
HARDWARE ACCELERATION OF CONSTRAINED SATISFACTION AND LOGIC OPTIMIZATION PROBLEMS
USING VELOCE EMULATOR
Edited by Marek Perkowski

Chapter 1. Introduction, Marek Perkowski.
Chapter 2. Satisfiability,

CHAPTER 1. INTRODUCTION
Draft 1.23
Version February 11, 2011
By Marek Perkowski
1.1. Our Goals.
It is well-known that there are many problems in robotics, computational intelligence, artificial intelligence, computer vision, scheduling of industrial operations, planning of actions (for instance actions of an assembly line), computer aided design, computational biology, genetic engineering and other areas that require extremely fast processing speeds for specialized problems, assuming however a limited cost of the computing system – so that a supercomputer is not used for computations. These are basically logic, not arithmetic problems. Many of these problems can be formulated in a maximally simplified form as logic puzzles that you can find in high school textbooks or popular magazines. The books proposes to teach many important concepts of hardware design using a sequence of relatively simple problems. This is not a systematic textbook on logic design similar to Wakerly or a texbook on logic synthesis similar to Hachtel or Kohavi. Our approach here is pragmatic – we are interested not in design algorithms for standard designs but in intuitive methods that you can apply to some special designs, methods that require some kind of ingenuity. This way, our book can be a supplement to standard textbooks, and is especially suited to teach high school students who look for advanced digital design projects.

Field Programmable Gate Arrays (FPGAs) are special electronic devices that their hardware can be programmed in arbitrary way by their user and thus they can replace standard computers in many applications. The user can program arbitrary logic gates, their structures and connections, including processors with high parallelism. You can find many FPGAs in your cars, refrigerators and daily life “embedded systems”. FPGAs are also used to build inexpensive supercomputers; specialized rather than general-purpose ones. Using FPGAs a student can design his or her “own computer” dedicated to some task or a general purpose processor with their own list of instructions. Several FPGA-based hardware accelerators have been already built or proposed for specialized tasks that require high computing speeds. They allow to accelerate algorithms by implementing them all or their crucial parts, in hardware. Such accelerators have for instance applications in robotics, multimedia and medical diagnostics. For example, an imaging system for medical application may use multiple ASICs and FPGAs.
This book is intended as a supplemental textbook for undergraduate students in Electrical Engineering and Computer Science. It shows how to design special classes of hardware accelerators, with special emphasis on intelligent robotics applications. We will formulate three classes of problems that can be hardware-accelerated, and in our opinion, should be accelerated. As the hardware/software system to help design these accelerators we select the VELOCE hardware emulator from Mentor Graphics. Our goal is thus to teach both computer architecture of special high performance systems and the methods to emulate and verify digital designs using modern software/hardware tools, like the VELOCE emulator from Mentor. Our exercises and projects serve both of these goals. Students are encouraged to solve them individually or in groups. In our graduate classes, students solve the problems together with the professor interactively in the class, and next simulate and emulate them individually. We discuss merits and demerits of various created by variants of architectures.
The book’s main original thesis is that problems that massively use logic operations need a different type of hardware than that used in contemporary standard computers, or in DSP computers, in which architectures the arithmetic operations such as multiplication are accelerated. Our interest is in problems with massive parallelism but simple processors – such processors may have no arithmetic unit and multipliers at all! Such models of computing have been proposed by several new technologies such as nano, quantum or DNA computing.
An example of a logic problem that needs hardware acceleration is the Satisfiability Problem (SAT). Students will learn in this book how popular logic puzzles or robot planners can be reduced to SAT.

SAT problem is formulated as follows:

1) Given is a Boolean equation (Boolean function F) with many input variables and one output variable,
2) Find if there exists an assignment of binary values to Boolean variables that function F is satisfied (has value 1) and if yes, find what is this assignment of Boolean values to variables.
In other words, find a binary vector of all variable values (called a minterm) that satisfies the logic equation, if such vector exist. In similar formulation we may look for an assignment of not all, but a satisfactory number of variables.
Many important and very practical problems can be reduced to the SAT problem as formulated above. For instance in robotics, these problems are usually solved with advanced software programs. Special computers for this task were however also built for CAD applications by NEC, IBM, and other companies, because speeding up SAT would enable efficient solving of important problems that are reducible to SAT. There are thousands of such problems. There are also several important problems that are not identical but similar to SAT. For instance, Tsutomu Sasao from Kyushu Institute of Technology in Japan built a logic machine to solve the logic Tautology problem. Tautology problem is to check for a given function F if F = 1 for all combinations of values of variables that are used in function F (we call them the input variables of F). Many machines to solve Boolean problems, such as solving Boolean Equations, were built in Russia and Germany in 19th and 20th Centuries [ref, Zakrievskij]. We believe that future computers Constraint Satisfaction Problems (CSP) or robotic problems for CAD problems, will use hardware accelerators of various kinds, including logic accelerators as those proposed in this book. These will especially include special hardware accelerators to solve the kinds of logic-intensive problems that we are interested in here. This book is a speculation about the nature and technology of general purpose logic accelerators for a selected set of important problems. These problems have been never addressed in a unified way so far and as far as we know, they were never a subject of a book.
Hardware emulators such as Veloce are used to emulate/simulate new digital designs, usually general purpose processors, DSP and special embedded systems. They serve thus to verify if the hardware is doing what it was expected by its designer to do. Sometimes the emulators can also help to evaluate testability or speed of the designed prototypes. In this book we want to achieve these goals, and even more. We want to check if a hardware emulator can be used as a hardware accelerator in order to obtain a significant speed-up over a standard software implemented on a standard computer (such as a laptop). If yes, then Veloce will be used in the next phase to run, via internet, the real-time control software for mobile robots equipped with stereo-vision. Veloce box will become thus a “poor man specialized supercomputer” for our robotics projects.
A complete cycle of designing a logic accelerator processor will include therefore the stages of designing, simulating, emulating and verifying for correctness and analyzing the potential speed-up over standard software for a PC. Even if we will find out that the hardware emulator Veloce is not giving a sufficient speedup, these experiments will help us, for sure, to evaluate what would be a possible speedup of a VLSI-based (or FPGA-based) system that have been first prototyped using the Veloce tool. For this, we should approximately know only the delays of logic gates in the selected by us implementation technology, such as one of Xilinx or Altera FPGA architectures. The emulated design will be thus redesigned with other tools, widely available free FPGA-based software tools such as logic synthesizers and physical design tools, but with a small risk that the design will have different speed or functionality, as the circuits found and emulated on VELOCE will be very accurate. Therefore, there is no danger that the material developed in this book will be of no practical use for its readers. The readers will learn about high-performance special processors, reconfigurable computing, use of CAD tools and last but not least, many constraint satisfaction problems (such as logic puzzles or known mathematical problems) and how to solve them.
The general class of CSP-accelerated algorithms should have a wide applicability to logic problems; for automated logic circuit synthesis and optimization, machine learning, robotics, vision, and directed knowledge discovery. It is so because, as it will be shown in this book, all these research areas are closely related. Although some problems and their reductions are known from classical algorithms, they may be new to our reader, so all background material will be explained to make the book self-contained. The book assumes only the knowledge of basic logic design and machines, on the level of PSU ECE 271 class (second class in logic design). This material can be found in Wakerly’s book, or equivalent.
The book is intended for undergraduate students and even smart high school teens. Therefore, dear reader of the book, please help us to improve it when something will be not clear. Grammar, interpunction, organization, examples should be improved. Please correct the files that you get from me and send them back to me.
1.2. Why Logic Accelerators are superior to classical computers when solving certain classes of problems.
This book is devoted to some aspects of designing one type of future computers – computers with accelerated logic operations. We can call them the “logic accelerators”, or “logic computers” as they have been historically called. One may ask “Why such computers are of interest and why are they are expected to be more powerful than the standard computers of year 2010? “
1. First, such logic computer will operate on very long words and will be specialized to execute operations on Boolean, Multiple-Valued logic functions, rough sets, sets, partitions, morphological data and similar data types. A standard processor operates on numbers. Evolution of standard processor architectures and lists of instructions in last 20 years developed very few ideas how to speed-up logic operations. There was much more emphasis on arithmetics, communication and multimedia processing, as well as general DSP algorithms and especially graphic algorithms.
2. Second, logic computers will have high level of parallelism because all the real estate of the available system’s hardware will be used to implement logic operations and not other operations. These other operations (for instance, floating-point arithmetics) are not important for logic algorithms (even very little of integer arithmetics is used in logic algorithms).
3. Third, logic computers may use probabilistic algorithms. Probabilistic algorithms are known to be superior to standard (deterministic) algorithms when solving many discrete optimization problems. Only limited forms of hardware for probabilistic algorithms are built into standard processors hardware. There are pseudo-random number generators in some computers. In this book the probabilistic hardware will be built-in on a very low level of logic circuits and it will be parallelized and distributed.
4. Fourth, these logic computers will be optimized for search algorithms, which are common to many Constraint Satisfaction Problems, such as SAT. Standard computers are not optimized for search, they are designed for general-purpose numerical algorithms. Systems developed by us can be thus called the “hardware search computers”.
1.3. Towards combinatorial problem solving.
1.3.1. NP problems and CSP problems.
It is popularly known, even among non-specialists, that modern computers and all integrated circuits are built using a computer equipped with Computer-Aided-Design software. Humans are just not able to deal with the enormous complexity of such designs without the use of computers in all stages of simulating, designing, optimizing, verifying, validating and testing modern digital systems. This is why CAD tools are developed for all kind of digital and analog design and will remain to be perfected and made more powerful and general.
It is however less well known that several basic problems in Computer Aided Design of standard logic circuits, parts of standard software packages, are “NP-hard”. NP stands for non-polynomially, relating to the complexity that is non-polynomial with respect to the size of the problem. If for instance the size of the problem is n and the complexity of the algorithm is 2n, the problem is non-polynomial. The problem of complexity 4n3+3n2+8n+99 would be polynomial. Many familiar problems known to be hard to solve (like the travelling salesman problem) are NP problems. The word NP-hard means that these problems are optimization problems that are counterparts of the “NP-complete” decision problems. NP-complete problems are decision problems that allow verifying that S is a solution to problem P in polynomial time, but these problems need an exponential time to find the solution. The solution to an NP-complete problem is of Yes/No type. An example of such problem is the Satisfiability Problem in which we have a Boolean formula and we have to answer a question: “does there exist an assignment of values to Boolean variables from the formula such that this formula is satisfied?” Many CAD and robotics problems can be thus reduced to SAT (satisfiability) and few other similar basic combinatorial search problems. These are called the Constraint Satisfaction Problems or CSP problems for short. CSP problems are those that we have a set variables and a set of constraints on values that can be assigned to these variables. We look for a mapping of these variables to their binary values such that all constraints are satisfied. For instance, a problem of coloring a graph with the given specific number of colors K, such that every two adjacent nodes (nodes connected by an edge) have different colors -- is a CSP problem. It is an NP-complete problem. The minimum number of such colors for a given graph G is called the chromatic number of graph G. If one is asked to find the coloring with the number of colors equal to an unknown chromatic number, then it will be the NP-hard optimization problem. If the numerical value of the chromatic number is known, the coloring problem will be NP-complete. In this book we will deal with both types of problems; NP-complete and NP-hard.
1.3.2. Building a circuit for a very simple oracle.

Building SAT oracle is just to realize a circuit for the Boolean Function F from the SAT problem. This function in general can have arbitrary operators (logic gates) and arbitrary form (structure, number of logic levels). A commonly used form is the “Product of Sums of literals of variables form”. (A literal is a variable or a negated variable). An example of a SAT problem with Product of Sums (POS) formula of F is the following:

F = (a’ + b’ + c) (a’ + b’ + c’) (a + b’) (b’ + c). Is there a set of literals that satisfies F?

Oracle for this formula would have one AND gate with 4 inputs and four OR gates, each of OR gates would realize one of OR terms such as (a’ + b’ + c), (a’ + b’ + c’), (a + b’) and (b’ + c). Outputs of OR gates would be connected to inputs of the AND gate and the output of the AND gate would be F. We would generate all inputs to OR gates to find a solution. We leave to our reader the task of drawing the circuit and simulating it with various input combinations of variables a, b and c. The book will illustrate many important and practical problems, from robotics, CAD and other areas that can be reduced to SAT.
Now we will present one more example of building a simple oracle for a problem other than SAT, just to illustrate where we are heading for in our book.
The problem is this. We want to color nodes of the graph from Figure 1.1 below with as few colors as possible, so that any two nodes linked by an edge have different colors. Assuming that we have no any knowledge of the graph that is being colored other than that this graph has five nodes, we have to assume pessimistically that in the worst case the graph needs as many colors as there are nodes, which means five. Five numbers need at least 3 bits to encode them, it would be too bad to have this kind of a problem for a graph with 10,000,000 nodes which would be colorable with 2 colors, but let us make important point again that we have absolutely no information about the data (the graph properties that may help to evaluate its chromatic number) in this variant. We have only pure graph data, nothing else. However, if we would know some additional information, for instance that the graph is planar, we could solve this problem much more efficiently. For example, one can use the famous “Four Color Theorem” to know that only four colors are sufficient to color a planar graph, and thus encode the colors with only two bits. Thus, “knowledge is power” – any piece of general knowledge can help to solve the problem by designing a smarter search algorithm for it.

[image: image1.emf]1 2

5

4

3

red

red

blue

blue yellow

Figure 1.1: Graph for coloring with five nodes. It is colored with red, blue and yellow colors in such a way that every two neighbor nodes have different colors. The chromatic number of this graph is 3.
Assuming no knowledge of the chromatic number of the graph the encoding requires three bits for each color and is shown as in Table from Figure 1.2 below. One particular example of encoding another simpler graph is shown in Figure 1.5.

	Color
	Bit

	red
	a1, a2, a3

	blue
	b1, b2, b3

	blue
	c1, c2, c3

	yellow
	d1, d2, d3

	red
	e1, e2, e3

Figure 1.2: Assignment of bits to encoded colors of nodes for the graph from Figure 1.1.

An inequality comparator circuit is used to compare two nodes of the graph, as shown in Figure 1.3 for nodes a and b. Such comparator is connected to encoding bits of any two nodes that are linked by an edge in the graph. If the colors of nodes a and b are the same then the output of the comparator will be zero. If the codes are different (which is good) then the output will be 1. Therefore, if oracle has such a comparator for every two nodes of the graph linked by an edge and if a global AND gate of outputs of comparators is created, the output of this AND gate will be one for a good coloring and will be a zero for a bad coloring. Even if only for one pair of neighbor nodes of the graph the proper coloring is violated, the AND gate will produce a 0. See Figure 1.6 for the standard (combinational) oracle.

[image: image2.emf]1

3 3

a b

≠

(a ≠ b)

Figure 1.3: The inequality comparator used in Map Coloring and Graph Coloring problems. Here it compares node a with node b. Observe that the size of this comparator depends significantly on the possible maximum number of colors. The comparator produces “1” at its output if the arguments a and b are different binary vectors of width 3. The binary signal (a ≠ b) is also called a predicate.
[image: image14.png]C3+S+M

[image: image15.png]10 +10C4

 (a)
[image: image3.emf]

Figure 1.4: (a) The inequality comparator from Figure 3.3.3 applied assuming five or more (≤ 8) colors in the graph. This is a schematic for the inequality operator circuit, which is used in many oracles.
The classical schematics of the comparator using EXOR, NOT and AND gates is shown in Figure 1.4a.
	red
	000
	n1

	blue
	001
	n2

	yellow
	010
	n3

[image: image4.emf]red blue

yellow

1 2

3

Figure 1.5: Encoding of colors for the graph coloring oracle of another graph having 3 nodes.

[image: image5.emf]≠

≠

≠

a

1

a

2

a

3

b

1

b

2

b

3

c

1

c

2

c

3

Figure 1.6: Principle of graph coloring applied to a simple graph from Figure 1.5. This is a classical oracle. In this and previous graph coloring problem we are not checking for a minimal solution. We look here only for a coloring that satisfies the constraint of correct coloring. Thus every proper coloring that uses any 3 of 5 colors is good (this example is trivial, but we wanted to have a simple circuit for the example).

At this point our only goal was to explain the concept of an oracle for a constraints satisfaction problem different than SAT. Remember that many oracles can use various constraints similar to the constraint (A (B) used here. In this example the oracle is very simple and can be designed by hand. In general, the oracle in the processor is a very complex circuit with many logic blocks; its design will require automation and the logic synthesis CAD should be used to build more complex oracles. Think about a graph coloring problem with 10,000 nodes. Think about some image processing system that uses many types of constraint operators other than the inequality constraint (A (B) used above. Many such problems exist in real life. The need to design CAD tools for hardware design of large and complex oracles is a one more reason for us to use the VELOCE emulator.

1.4. Building oracles for CAD, CSP and robotics.

In the previous section we showed that an oracle uses the global AND gate that combines partial results from partial predicates that verify (test) partial constraints of the entire constraint satisfaction problem. The intermediate logic blocks in the oracle correspond to some concepts. For instance, to the concept that two nodes in a graph have different colors. In above case the partial constraints were inequality comparators on pairs of nodes corresponding to edges of the graph. This situation of checking many partial constraints can be found in most types of oracles. The blocks used in predicates are: the equality comparator, the order comparators and other comparators, as well as the arithmetic blocks such as adder or multiplier, and logic gates. Example of such partial constraint can be ((A+10) < 2*(B-C)) which includes an adder, a multiplier by 2, a subtractor and a “comparator of order” (less-than operator) blocks.

Concluding, the blocks in oracles that forward their outputs to the global AND gate can range from very simple (such as OR gates of literals) to very complex combinational processors (that check some mixed numeric-symbolic constraints for robot motion generation and include adders, comparators, arithmetic multipliers and complex function such as trigonometric and exponential). The blocks can be also simulators of some physical processes.
Architectures.

Every combinatorial problem can be solved using at least four general architectures:
1. Architecture based on building an oracle and exercising this oracle using sequences of binary vectors. The problem-specifying data stay in place, inside the oracle. Easy examples of this approach are POS (Product of Sums) SAT and graph coloring, as presented above. The values of variables are created in the external exercising circuit (a generator) which creates input vectors to the oracle. The problem instance itself is described by the blocks inside the oracle and their connections. Thus the solution is found be collaborating circuits – the oracle and its exerciser. The oracle is usually a combinational circuit and the exerciser is a random number generator or a sequential circuit such as a counter.
2. Architecture based on performing a tree search on data represented as the so-called “arrays of cubes”. The data in a form of “array of cubes” data stored in some memories and are processed by the “cube processors”. In this process the data flow from memory to memory. Often he iterative or recursive flow of data corresponds to a tree search. This tree search uses branching operators applied to functions represented by arrays of cubes. These branching operators can be multiplying an array by some cube or a “cofactor operator” of substituting some variables for constants in all cubes from the array. These branching operators create two or more successor nodes of a parent node in a search tree. Each node of the tree is an array of cubes. At this point we can illustrate a simplified array of cubes as a vector (a set) of products of literals, which represents a SOP (Sum of Products) Boolean function. For instance a SOP, F = ab’+ a’bc + abd’ is represented by a set of cubes (products) {ab’, a’bc , abd’}. A positive cofactor operator with respect to variable b on function F, denoted by Fb, creates a new array by substituting variable b to value 1. A negative cofactor operator with respect to variable b on function F substitutes variable b to value 0. A tree search algorithm is thus reduced to a data-flow architecture that uses the memories to store intermediate arrays (nodes) and the processors to execute cofactors and other operations on arrays. This data-flow architecture has certain similarities with image processing and Digital Signal Processing (DSP) Data Flow architectures, but we process arrays of cubes, and not 2-dimensional images or k-dimensional signals as in DSP architectures.
3. Architecture based on performing algebraic operations on arrays of cubes that represent functions. For instance, Boolean operators can process Boolean functions. This is done for instance by Boolean multiplying the OR-terms in the POS SAT problem. Each OR-term is a cube, POS SAT is an array of cubes.

4. Architecture based on a “linear architecture” or “ring architecture”, in which solutions are pipelined from processors to processors. Each processor checks one constraint, for instance satisfaction of a single OR term in a POS formula for F. Pipelining is the fundamental concept of computing and a special case of systolic processing used in DSP. We will explain both concepts in the book. Pipelining moves data in one direction in a synchronized way, systolic processing may move data in parallel in more than one direction.
Thus the Cube Calculus methods, the oracle methods and other above approaches are interrelated. In this book we will analyze and compare these four approaches, their variants and their mixtures, in order of creating a general methodology.

How to convert abstract problem to an architecture.

The question is: “how to proceed from a specification of a CSP problem to an oracle or other method for solving this problem?” We believe that in future certain new “high level languages” will be developed to specify input information to CAD tools. These innovative CAD tools will automatically design, adapt and reconfigure oracles. Thus the user will write programs in these languages, even without appreciating the complexity of the circuits created by these CAD tools. The future systems will be thus similar to the case of contemporary VHDL programming for ASICs or FPGAs. The nature of programming for these types of computers will then change. The presented book is only the first attempt at creating such future software/hardware systems. We will show stages of transforming an initial description to a final system of low-level blocks. This book explains design stages as they are organized and executed by the designer that uses the existing CAD tools and not using future automatic tools. However, the developer of future tools can learn from our methodologies and design his future tools accordingly.
The main motivation and principle for architecture.

The reasons one may use non-standard processors in robotics are: (1) High speed of data processing, (2) low power, (3) small size of the chip, (4) other special requirements like integration with very fast sensors. Nowadays, the most important reason is speed. In the research areas of Artificial Intelligence, Pattern Recognition and Robotics, the ability of a computer to solve high-dimensional combinatorial problems very quickly (in real time) is very important. Many problems in these areas can be reduced to few combinatorial search problems. This is very similar or essentially the same as in CAD. Another related area is “Evolutionary Hardware”, which is the research on realizing directly in hardware evolutionary algorithms - such as a Genetic Algorithm. Genetic algorithm is one method of simulating an abstracted Darwinian Evolution in a man-made system. Artificial Intelligence algorithms will be more and more used in Intelligent Robotics and Evolutionary Hardware. New approaches to Computational Intelligence (CI) emphasize massive parallelism of applying deterministic or/and probabilistic rules combined with probabilistic evaluations of partial results. Data Mining is finding some arbitrary patterns in huge data represented as data bases or text files. In contrast to statistical hypothesis testing, these patterns in Data Mining are to be found automatically and are not specified by humans only to be statistically confirmed by the system. It is expected that Data Mining methods will be used in AI, CI, Intelligent Robotics and Evolvable Hardware. Perhaps, we will observe the synergism of research in all these approaches and their increased use in future generations of robots.
CSP architectures in practical robotics and digital CAD tools.

Theoretically, a robot can be controlled by an expensive supercomputer. But this is not very realistic with respect to high costs of supercomputers. Instead of controlling a robot with a supercomputer, we will use in this book a standard computer with accelerated specific operations or algorithms, just those that are needed for this robot, for instance the Robot Vision or Machine Learning operations or algorithms for a mobile robot navigating in a complex environment of full of obstacles rooms with a labyrinth of corridors among them.
Our plan for a future system at PSU is the Veloce accelerator connected to a local network to which several robots and intelligent sensor networks are connected. Now we use in the same way the CUDA parallel processing system based on Graphic Processing Unit (GPU). We solve CSP problems in a similar way by connecting our systems to quantum computer at DWAVE, so our future robot vision/planning system should be a set of inter-networked powerful special purpose computer systems. There are thus many technologies to solve efficiently a CSP problem when the abstract algorithm for search can be formulated for it. This book explains only one of these technologies.
The system-level design, high-level design, logic synthesis, test and physical synthesis problems become even more difficult when the CAD system is being created to synthesize and minimize circuits for modern technologies which can include thousands of processors in a “network on a chip”. The same will be true when accelerated algorithms to solve CSP problems will be developed for use in practical future robots. The book will characterize many of these robotics/vision and CAD problems.
We hope that our accelerated computer will allow to efficiently solve at least some CSP problems for which the standard computer is inefficient. This book, among other new ideas, tries to answer the question – “what exactly are these problems?” The book will concentrate next on designing conceptual circuits, blocks, oracles and algorithms, that will become useful to solve combinatorial problems of computational intelligence and robotics with the future introduction of practical accelerated computers.
Why logic puzzles are not only fun but are important.

Everybody likes logic puzzles, but why? Perhaps the reason is that without much underlying theory to painstakingly learn, we can immediately use our brains for creative thinking. This is why logic puzzles are used to teach children logical thinking and to test intelligence of new employees in companies like Intel or Microsoft. On the other hand these puzzles started in 19th Century serious researches in many modern research areas; examples can be Euler Path or Hamilton Path problems that started as high society brain-teasers and conversation topics and ended up as fundaments of graph theory and optimization theory. One can show many examples like these.

While most problems can be formulated in propositional logic, there are some interesting problems that require multiple-valued, modal or predicate logics. All of these problems can be solved in software and in hardware. This book is the first one to our knowledge that attempts at creating unified methods to solve these problems in hardware. By this, the book teaches both about the logic itself, using logic to solve puzzles and combinatorial problems, and how to design specialized computers for them, using non-standard methods that cannot be found in textbooks on logic design or logic synthesis. The book emphasizes creativity and innovation, thinking “out of the box” and practically using the understanding of logic blocks to non-trivial and practical problems, which is in contrast to standard textbooks that show very few examples more complex than an adder or a counter.
Historical Remark.
I, Marek Perkowski started this research in 1969 in Poland. It was a topic of my PhD dissertation, a book chapter and several papers. Many more papers have been published by me and my students in USA since 1985 on these topics. We developed also logic accelerators based on Programmable Logic Devices (PLDs) and FPGAs. We used DEC PERLE accelerator board developed by Digital Equipment Corporation, as well as FPGA-based accelerators that used FPGAs. But technologically it was too early – we did not get sufficient speedups on practical problems. I hope that new technology like Veloce allows to practically realize these ideas. If we will get a 10 times speedup on Veloce, our method would prove practical. If the speedup will be a small value like 2, then the ideas are still a theory only and we have to wait for better accelerators than Veloce. Our previous speedup was 2.5 on some problems using the DEC PERLE board. We got similar speedup in past and it was not sufficient to have people interested in this approach [ref – IEEE Micro, my paper in journals, 1998].

Principles of problem-solving and design methodologies.

The new ideas presented in this book are based on three main principles:

1. Principle of reducing CSP problems to building Oracles for them. Oracle is an arbitrary combinational circuit that answers yes/no to the proposed solution and checks solutions candidates in hardware with a high or even maximum parallelism. SAT circuit is thus the simplest possible oracle. In this approach solution candidate is a vector of values, often of binary values.
2. Principle of designing hardware controllers that exercise oracles with subsequent solution candidate vectors. These controller circuits have also massive parallelism and realize search algorithms in hardware. All principles used in software and parallel computing for SAT can be now reused in hardware (like learning from intermediate search results).
3. Principle of designing a data-path architecture based on arrays of tuples and next hardware programming of controllers for this architecture. Tuples are generalizations of cubes (cubical algebra) used in the so-called Cube Calculus (called also the cubical algebra). Our previous machines operated on a restricted cube calculus [ref]. We use here standard controllers for an accelerated data-path architecture on generalized tuples. Ideas of pipelining and systolic processing are used here.
1.5. Solving Constraint Satisfaction problems Using Oracles
The problems with no information at all.

Algorithms to search the “unstructured data base” are very important and practical when there is no heuristic information to be used to solve the problem. “Unstructured data base” means that we want to find one item in the data base for which we can check some function if this element is a solution. Do not be confused with name “data base”, we are rather having a data base created in hardware as some kind of function. The name “unstructured” means that there is no any structure in this “data base” that would allow us to search, or that would exclude some elements after finding other ones. This is a situation of no information at all. It is like having a “black box” with 99 black balls and one white ball. The box has a hole to insert a hand. If I want to find the white ball I can only keep reaching blindly to the box and removing balls one by one until I find the white ball. It will take me 100 attempts in the worst case and 50 attempts on the average. With no heuristic information nothing better can be invented and in many real life problems the software or hardware solving the problem is in this situation.

 We are interested now in a set of problems in which the only thing that we can do is to test all elements one-by-one and check each if a given element is a solution. In worst case it will take to check all but one elements of the data base if we know that there is one solution to it. This is the “blind search problem” which can be speed-up only by fast mechanism of checking the items, including parallelism. Next, if some algorithmic or heuristic information about the problem is known, the search can be speed-up by some smart strategy (order) of selecting the candidate items. The strategy is reflected in the sequence of binary vectors (solution candidates) given to the oracle. The vectors with higher probability of being solutions are given first. These ideas cover two first principles listed above. These approaches are much interlinked and new methods can be created by combining the characteristic patterns to find solutions. These methods will be of our interest in the book.
Problems with no information in robotics and CAD.

As already alluded to, in this book present new approaches to solve several hard CSP problems with applications to a widely understood robotics and Computer Aided Design and particularly to logic synthesis. CAD algorithms are important for two reasons: (1) because they are used to construct hardware, a task important by itself, (2) because they can be used in AI/CI/Vision/Robotics reconfigurable/programmable systems, as part of an approach where the hardware algorithm is first constructed from high level specification to be next used in hardware to gain speed. Our approaches will be based on oracles, hardware search and standardized data-path architectures for tuples (cubes). Solving these categories of problems will be one of the most important applications of CSP-accelerated computers. Our intention is to speed-up all NP problems. There are thousands of such problems, many of them of high practical use, especially in CAD of classical digital circuits, pattern recognition, robot vision, planning, scheduling and other areas of high practical importance.
We assume here a practical Veloce emulator as a model of the hypothetical, yet to be build CSP-accelerated computer. We analyze what would be its use in the area of solving CSP problems. We speculate on a real speedup based on our simulations. We will teach how Veloce can be used for these ideas and thus students knowledgeable in Veloce and these ideas will be able in future, when VLSI or other technology will allow it, to build the accelerators proposed here to give a true advantage on some class of difficult and important problems.
1.6. Solving problems by reducing them to basic combinatorial search problems.
Main problem representations and data structures in CSP problems.

Many generic combinatorial problems are known in classical logic synthesis such as satisfiability, graph coloring, binate covering, spectral transforms and others (all these problems will be explained in full detail in our book). These problems use various parallel architectures such as inverse trees of processors, hypercubes of processors and parallel processors based on butterfly structures (see next chapters). Many of these problems are known as Constraint Satisfaction Problems where some solution must be found that satisfies a set of constraints, where constraints are equalities, orders and inequalities on natural numbers. The elementary data used in constraints can be binary vectors, products of variables, numbers, arbitrary symbols, or other data encoded as binary strings. In many problems the solution should additionally optimize certain cost function. The cost function may represent physical concepts such as energy or entropy (a measure of order in data). It may also reflect financial cost of creating the circuit. All kinds of cost functions can be calculated in our algorithms.

Spectral transforms are another wide class of problems with many applications, just to mention the ubiquitous Fast Fourier Transform or Fast Cosine Transform used in MPEG. Spectral transforms transform a vector representing an original function to another vector of spectral coefficients which represents this function in a unique but often more useful way (see chapter xx).
We will demonstrate in this book that these and other problems still remain a fundament for efficiently solving problems in robotics and CAD. How then to solve these problems using a CSP-accelerated computer? How to use such computer to calculate spectral transforms? How select best transforms of Boolean functions? How to create new motions of a robot based on spectral decompositions? How to find some shapes in images based on transforms? How to plan robot behaviors? How to learn concepts from positive and negative examples of concepts?
Universal and problem-specific methods, or mixing them?

Can we solve, in principle, all these various problems with few universal methods? The book promotes the belief that all these problems can be reduced to some finite set of problems for which a programmable logic accelerator will be build. This may be an FPGA-based reconfigurable hardware accelerator (FPGA stands for Field Programmable Gate Array) or an accelerator using some other technology.
To answer this question one has first to analyze what are the standard modern (binary logic) FPGAs? This is a relatively new technology (invented in 1986) in which the user can program not only the memory as in a standard computer, but can program also gates, blocks and their connections using special hardware design languages (such as Verilog or VHDL) and synthesis (CAD) software. This way the digital designer can practically “build his own computer” for any given task that can be programmed by him. FPGAs have truly revolutionized digital design since 1986 and are used in many practical products; from simple controllers to supercomputers. We introduce in this book a model of a FPGA-like, CSP-accelerated or logic-accelerated, computer. It is a company secret what is an FPGA or processor inside the Veloce hardware. At this point we have no interest in this question. We are also not interested at this point in any particular FPGA devices to which our digital systems will be mapped after emulating them with VELOCE.
Properties of our problem-solving model.

Concluding, our model of an accelerated computer proposed in this book is a multi-purpose, parallel, programmable, reconfigurable, accelerator connected to a standard computer.
1. Our model is multi-purpose because it is not a universal computer to speed up arbitrary problem, but is specialized for only some classes of problems. These classes include however many practically important problems.

2. Our model is parallel because we have available in our system not just a single computer but a collection of computers that allow to decompose large problems to structures of simple problems that share information between them.

3. Our model is programmable in an analogous way to the way that FPGAs are programmable in modern VLSI technology.
4. Our model is reconfigurable in the same way as FPGA systems are reconfigurable in modern system design (it is even not known if Mentor uses an FPGA or a special VLSI chip in Veloce). This means that the top-level structure of the system can be reconfigured dynamically to become another system. Thus a vision processor can be modified to a DSP processor or a hardware sorter. When the basic structure of a reprogrammable hardware is created, it can be reprogrammed very quickly to an arbitrary given application. The existing technology already allows for this reconfigurability, but this technology is not yet scalable.
5. We call our model an accelerator -- to emphasize that only some problems are accelerated (a parallel computer would speed-up a wider class of problems). The accelerated problems are logic optimization problems and CSP problems.
1.7. Combinatorial Problems in synthesis and optimization of circuits.
Future CAD tools

We hope that in future, the CSP-accelerated computers will be used to solve CSP problems in our area of interest. Special high level specification languages will be created. They will be inputs to high-level and system-level CAD tools. It will be the same way as the standard computers are used now to synthesize classical circuits from VHDL specifications (VHDL is Very High Level Design automation Language to specify hardware for VLSI and FPGAs). To aid in inventing the new types of hardware algorithms that will be used in such systems, a new generalized and unified approach is created and investigated in this book.
This new approach should be of interest to the robotics/Machine Learning community as well as to the CAD/logic synthesis community, because of its analogies and extensions to that of the classical Boolean logic (based on AND, OR and NOT gates), classical Reed-Muller Logic (based on AND and EXOR gates), and other areas in which CSP problems are formulated.
Logic circuits other than AND/OR/NOT circuits

Circuits based on AND, NOT and OR are well-known, so let us pay more attention here to the AND/EXOR logic that builds circuits with gates AND, NOT, EXOR and constant 1. Reed-Muller logic is a specialized spectral approach of logic structures invented by such researchers as Zhegalkin, Reed and Muller. This approach uses AND and EXOR gates as its base and creates spectral transforms using them. Reed-Muller logic is a subset of AND/EXOR logic. Positive Polarity Reed-Muller logic (PPRM) is a one type of Reed-Muller Logic, the simplest one. It represents a Boolean function as an EXOR of products, each product on non-negated variables only. The canonical forms include: Kronecker-Reed-Muller (KRM), Fixed-Polarity-Reed-Muller (FPRM), Generalized-Reed-Muller (GRM), and other canonical forms. The non-canonical expression types include the Exclusive-Or-Sum-of-Products (ESOP) and factorized expressions designed using uniform synthesis methods based on CSP-acceleration.
In this book it will be shown how AND/EXOR forms and circuits are synthesized using CSP algorithms similar to those for AND/OR logic. We aim also that our synthesis methods for circuits will be good for practical data sizes that may appear in designing oracles to solve practical CSP problems. The presented synthesis and decision approaches will be good for AND/OR (classical), EXOR/AND (including Reed-Muller) types of logic as well as Multiple-Valued logic. We selected these methods that are truly general. All listed here names and concepts will be illustrated in next chapters of this book.
1.7.1. Types of oracles to solve combinational problem
There are mainly two types of oracles.

1) Combinational oracle

These kinds of oracles use simple combinational logic blocks such as adder, subtractor, equality, order or equality comparators, count ones, and basic Boolean logic gates. The oracle has no memory elements such as RAM cells, latches or flip-flops in them. It is a purely combinational circuit (with no memory).

2) Sequential oracle

These kinds of oracles use for their realization a number of sequential blocks like: counters, shift registers, memories, registers, sequential adders and multipliers, count-ones circuits. Often they use register pipelining to some degree. Some of these oracles can be in theory represented as Finite State Machines, but in reality they are built from many state machines, memories and combinational components.

1.7.2. Combinational oracles
Combinational oracles are again sub-categorized into 3 types

Simple Oracles

These oracles have inputs corresponding to variables and only one output corresponding to the decision value. The only information given by oracle to the controller is if the solution was found. The controller performs therefore a blind (unstructured) search.
 Example of such oracle is the POS SAT oracle in Figure 1.7.

[image: image6.emf]a

b

c

d

))()((

1

d b c c a d c a f      

Figure 1.7. Example of standard combinational oracle applied to a SAT problem.
Oracle with cost function as a feedback.

 These kinds of oracles include cost function value as a feedback to pattern generator.

[image: image7.emf]Store Best result

Cost Of

Solution

Pattern

Generator

Simple

Oracle

Storee Best

Solution

Oracle with cost function as a feedback

Figure 1.8. Oracle with cost function as a feedback. Pattern Generator is a sequential circuit that generates sequentially solution candidates that are checked by a combinational Simple Oracle. Cost of solutions is calculated in the oracle and compared with the cost of the best solution found so far. The best solution is stored for future comparisons. New cost found can affect the operation of the Pattern Generator by suppressing the generation of superfluous or worse solution candidates.

The feedback will tell user how close he is to satisfy all constraints of the problem. Or it can suggest what the user should do next; e.g. Graph coloring oracle i.e. finding minimum number of colors to color the given graph.

Oracle with direct feedback.

[image: image8.emf]Cost Of

Solution

Pattern

Generator

Simple

Oracle

Storee Best

Solution

Oracle with direct feedback

Figure 1.9. Oracle with direct feedback.
These kinds of oracles will also have feedback but it will be direct. This means that the oracle itself will suggest the user some hint to find the next solution candidate or even a part of this solution. For instance it restricts the set of variable values for the given SAT formula. Or suggest directly some new assignments that are implied by previous solutions or their subsets.
1.7.3. Sequential oracles
Sequential oracles are again of three types:
1) Controller type

These are architectures composed of simple data path and controller state machine. There is not much, if any parallelization. This is a standard architecture.
2) Pipeline type

These kinds of Oracles implement part of the oracles as a pipelined architecture. This will speed up the oracle but increase the complexity of the oracle.

3) Systolic type
The oracle has one or more systolic structures which transmit data in more than one dimension.
1.7.4. Mechanisms of exercising oracles

There are number of ways by which given oracle can be exercised.

1) Random number generation

Generating randon number pattern to test the oracle. This can be done with software or hardware such as LFSR.

2) Simulated annealing.

Simulated annealing (SA) is a generic probabilistic model for creating test pattern locating a good approximation to the global optimum of a given function in a large search space.
This need conscience description of configuration of system, random number generator, quantitative objective function that contains the constraints that have to meet.

3) Pseudo Boolean programming

The Pseudo-Boolean (0-1 integer programming) problem is a linear integer programming problem where all variables are restricted to take values of either 0 or 1.

4) Integer programming

In an integer programming test pattern creation, some or all of the variables are restricted to be integers.
5) Exhaustive search based on counting

In this case of pattern generation whole search space is scanned. Obviously it takes longer time.

6) Intelligent search methods

It is used when search space is huge , so we need artificial intelligent techniques specially dedicated to find near optimum solution.

7) Genetic algorithms

A genetic algorithm (GA) is a search technique used to find exact or approximate solutions to optimization and search problems. E.g. Particle Swarm Optimization (PSO), Ant Algorithms, Bacteria Foraging search, Cultural Algorithms search, etc..

8) Dynamic programming.

In this complex problems are solved by breaking them down into simpler steps. This takes very small time as compared to native method.

1.7.5. Example of a sequential oracle

As an example of sequential oracle problem is SEND + MORE=MONEY which is explained more elaborately in the later chapters. Here only the basic idea is discussed.
 C4 C3 C2 C1 C0

 S E N D

 + M O R E

 M O N E Y

From the above puzzle, we can derive equations for each letter from the output. If we consider the ones place in the puzzle, the output obtained is Y and the inputs are D and E which are added. The carry obtained from adding up the numbers will be considered as C1. So, we will get an equation which is;

 D + E = 10C1 + Y

In the same way the remaining output values are obtained as:

C1 + N + R = 10*C2 + E

C2 + E + O = 10*C3 + N

C3 + S + M = 10*C4 + O

 C4 = M

The equation is typically a basic operation of arithmetic, such as addition, multiplication.

This oracle can be implemented in a pipeline fashion, as shown in Figure 1.10.

[image: image9.emf]B A C D

E

Processor A is

passing its

information to

Processor B

which serve as

global

information to

processsor C

Processor A

gets some

global

information

Final Solution

There are 5 processor A B C D and E

Figure 1.10. Add caption and improve the explanation in the figure. Processor A serves as global information provide to processors B, C,D, E, that serve as filters. The solution candidate that passed all filters is a valid solution. The solutions are moved in pipelined way from left to right.
As shown in Figure 1.10, each processor has some local information and some global information from previous processor. The respective processor will take action based on its local and global information it has got from previous processor, and it will pass all information to next processor.

We need five processors to solve 5 equations. Each processor is responsible for some set of partial constraints. In this case , constraints for the equation.
Operation of the 1st Processor

	S

	E

	N

	D

	M

	O

	R

	Y

	C1

	C2

	C3

	C4

[image: image16.png]§=0+0

[image: image17.png]

	S

	E

	N

	D

	M=1

	O

	R

	Y

	C1

	C2

	C3

	C4=1

[image: image18.png]C2+E+

[image: image19.png]‘N +10C3

[image: image20.png]C2+E=N

 C4 C3 C2 C1 C0

 S E N D

 + M O R E

 M O N E Y

Figure 1.11. Explanation of stages of solving the SEND+MORE=MONEY puzzle in a pipelined oracle. The first processor.
From the above puzzle, the M value is obtained by adding the digits at the thousands place. According to our assumption, when two 4- bit numbers are added the result will be either 0 or1. Here there is no possibility to have 0 as the output. So, the value of M will be 1. And hence C4 will also be 1. So C4 = M = 1 is local information for processor A.

Operation of the 2nd Processor

	S

	E

	N

	D

	M=1

	[image: image21.png]

O

	R

	Y

	C1

	C2

	C3

	C4=1

	S=9

	E

	N

	D

	M=1

	O=0

	R

	Y

	C1

	C2

	C3=1

	C4=1

[image: image22.png]Cl+N+R

[image: image23.png]E+10C2

[image: image24.png]Cl1+R=38

[image: image25.png]

 S E N D

 + 1 O R E

 1 O N E Y

Figure 1.12. Explanation of stages of solving the SEND+MORE=MONEY puzzle in a pipelined oracle. The second processor.
The only possible value for S will be 9 since we are getting the carry as 1 and the one of the addend is 1. So, the value of S will automatically be considered as 9. In the same way the values of O will become 0 as 9 and 1 are added to form sum as 0 and the carry as 1. At this point the values at the thousands place are calculated.

Operation of the 3rd Processor

	S=9

	E

	N

	D

	M=1

	[image: image26.png]D+E

O=0

	R

	Y

	C1

	C2

	C3=1

	C4=1

	S=9

	E=2

	N=3

	D

	M=1

	O=0

	R

	Y

	C1

	C2=1

	C3=1

	C4=1

[image: image27.png]Y +10C1

[image: image28.png]D+2=Y

[image: image29.png]

Figure 1.13. Explanation of stages of solving the SEND+MORE=MONEY puzzle in a pipelined oracle. The third processor.
Value of C2 can’t be zero because then E=N which is not allowed so C2 has to be 1. So let’s assume E=2 this will lead N=3.

Operation of the 4th Processor
	S=9

	E=2

	N=3

	D

	M=1

	O=0

	R

	Y

	C1

	C2=1

	C3=1

	C4=1

	S=9

	E=2

	N=3

	D

	M=1

	O=0

	R=8

	Y

	C1=0

	C2=1

	C3=1

	C4=1

Figure 1.14. Explanation of stages of solving the SEND+MORE=MONEY puzzle in a pipelined oracle. The fourth processor.
Setting N=3, E=2, C2=1

[image: image11.png]Cl+N+R

 [image: image13.png]E+10C2

will simplify to C1+ R = 8.

Let’s assume that C1=0. Hence R=8 and C1 =0.
Operation of the 5th Processor

	S=9

	E=2

	N=3

	D

	M=1

	O=0

	R=8

	Y

	C1=0

	C2=1

	C3=1

	C4=1

	S=9

	E=2

	N=3

	D=4 or 5

	M=1

	O=0

	R=8

	Y=6 or 7

	C1=0

	C2=1

	C3=1

	C4=1

Figure 1.15. Explanation of stages of solving the SEND+MORE=MONEY puzzle in a pipelined oracle. The fifth processor.
Setting E=9 and C1=0. We have D+2 = Y. Now D can be 4 or 5 as other digits are used.

So Y Will be 6 or 7 respectively. This gives the final solution.

1.8. New General-Purpose Search Approaches for classes of combinatorial problems.
1.8.1. How to exercise oracles?

So far, we mostly concentrated on illustration of Oracles but design of generators to exercise oracles is of equal importance. In this book we will also present the development of a general-purpose search/synthesis/learning meta-algorithm Hardware Accelerated Search Problem Solver (HASPS) to be used in solving highly complex combinatorial problems, especially the Constraint Satisfaction Problems. HASPS is a new “meta-algorithm” and a general constructive learning methodology, a kind of Super-Pattern Generator with many variants and strategies. It is applicable for CSP problems that exist in logic synthesis, logic minimization and similar problems. HASPS is developed to create (binary) vectors that exercise oracles to solve design and optimization problems based on CSP model. It can be used as well for applications of CSP in Data Mining, Machine Learning, and Evolvable Hardware. Our approach is therefore very general. HASPS is an original meta-algorithm, more general than other algorithms of this type. It includes classical AI algorithms: depth-first search, breadth-first search, standard CI algorithm: genetic algorithm, and many other search methods as its - parameter-selected - special cases.
The HASPS method is based on the general concept of search in certain space of solutions and candidates for solutions (called also partial solutions in literature). The search can be done in serial controller or in a parallel processor. Our hardware search approach is for both serial or parallel variants. The classical serial search is of course only a special case of a parallel search. Both the serial and parallel accelerated search variants presented here can be improved in future by other researchers. Why we believe this point? Looking to history of classical software search on standard computers one can observe that it was possible to find new better search methods long time after the concept of search itself and the basic search algorithms were invented. For instance, the Iterative Deepening Search that we use in this book was invented in the area of AI many years after the classical depth-first search and the A* search algorithms were originally created. These algorithms were meant for software, and not for hardware and in general not much has been published about hardware realization of search. So there exists a potential to create new efficient hardware search algorithms for oracles.
1.8.2. Types of exercising mechanism for CSP algorithms.

We discuss two main types of algorithms: oracle-based CSP algorithms and data-flow tuple-algebra algorithms. Most of our search ideas will be first based on the oracle model. Next their tuple-based counterparts will be explained. Oracle function is a generalization of SAT function and thus we can borrow much from all kinds of SAT algorithms. There is a big library of papers on software and hardware SAT solvers. We can use much of these. However, we not only use the SAT solvers as they are, but we wrap them around in a more general search systems of parallel reconfigurable processors. Our generalized systems use several basic concepts: parallelism of programming, parallelism of execution, heuristics, and reprogramming (as in FPGAs). They call Oracle Exercising Algorithm (OEA) for sub-problems, possibly with oracles that are adapted and modified. We call this the “dynamic approach to problem-solving based on Oracle Algorithm”. By solving some class of problems using Oracle Algorithm, we can learn certain parameters to improve the speedup of the next calls to the “Oracle Processor”. For instance, when one knows the chromatic number of a graph, the optimal coloring of this graph can be found more efficiently by reducing the size of the oracle. Reducing the oracle’s size leads to the reduction of the solution time of the Oracle Algorithm, as will be discussed. Any additional knowledge available to the system designer should be thus used in (parallel) oracle computing to improve the search efficiency. Observe that this is exactly the same problem-solving philosophy as the one used in standard contemporary parallel search (software) algorithms.

The book will present several applications of this meta-learning algorithm in detail: graph coloring, satisfiability, maximum cliques, DNF logic minimization (Sum-of-Products - SOP), AND/EXOR logic minimization and others.
1.8.3. Exercising for complex data structure algorithms.

Also most often problems are solved in propositional binary AND/OR/NOT logic, Cube Calculus and oracles allow us to use various data structures/representations such as representations based on other algebras such as: AND/EXOR, modal, and Galois Field algebras. One application of these data is the minimization of incompletely specified data with FPRM data structures, with applications in CAD and Machine Learning. Fixed polarity Reed-Muller forms (FPRM) are extensions of PPRM (Positive Polarity) Reed-Muller forms. In FPRM every variable has the same polarity, it means it is negated or not negated, but it must be negated or not negated consistently in the entire expression. Thus if variable d is not negated in product term def, it is also non-negated in every other product term in the EXOR. For instance, F = ab’ (acd (b’d is an example of FPRM with variables a, c and d in positive polarity and variable b in negative polarity.

Another application of our approach is the minimization of the GRM (Generalized Reed-Muller) forms (mixed polarities of variables). In GRM every variable can be both positive and negative, but for every subset of variables there is only one product in the EXOR. For instance, if product abc is included, product a’bc cannot be included as these terms both correspond to the same set of variables {a,b,c}. Expression ab (bc (a’b’c is an example of GRM and abc (a’b’c’ is an example of ESOP which is not a GRM. The FPRMs and GRMs are two most well-known types of the AND/EXOR expressions [Sasao93e]. The algorithms for these forms are traditionally exhaustive search algorithms so they are good candidates for our methods. These are just the simplest of algebraic representation that can be used in our hardware approaches. Particularly spectacular are applications in image processing, digital signal processing and encryption. We hope that the users will be encouraged to design their own oracles and Cube Calculus machines for other algebras, for instance in cryptography, error detection and correction and DSP. We have no space in the book for them, but last chapter will include a list of possible problems with references to them.
1.8.4. HASPS or Accelerated Search Problem Solver
Automated hardware-based problem-solving methods are developed in this book as its central theme. By exploring evolutionary design and optimization techniques, investigating and discussing several design approaches we work to decide how to combine them for the design of a meta-algorithm. This algorithm will use quantum-mechanically-inspired and biologically-inspired, application-specific reconfigurable parallel (FPGA-like) hardware. (Observe that our algorithms are not quantum, they are “quantum inspired” in the spirit of research originated in software by Han and Kim [ref], in which concepts of quantum mechanics are used to create new chromosomes.) General search heuristics are utilized independently and in combination with other techniques. A new type of meta-algorithm in hardware is created which combines artificial evolutionary methodologies for algorithm development, with Heuristic Search, Constraint Satisfaction ideas, and human-designed Expert Systems. This approach is referred to as the Hardware Accelerated Search Problem Solver. Our approach supports quasi-automatic, and in future - automatic, design of application-specific hardware algorithms. These algorithms will be for synthesis, minimization, decision making and other problems in logic circuits, data mining, robotics, and other areas. The proposed approach is demonstrated on examples of binary logic, hardware circuit synthesis, “logic expression building” or Data Mining (i.e. explaining underlying principles by discovering meaningful patterns and rules about a data set), and logic minimization. Although we concentrate on the new, proposed here, area of CSP (chapters X9 - X13), this research can also be directly applied with broad implications to the fields of Intelligent Robotics (chapter X13), Machine Learning, Data Mining, and Evolvable Hardware. The wide applicability of our approaches results from the multiplicity of problems that can be characterized as the Constraint Satisfaction Problems. [[Give more references and check numbers.]]
1.9. Organization of the book.
As already presented, this book introduces ideas in logic design of oracles, circuit structures and respective synthesis algorithms and also ideas in algorithm design and computer architecture. In a sense, “everything relates to everything” in this book: hardware, software, acceleration, emulation, simulation, verification, logic, CAD algorithms and general CSP. This multi-aspect core of the book makes its presentation difficult. Therefore we organizationally separate the book to parts that are relatively less interconnected. We need also some small text repetitions to simplify the reading of the book.
The areas of logic design and algorithm design are respectively isolated, and they are linked by the fact that to build a practical oracle one has to be able to optimize it from logic gates. We will link these two ideas more in next chapters when all background will be already introduced. We can thus say that the book has three parts. The first part (chapters XX – XXY) relates to the fundaments of oracle design, and gives many examples of oracles. The second part (chapters X5 – X8) presents main ideas of search algorithms and their hardware realization. The third part (chapters X9 – X16) relates to the cube calculus and tuple based algorithms and their applications. Some other systolic and pipelined architectures will be also presented.
1.9.1. New concepts of CSP algorithms for particular structures
Use of heuristics versus universality of algorithms.
It is desired that good partial heuristic methods be developed for any given specific CSP algorithm, or rather, for a class of such algorithms. This is thus the second task to be achieved in our book. For instance, let us assume that we use the Oracle algorithm to solve the problem of “graph coloring” where every two adjacent nodes of a non-directed graph should get different colors. We may constraint the number of colors and ask if there exists a coloring with k colors. Additionally, we may be asked to solve the graph coloring problem with the minimal number of colors. Being able to solve this particular problem efficiently, most of the important optimization and decision problems that appear in CAD algorithms could be solved. Graph coloring is a prototype constraints satisfaction problem. Other set of typical CSP problems is the class of path-finding problems in a graph, in which a problem is given in an explicit way as a data structure. The shortest path and the travelling salesman problems belong to this class. In another set of problems the graph is given in an implicit, not explicit way, by some kind of rules that are expanded to create nodes and edges incrementally, thus saving space and time of processing the graph.

We will characterize basic typical CSP problems of various types, so the reader will be able to reduce his/her problem to one of them. This classification of problems and reducing them to our three CSP principles should be used in teaching design/verification classes.
Universal algorithms.

Universal algorithm is an algorithm that can solve a set of problems (in theory, all problems) rather than a single problem. Often, many problems are polynomially reducible to a standard problem such as SAT, and next solved using a SAT solver system. Instead of writing software for each problem separately, we just write software to reduce our problem to one of “universal problems” and we use “universal solvers”.
The mentioned above universality of optimization algorithms and the data structures used in them is the general promise of several areas of research:
(1) SAT solvers – software, hardware or reconfigurable FPGA systems to solve the satisfiability problem,

(2) universal algorithms to solve in software or hardware classes of problems such as integer programming, linear programming or CSP,

(3) resolution-based programming languages such as Prolog; they use one automatic-theorem-proving mechanism, called resolution to solve problems reduced to predicate calculus,
(4) hardware accelerators – hardware systems, for instance FPGA-based that solve some classes of problems.
Some of these general problem-solving approaches, like the universal (software) SAT solvers, are extensively used in modern research and CAD industry. Similarly in our case, the universal solvers will be used in the research towards the promise of future “CSP accelerators” that this book attempts to make a ground for.
Concluding on the “universality versus special domain” issue, this book develops hardware algorithms that are:
(1) universal,
(2) allow to create variants of the main algorithm,
(3) allow to incorporate problem-specific knowledge into the algorithm.
1.9.4. The role of additional knowledge and heuristics in creating algorithms
It is well known that in classical algorithms, any additional knowledge about the problem, like for instance the upper bound to the chromatic number of the graph being colored, can help to create a more efficient algorithm. We will show that the same is true for hardware algorithms of certain type, including algorithms for various variants of graph coloring problems. Among the several possible approaches to create such a meta-algorithm, the biologically motivated computations, such as evolutionary algorithms [ref], were viewed as attractive because of their generality and flexibility. Thus, in the long research and development process to create hardware algorithms, the PSU group applied the biologically inspired, evolutionary processes of Genetic Algorithms and Genetic Programming. These algorithms were also sometimes combined with the, humanly designed, heuristic and search methods. This was done for instance in [Karen Dill, Martin Lukac, Normen Giesecke, ref, ref]. We combine evolutionary, quantum-inspired and traditional Artificial Intelligence and integrate them in hardware structures and controls. Let us observe that Genetic Algorithm uses mutation and crossover to create a chromosome that is next evaluated by the fitness function. This can be realized in hardware oracle architecture in which the chromosome is the vector of variable values given to the oracle, the exercising mechanism creates these vectors using genetic and other operators and the oracle calculates the value of the fitness function. This is in general a generalization of the classical oracle concept as the oracle returns fitness function and not only binary data.
1.10. Machine Learning methods.

An oracle can be created to find the best spectral transform in a family of such transforms [Li06]. This paper can be explained as an application of an exhaustive search speed-up to create the best Fixed Polarity Reed-Muller Form (FPRM). For n variables there are 2n FPRM transforms in the family. The best transform is one with the minimal number of non-zero spectral coefficients (product terms). This corresponds to learning, for a set of examples, a circuit which has the minimum complexity. This circuit is found for a given truth table of positive and negative examples. These “examples” (using the terminology of machine learning) are called “minterms” in the area of logic synthesis. Such FPRM form is a type of structured logic expression that should be as simple as possible and that should separate the truth from the false. Thus, for all minterm examples categorized as “false” (negative examples, zero-minterms) the value of the expression is false and for all minterm examples categorized as “true” (positive examples or “ones” in the truth table) the value of the expression is true. The oracle is connected to our HASPS based hardware for exercising the oracle by giving binary vectors on its inputs.
Careful analysis of the approach from [Li06], reveals in addition that this idea can be applied with little modification to an incompletely specified function, thus becoming applicable in Data Mining and Machine Learning [Dill01, Koza94, Koza99].
Let us explain the above idea on a simple example of inducing formula from a set of examples. A set of positive and negative examples is collected by observing successes or failures of various pairs of humans, related to their character, social position, physical properties, etc. Next an ideal life partner is induced from this set – it may be described by an expression “(Beautiful and Smart) (Rich”. This formula means that the candidate person has to be either “beautiful and smart” or rich but not all positive properties at once: beautiful smart and rich (somebody who is beautiful, smart and rich may drop his partner soon, which was reflected in the particular set of specific examples given to the learning tool). Denoting B = Beautiful, S = Smart, and R = Rich, the learned (Fixed Polarity) Reed-Muller expression is BS (R. This is a Positive Polarity expansion formula (i.e. all variables are not negated). The equation BS (R is realized with a single a Davio gate. Thus, a logic formula that generalizes the results from all examples is returned as the result of Machine Learning. Davio gates and multiplexers belong to set of useful gates in logic synthesis and Machine Learning that we will be using.
Our conclusion of this generalization is very powerful – every problem that can be solved using a “pure” Genetic Algorithm or a Constraint Satisfaction algorithm can be solved using a hardware search algorithm based on the HASPS.

This observation applies to all algorithms from binary logic synthesis, Constraint Satisfaction based problem-solving, predicate calculus, integer programming and other combinatorial algorithms that appeared and continue to appear in literature.
Our approach applies also to the data that are incomplete. Incomplete data include the so-called unknowns, which are “not shown” examples, i.e. combinations of input variable values that are not used as positive or negative examples in teaching). Thus we can construct or “build” a logical expression (in example above - the FPRM expression) to satisfy the behavioral criteria. As a new method of logic synthesis or Machine Learning, the hardware search, as this one, offers a unique approach to automated logic design or "evolvable hardware". We can speculate that future evolvable hardware will be a hardware accelerator equipped with different “universal” components. These components will be in theory “universal” (such as SAT is universal in classical CSP) but practically they will be only “wide range application” components. These components will be developed for particular applications such as: algorithm for SAT, algorithm for all maximum cliques, SOP minimization, FPRM minimization, ESOP synthesis, Walsh and other spectral algorithms for image matching or spectral coefficients minimization for structured forms of learning, as well as other learning, problem-solving, pattern recognition and vision methods. Similarly as Fourier Transform represents a function as a sum of orthogonal cosines of various frequencies, other spectral transforms such as Walsh Transform use other orthogonal (base) functions, such as square functions. In PPRM transform of functions with 3 variables the base functions are: 1, a, b, c, ab, ac, bc, abc.
The “logic circuit” (equivalently, the “solution specification”) is designed by evolutionary means and the process is entirely "hands-off" for the user. This is however not a biological “Darwinian evolution”, but the evolution of the superposed states in a quantum-inspired computer. This computer is intentionally designed by humans to model evolution in order to solve certain class of problems. Like in FPGAs, each class of problems requires new computer hardware, in this case a new oracle. The beauty of the proposed here methods is that problems can be solved without explicit computer programming. We just use the general quantum-inspired search algorithm itself. While the general search mechanism is universal, each specific problem is described by the user as a specific oracle.
Observe that in future problem-solving systems, the parameterized descriptions of many problems will be created by designers. This will be similar to how it is done now in the areas of “intellectual property design” and “circuit generators and hardware compilers”, in which the sophisticated blocks are designed in hardware languages such as Verilog and VHDL. These blocks are next reused and integrated in designs. Because the oracles for classes of problems are similar, in the further future certain “smart software generators” will be written to create parameterized descriptions, similarly as it is done now in software generators of VHDL or Verilog programs that are written in Matlab language or the languages of Artificial Intelligence (AI). There exists therefore a clear path from the FPGA fast prototyping methods that are at the forefront of CAD tools in year 2011 to the future CSP tools for accelerated CSP computers.
Further, let us observe that in theory, a single technique is applicable to solve all CSP problems (because all problems such as graph coloring or SOP minimization can be polynomially reduced to a Boolean Satisfiability formula - the SAT problem). Such approach is theoretically feasible in classical computers, but it is rarely practical. Our hardware search has perhaps similar properties: although in theory we can reduce all problems to a SAT, it is better when the user of our system has at his disposal several types of reduction to hardware mechanisms rather than to SAT circuits only.
1.11. Summary of main concepts and ideas
Concluding, there are several main ideas focused on in this book:
1. The concept of oracle as a generalization of SAT is introduced and several practical oracles are built. Oracles are fundamental concepts to solve puzzles and combinatorial problems. The reader should learn how to specify arbitrary oracles in VHDL or Verilog and test them on Veloce.

2. The combined search strategies originally developed in [Perkowski82] and extended in [Brown90], [Juling Liu], and [Dill] have been extended to parallel accelerated hardware computing, modified and implemented as the HASPS search algorithm with improved behavior. New strategies are added and they will be be tested by students in VHDL, Verilog or System Verilog. The testing and verification results will be discussed in this book. The reader has to be able to design hardware realizations of various search strategies using stack, queue or sets of finite state machines, or other approaches.
3. The extended cube calculus algebra is presented and illustrated with many applications. Next two particular architectures for cube calculus are explained in detail and simulated. The machine can be extended for various multiple-valued, modal and other logics.
4. New search algorithms for SOP, FPRM, and ESOP circuits and other logic synthesis problems are proposed. The algorithms are unaffected by the degree to which the problems were completely specified (i.e. a large or small number of “don’t cares” is unimportant). These algorithms can be realized with oracles or in data-path processors that use algebras such as cube calculus. We will show realizations of only some of these algorithms but the reader should be able to design them in any of the presented here models.

5. We show Machine Learning algorithm based on oracle model and cube calculus model. The goal is to demonstrate that our methods are applicable to many benchmarks, for the logic minimization/synthesis of binary logic hardware circuits, Data Mining, off-line Evolvable Hardware development, and Machine Learning.

6. The hardware systems for oracles and data path architectures have been invented and explained. We simulated the hardware for graph coloring, SAT, FPRM, SOP, ESOP and other circuit types. More will be done by the 2011 group of students. Everybody is welcome to contribute new oracles, algorithms or applications. We should especially look for algorithms in robotics and image processing.
1.12. Guide to the contents of chapters.
This book takes background and ideas from several fields of mathematics, computer science and computer engineering. We wanted also the book to be as much as possible self-contained. Our goal was predominantly to explain in an easy engineering text several complicated concepts that appeared so far only in mathematics, physics, or computer science journals and books. Unifying, simplifying and binding together were thus few of the tasks of this book. Because several sub-areas of this book are interlinked to other sub-areas in many ways, organizing the text in a linear manner was not easy. Below we provide short information about what is in which chapter and how the chapters are interconnected.

1. Chapter 1 is an introduction to the presented research. It presents the history of this book and its main concepts from the bird’s eye point of view – no details just basic concepts. However, to understand fully the contents of this chapter the reader should be familiar with the next chapters of the book first. Chapter 1 should be thus read again after reading the entire book.
2. Chapter 2 presents the design of oracles for SAT. We explain logic blocks that are typical in such oracles. Various interesting applications of these oracles are explained in full detail.
3. To be finished.
1.13. QUESTIONS AND PROBLEMS TO CHAPTER 1.
2. What is acronym FPGA standing for?

3. What is VELOCE?

4. Formulate a general SAT problem? Why it is difficult?

5. What is Tautology Problem for Boolean logic? How is this problem related to SAT?

6. Explain the meaning of these acronyms: CAD, PC, CSP, VLSI, ASIC, PLD, MPEG.
7. What is a logic accelerator?

8. What are NP problems?

9. What are NP-complete problems?

10. What does it mean NP-hard problem. Give an example.

11. What does it mean that problem 1 is reduced to problem 2. Give an example.

12. What is an oracle? Give example of SAT oracle other than in the book and show how to solve it.

13. What is the Graph Coloring Problem? Why is it important? Design an oracle for a two-colorable graph and discuss the solution.

14. Draw truth tables of gates AND, OR, EXOR and XNOR.

15. What is array of cubes? What is a cube? Give example of array of cubes for some simple Boolean function.

16. Give an example of non-trivial satisfiability problem that is not a POS SAT.
17. Explain what is POS, SOP, and ESOP.

18. What are the acronyms AI, CI, GA, DM, EH, GPU, CUDA standing for?

19. Explain briefly the concept of evolvable hardware.

20. What are Verilog and VHDL? What is MATLAB?
21. What is PPRM? FPRM? GRM? How are they related to ESOP?

22. What is Reed-Muller Logic?

23. What is acronym HASPS standing for?

24. What is universal algorithm?

25. What is universal system of logic gates?

26. What is a heuristic?
27. Build a sequential oracle similar to one from section 1.4.5 for POS SAT.
28. Build a sequential oracle similar to one from section 1.4.5 for graph coloring.

29. Discuss various types of oracles.

30. The Two Inverters Problem. This is a famous difficult problem in logic design. Given are two inverters (NOT gates) and an unlimited number of AND and OR gates. Given is a black box circuit with three inputs a, b and c. The outputs of the box correspond to functions NOT(a), NOT (b) and NOT(c). Design the circuit for the black box using only gates as given above. Explain your methodology of approaching this problem. It is not easy to guess the solution, you must have some systematic method to solve it, and you learn this method by several initial unsuccessful attempts.
HARDWARE ACCELERATORS OF CONSTRAINED SATISFACTION AND LOGIC OPTIMIZATION PROBLEMS USING VELOCE EMULATOR

By Marek Perkowski, Anvesh Kodumuri, Vamsi Parasa, Yaswanath Naraharisetti, Aditya Bhutada, Gunavant Chaudhari, Haera Chung, Sazzad Hossain, and anybody who will contribute. Some of the names below will be removed as so far the students have done nothing and can be given to next students.
	chapter
	contents
	Current authors
	language
	Literature
	To be done. Student responsible in red.
	Who works on Veloce. Who is responsible for chapter.

	Chapter 1
	Introduction
	Marek Perkowski
	none
	
	Completed by Perkowski in June
	No
Perkowski

	Chapter 2
	Oracles for SAT, Petrick Function and similar problems
	Marek Perkowski, Sravya, and Sazzad Hossain
	
	
	Completed by Perkowski in April
	Sravya

	Chapter 3
	Basic blocks and how to use Veloce to verify them
	Haera Chung, Yaswanath Naraharisetti, Vamsi Parasa, Marek Perkowski
	
	
	
	Yaswanath Narahariseti, Vamsi Parasa

	Chapter 4
	Oracle for SEND+MORE=MONEY Problem
	Marek Perkowski and Yaswanath Naraharisetti
	VHDL
	Homework 1
	Completed by Perkowski in April Gunavant Chaudhari to integrate
	Yaswanath Naraharisetti

	Chapter 5
new
	Oracle for Fixed Polarity Reed-Muller Transform and oracles for and Robotics
	Marek Perkowski and Gunavant Chaudhari
	
	
	Completed by Perkowski in April Gunavant Chaudhari to integrate
	Gunavant Chaudhari

sravya

	Chapter 6
	Universal Search Algorithm HSPS
	Marek Perkowski
	VHDL
	M.S. Thesis of Anvesh Kodumuri on Cube Calculus Machine
	Completed by Perkowski in April
Needs to add more on Evolutionary and Quantum Inspired components of the algorithm
	Anvesh Kodumuri

	Chapter 7
	Simple and Advanced Oracles for Graph Coloring
	Marek Perkowski and Gunavant Chaudhari
	
	M.S. Thesis of Gunavant Chaudhari on Oracle Accelerators
	Gunavant Chaudhari to integrate
	Gunavant Chaudhari

	Chapter 8
	Oracle for Longest Path, Shortest Path, Traveling Salesman and similar graph Problem, Hamilton and Euler path, stable marriage problem
	Anvesh Kodumuri
	VHDL
	M.S. Thesis of Anvesh Kodumuri on Cube Calculus Machine
	Gunavant Chaudhari to integrate
	Anvesh Kodumuri

	Chapter 9
	Oracles for Missionaires-and-Cannibals, Man-Wolf-Goat-and-Cabbage and similar logic puzzles
	 Gunavant Chaudhari and Marek Perkowski
	VHDL
	Homework 1
	Gunavant Chaudhari to integrate
	Gunavant Chaudhari

	Chapter 10
New available
	Oracle for generalized Sudoku, combinational, sequential and asynchronous
	Aditya Bhutada, Edison Tsai
Korean student from 574 class Fall 2010
	Verilog
	M.S. Thesis of Aditya Bhutada on theatrical robot
	Gunavant Chaudhari to integrate
	Aditya Bhutada

	Chapter11
New available
	Oracle for Face Recognition
	Aditya Bhutada
	Verilog
	Homework 1

M.S. Thesis of Aditya Bhutada on theatrical robot
	Gunavant Chaudhari to integrate
	Aditya Bhutada

	Chapter 12 new available
	Oracle for designing Error Correcting Codes
	Marek Perkowski and Gunavant Chaudhari
	VHDL
	
	Gunavant Chaudhari to integrate
	Sravya

	Chapter 13 new available
	 Oracles for Walsh and Haar Spectral Transforms
	Marek Perkowski and Gunavant Chaudhari
	VHDL
	
	Gunavant Chaudhari to integrate
	Sravya

	Chapter 14
	Testing various oracles with various search strategies on Veloce
	Gunavant Chaudhari, Vamsi Parasa, Yaswanath Naraharisetti, and Haera Chung
	
	
	Gunavant Chaudhari to integrate
	

	Chapter 15
	Cube Calculus Theory
	Vamsi Parasa, Yaswanath Naraharisetti
	No language
	Ph.D. Thesis of Vamsi Parasa on Grover Oracles for Quantum Computing
	Vamsi Parasa to integrate
	

	Chapter 16
	Simplified Cube Calculus Machine
	American group with Alberto Pation Fall 2010 class
	
	
	
	

	Chapter 17
	General Cube Calculus Machine Design
	Vamsi Parasa, Yaswanath Naraharisetti
	No language
	
	Vamsi Parasa to integrate
	Vamsi Parasa, Yaswanath Naraharisetti

	UPDATE CHAPTER NUMBERS FROM YOUR PART (CCM)
	
	
	
	
	
	

	Chapter 18 new
	Detailed Design of CCM
	Vamsi Parasa, Yaswanath Naraharisetti
	VHDL
	
	Vamsi Parasa to integrate
	Vamsi Parasa, Yaswanath Naraharisetti

	Chapter 19
	Testing and Verifying the Cube Calculus Machine on Veloce
	Vamsi Parasa, Yaswanath Naraharisetti, Haera Chung and all
	
	THIS PART REQUIRES CHANGE OF NUMBERINGS
	Vamsi Parasa to integrate
	

	
	
	Up to this point must be completed in Summer 2010
	
	
	
	

	Chapter 19
	SOP minimization problem on CCM
	Marek Perkowski
	CCM assembly
	Ph.D. Thesis of Vinay Bhardwaj on Robot vision
	
	

	Chapter 20
	Prime Generation on CCM
	Marek Perkowski
	CCM assembly
	
	Vamsi Parasa to integrate
	

	Chapter 21
	ESOP minimization problem on CCM
	Marek Perkowski , Gunavant Chaudhari and somebody from CCM group
	CCM assembly
	
	
	

	Chapter 22
	Machine Learning on CCM
	Marek Perkowski
	CCM assembly
	Ph.D. Thesis of Vinay Bhardwaj on robot vision
	
	

	Chapter 23
	Robot Vision on CCM
	Marek Perkowski
	CCM assembly
	Ph.D. Thesis of Vinay Bhardwaj on robot vision
	
	

	Chapter 24
	Conclusions
	Marek Perkowski
	no
	
	
	

	
	intersection
	supercube
	consensus
	prime
	exorlink
	Disjoint sharp
	Non-disjoint sharp
	cofactor
	Cartesian Product
	Minterm/maxterm comparison
	

	SOP minimization by graph coloring
	x
	x
	
	
	
	
	
	
	
	
	

	ESOP minimization
	
	
	
	x
	x
	
	
	
	
	
	

	Generation of all primes for one minterm
	
	
	
	
	
	
	
	
	
	X
	

	Generation of all primes
	
	
	x
	
	
	
	
	
	
	
	

	Automatic theorem proving by consensus/unification
	
	
	x
	
	
	
	
	
	
	
	

	Maximum clique and max independent set
	x
	
	
	
	
	
	
	
	
	
	

	tautology
	
	
	
	
	
	x
	x
	
	
	
	

	Satisfiability POS
	
	
	
	
	
	x
	x
	
	
	
	

	Satisfiability Product of EXOR sums
	
	
	
	
	
	
	
	
	
	
	

	Satisfiability ESOP
	
	
	
	
	
	
	
	
	
	
	

	Satisfiability SOP
	
	
	
	
	
	
	
	
	
	
	

	complementation
	
	
	
	
	
	I #d F
	1 # F
	
	
	
	

	Learning by SOP
	
	
	
	
	
	
	
	
	
	
	

	Learning by POS
	
	
	
	
	
	
	
	
	
	
	

	Learning by FPRM
	
	
	
	
	
	
	
	
	
	
	

	Learning by GRM
	
	
	
	
	
	
	
	
	
	
	

	Learning by ESOP
	
	
	
	
	
	
	
	
	
	
	

	AC Decomposition
	
	
	
	
	
	
	
	
	
	
	

	Bi-decomposition
	
	
	
	
	
	
	
	
	
	
	

	Create KFDD
	
	
	
	
	
	
	
	
	
	
	

	Create BDD
	
	
	
	
	
	
	
	
	
	
	

	Graph Coloring
	
	
	
	
	
	
	
	
	
	
	

CUBE CALCULUS MACHINE PROBLEMS
	Type of Oracle Problem
	 Problem
	Applications
	 References
	 Total sum
	 Path existence in graph
	 Edges relations satisfaction
	 Node relation satisfaction
	 Three node satisfying relation
	
	
	

	Problems based on node pair relations
	Graph Coloring proper
	Robotics

Logic synthesis

Machine learning
	SOP minimization

ESOP minimization
	
	
	
	
	
	
	
	

	
	Graph coloring compatible
	Ashenhurst-Curtis decomposition
	
	
	
	
	
	
	
	
	

	 Distance Problems
	Error Correcting Code design problem based on Hamming Distance
	ECC,

QECC
	
	
	
	
	
	
	
	
	

	
	Robot location Problem of Aditya based on Manhattan Distance, Euclidean Distance or any other distance
	
	
	
	
	
	
	
	
	
	

	Problems based on paths and loops
	Shortest Path through all edges
	
	
	
	
	
	
	
	
	
	

	
	Shortest Path from node to node through a subset of all edges
	
	
	
	
	
	
	
	
	
	

	
	Longest Path through all edges
	
	
	
	
	
	
	
	
	
	

	
	Shortest Path through all nodes
	
	
	
	
	
	
	
	
	
	

	
	Longest Path through all nodes
	
	
	
	
	
	
	
	
	
	

	
	Path through all nodes with given length K
	
	
	
	
	
	
	
	
	
	

	
	Traveling Salesman loop with shortest path
	
	
	
	
	
	
	
	
	
	

	
	Traveling Salesman loop with longest path
	
	
	
	
	
	
	
	
	
	

	
	Euler Path
	
	
	
	
	
	
	
	
	
	

	
	Hamilton Path
	
	
	
	
	
	
	
	
	
	

	Games based on paths
	Man, wolf, goat and cabbage
	
	
	
	
	
	
	
	
	
	

	
	Missionaires and cannibales
	
	
	
	
	
	
	
	
	
	

	
	Game of 15
	
	
	
	
	
	
	
	
	
	

	Spanning trees and similar
	Spanning tree
	
	
	
	
	
	
	
	
	
	

	
	 Minimal Spanning tree
	
	
	
	
	
	
	
	
	
	

	
	 Maximal Spanning tree
	
	
	
	
	
	
	
	
	
	

	Decision Functions
	Petrick Function for unate covering
	
	
	
	
	
	
	
	
	
	

	
	Binate covering
	
	
	
	
	
	
	
	
	
	

	
	Helliwell Function for even-odd covering
	
	
	
	
	
	
	
	
	
	

	
	Maximum clique and max independent set
	
	
	
	
	
	
	
	
	
	

	SAT and Tautology
	SAT POS
	
	
	
	
	
	
	
	
	
	

	
	SAT ESOP
	
	
	
	
	
	
	
	
	
	

	
	SAT SOP
	
	
	
	
	
	
	
	
	
	

	
	SAT Product of Exor Sums
	
	
	
	
	
	
	
	
	
	

	
	Tautology
	
	
	
	
	
	
	
	
	
	

	Cryptographic Puzzles
	SEND+MORE = MONEY
	
	
	
	
	
	
	
	
	
	

	
	TWO+RYE=BABY

TWO+TWO=FOUR
	
	
	
	
	
	
	
	
	
	

	
	8 quins

4 quins
	Bizam and Herzeg
	
	
	
	
	
	
	
	
	

	SUDOKU problem
	2 dimensional

3 dimensional
	Dwave

Basry Yasodha
	
	
	
	
	
	
	
	
	

	Machine Learning from Features
	Beautiful and Ugly faces
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

 Processor A

 C4=M

 C4 =1

 M=1

To Processor B as a global Information

 Processor B

�

�

�

 S=9

 O=0

�

To Processor C as a global

Information

 Processor B

�

�

�

 C2=1

 S€(0,1,9)

�

To Processor D as a global

Information

 Processor D

�

�

�

�

To Processor E as a global

Information

 Processor B

�

�

�

�

Final Solution

[Type text]

12

_1253483449.vsd
≠

≠

≠

a1

c1

a2

a3

b1

b2

b3

c2

c3

_1338975751.vsd
a

b

c

d

_1338976946.vsd
Text

Cost Of
Solution

Oracle with direct feedback

Pattern
Generator

Simple
Oracle

Storee Best
Solution

_1359311470.vsd
Text

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

There are 5 processor A B C D and E

B

A

C

D

E

Processor A is passing its information to Processor B which serve as global information to processsor C

Processor A gets some global information

Final Solution

_1338976747.vsd
Text

Store Best result

Cost Of
Solution

Oracle with cost function as a feedback

Pattern
Generator

Simple
Oracle

Storee Best
Solution

_1288029378.vsd

_1253035433.vsd
1

3

3

a

b

≠

(a ≠ b)

_1253038340.vsd
red

blue

yellow

1

2

3

_1253032906.vsd
red

1

2

5

4

3

red

blue

blue

yellow

