
Wednesday February 4th

ECE 485/585

Intelligent Robotics 

Introduction to Learning



Outline

● Introduction
● Definitions

● - Supervised learning
● - Unsupervised learning
● -Reinforcement learning

● Conclusion



Why Learning is working?

● Computational learning theory:
– PAC – a system with enough trials will be 

doing “probably approximately correct”, 
thus has learned something

● error(h) <   – after n examples the 
system produce approximately correct 
outputs

● The solution considered as PAC lies in the 
proximity of the solution, similar to monte-
carlo local search 



The evaluation according to CLT 
Computational Learning Theory

● A bad answer/hypothesis can be 
described as:
–

– Probability of a False-False evaluation
● Similalrly:

–

– Probability that Mis-hits contains correct 
answers

PhbcorrectNexamples1−N

PHbcontainsaFalse−positive∣Hbad∣1−N∣H∣1−N



Hypothesis evaluation

● Error interpretation:
– False-positive

● A hypothesis answered as valid that in reality 
is not

– False-negative
● A hypothesis answered invalid that in reality is 

valid one
● This can be visualized as a positive or 

negative gradient evaluation durring 
learning approaches such as Neural Network



CLT (cont.)

● It can be easily derived from previous 
equations:
–

– The probability of correct answer is 
smaller than  (constant)

● Sample complexity
● Training set and training perisd 

complexity
● etc.

∣H∣1−N



Bayesian approach to Learning
A introduction..

● Calculates probability of each hypothesis- 
making probabilistic predictions about 
events

● Let set I, be the data; i  is observed sample, 
then     where h is the set 
of all hypothesis about the observed data 
samples i

● Similalrly for some unkown quantity:

–

– Keywords: hypothesis prior: P(h)

 likelihood:

Ph∣i=alphaPi∣hPh

PX∣i=∑
i

PX∣i , hPh∣i=∑
i

PX∣hPh∣i

Pi∣h



Bayesian (cont).

● For IID – independently and identically 
distributed observations it simplifies to:

–

– For a set h of hypothesis about the observation 
distribution

Pi∣h=∏
j

Pi j∣h

● Maximum a posteriori (MAP) – basing predictions on 
the most probable hypothesis so as: 

● Maximum Likelihood (ML) hypothesis:

● Specific (MAP) case where the learning is to 
maximize: Pi∣Hi

PX∣i≈PX∣hMAP



Bayesian (cont.)

● Parametrized “Maximum-likelihood“
– Parameter can be for example a 

probability  of an event, thus:

– Evaluation according to maximum 
likelihood and log likelihood:

 

This is valid for discrete models, most useful in science and engineering

Pi∣h=∏
j=1

N

Pi j∣h=p∗1−l

Pi∣h=∏
j=1

N

logPi j∣h=clog l log1−



Bayesian (Cont.)

● Naïve Bayesian:
– Assuming attributes are independent
– Example (we want to predict L):
–

– And the probability for each variable 
(model) L is given after training:

– Models these approaches are used in: 
Bayesian networks

p=P L=true,pi1=P X i=true∣L=true,pi2=P X i=true∣L=false

P L∣x1 , ... xn=P C∏
i

P xi∣C



BAYESIAN NETWORKS

● Each node contains prior distribution 
and thus posterior probability of the 
given node can be computed
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Example of a node with 
independent probability 
from other elements

Example of a node with 
conditional probability with 
relation to P(U = good)



Reinforcement Learning (RL)

● Agent

● Reactive Agent, autonomous agent, adaptive 
agent, etc.

● Agent does not know anything

● exploration/exploitation
● Agent is a interactive entity that reacts according 

to its inputs, its internal state and its policy

● A agent is not a simple software but can be 
compared to a Demon software/code



Passive RL

● policy fixed (deterministic output)

– learn the utility function
● Utility in this case:

Us=E[∑
t=0

∞

t R St∣ ,s0=s]

Us=R s∑
s'

T s,s , s 'Us '

● Bellman equation:

The approach is: out 
expectation must 
match the reality, in 
such a case the utility 
function represents 
the agent environment 
and interaction 
mapping/memorizing 

The Bellman equation is unique because shows that my optimal policy is 
the result of current state/action/decision and the best expectation of 
future reward at the infinite horizon; t = ∞



Reinforcement learning

● DP, ADP, HADP, etc.
● TD-learning

U4=−0.12U2

UsUsR sUs '−Us

● The TD (Temporal difference) learning approach 
is based on the difference between the 
expectation of two consecutive steps and the 
expectation made about the step. Again the 
solution is to maximize locally the reward while 
optimizing it globally



Reinforcement learning

● DP, ADP, HADP, Adaptive critics 
approach:
– Methods used for controll system because 

they can learn online thus suitable for 
industrial control

– Often combined with stability and control 
theory in order to assure the security of the 
whole process

– These methods are using a model of the 
future to predict the best current step 
response



Active reinforcement learning

● Forcing exploration:

Us=R s∑
s'

T s ,a ,s 'Us '

Us=R smax
a

f ∑
s'

T s,a ,s 'Uos ' ,Na ,s

● Passive RL: fixed policy

● Active RL: the policy changes and represents or is 
related to the agent internal state. The obtained 
behavior is much more various and able to adapt 
to complex phenomena

● The problem in RL is the switching of policy that can be approximated 
by exploration and exploitation ratio. When should a RL agent do some 
other task among a set T of all possible tasks? Should it finnish all tasks 
before starting a new one?

● This is partially explored by the RL approach, Game Theory and more 
detailed in approaches such as Indexes from Gittins.



Q-learning

● Learning action value/policy

– problem: lookup tables
● Can be used on most of models.

Us=max
a

Qa ,s

Qa ,s=R s∑
s'

T s,a ,s 'max
a'

Qa ' ,s '

Qa,sQa ,sR smax
a'

Qa ' ,s '−Qa ' ,s '

● We define the utility as the quality of a certain action a on the 
current state s. The learning results in a lookup table where 
we are maximizing the value of the Utility function

● The result is that the utility function is fixed by its 
computational nature but can be modified by assigning weight 
to each transition such as: s 'sa



Generalities

● Utility function example

Ux , y=01 x2 y
● Utility function in the case where it is completely known

● Problem: in general the function (utility) is not known at all. 

● Thus the utility function is well simulated by any learning 
thechnique that can be updated according to the reward or 
policy success.

● In general the system can be constructed as a reward 
predictor hwere the actions are directly implied from such a 
prediction. Thus by predicting the reward for each step using 
a Neural Network, we are in the case of supervised learning if 
it is assumed that the reward is obtained immediately after 
the action. An the modification of the network weights is made 
by Widrow – Hoff rule for example


