the reality, in
such a case the utility
function represents
the agent environment
and interaction
mapping/memorizing

The Bellman equation is unique because shows that my optimal policy is
the result of current state/action/decision and the best expectation of
future reward at the infinite horizon; t = ∞

Reinforcement learning

● DP, ADP, HADP, etc.
● TD-learning

U4=−0.12U2

UsUsR sUs '−Us

● The TD (Temporal difference) learning approach
is based on the difference between the
expectation of two consecutive steps and the
expectation made about the step. Again the
solution is to maximize locally the reward while
optimizing it globally

Reinforcement learning

● DP, ADP, HADP, Adaptive critics
approach:
– Methods used for controll system because

they can learn online thus suitable for
industrial control

– Often combined with stability and control
theory in order to assure the security of the
whole process

– These methods are using a model of the
future to predict the best current step
response

Active reinforcement learning

● Forcing exploration:

Us=R s∑
s'

T s ,a ,s 'Us '

Us=R smax
a

f ∑
s'

T s,a ,s 'Uos ' ,Na ,s

● Passive RL: fixed policy

● Active RL: the policy changes and represents or is
related to the agent internal state. The obtained
behavior is much more various and able to adapt
to complex phenomena

● The problem in RL is the switching of policy that can be approximated
by exploration and exploitation ratio. When should a RL agent do some
other task among a set T of all possible tasks? Should it finnish all tasks
before starting a new one?

● This is partially explored by the RL approach, Game Theory and more
detailed in approaches such as Indexes from Gittins.

Q-learning

● Learning action value/policy

– problem: lookup tables
● Can be used on most of models.

Us=max
a

Qa ,s

Qa ,s=R s∑
s'

T s,a ,s 'max
a'

Qa ' ,s '

Qa,sQa ,sR smax
a'

Qa ' ,s '−Qa ' ,s '

● We define the utility as the quality of a certain action a on the
current state s. The learning results in a lookup table where
we are maximizing the value of the Utility function

● The result is that the utility function is fixed by its
computational nature but can be modified by assigning weight
to each transition such as: s 'sa

Generalities

● Utility function example

Ux , y=01 x2 y
● Utility function in the case where it is completely known

● Problem: in general the function (utility) is not known at all.

● Thus the utility function is well simulated by any learning
thechnique that can be updated according to the reward or
policy success.

● In general the system can be constructed as a reward
predictor hwere the actions are directly implied from such a
prediction. Thus by predicting the reward for each step using
a Neural Network, we are in the case of supervised learning if
it is assumed that the reward is obtained immediately after
the action. An the modification of the network weights is made
by Widrow – Hoff rule for example

