Chapter 23
Methodology to Write Searching Programs
Marek Perkowski

23.1. Introduction. Problem-Solving based on Search
This chapter presents search ideas related to logic synthesis, AND/EXOR logic, reversible, and basic CSP problems. We will present the methodology to create tree search programs. These programs may be sequential or parallel, oracle based, systolic or CCM based. First, the problem-solving model will be introduced, which will next be used to explain the experiments that are executed on it by both the developer and the user. Some details of this chapter can be fully understood by the reader only after he familiarizes himself with our algorithms and oracles in chapters 3 – 6 and CCM concepts  from chapters 16 – 22. 
23.1.  Problem Solving Model
Here we will present a new model for developing more or less systematically new CSP programs for fundamental applications. This model starts from the most general problem formulation, next the model   proceeds to selecting and creating new search strategy and finally writing the code.

Problem Formulation
1. The first task of the code-developer/system-creator/oracle-builder is to formulate a given problem that is to be solved. The problem is understood according to the definition of the problem, given in section 23.2. The creator should first think what are the types of given objects that he has to deal with while solving the problem. This has meaning for both standard software and creation of oracle. These object may be sets, lists, pairs and tuples, DAGs, general graphs, functions, in particular one-to-one-mappings, etc. He has to perform similar analysis of the objects that are sought by the program. Some typical objects were given in chapter 4. If the objects  are not standard objects of the system that are familiar to the system builder and for instance used in chapters 2, 3, 6, 7, 8, 9, they should be defined by him. During the work on this book many new objects were created in the first stages but with time we found that we already have most object s that we need. Sometimes the availability of objects, procedures on them or oracles/oracle parts makes it convenient for the developer to  reformulate the problem in such a way that it will be possible to use the system's standard objects together with corresponding parts of solutions.
2. The developer should describe the problem  conditions using these structures. He should use Boolean functions, arithmetic functions and relational predicates when it is possible. Set theoretical and list operations are also a good choice. This allows to quickly build oracle parts that correspond to them. Actually, we developed already many of these blocks in chapter 7. 
3. He or she should also define the cost function, if it exists. He considers how the problem conditions and the constraint conditions can be decomposed or reformulated.

4. General search can be used to two types of problems, decision and optimization problems. In both problem types there is “condition checking” part. In optimization problems the developer has also to define the cost function. This function is called also objective function, fitness function, quality functions and so on in literature. In short, this function evaluates some partial or final cost of the solution or its part. In the graph coloring problem it is the number of nodes used so far or total number of colors. In set covering it is the number of literals in primes selected so far or the number of these primes. Previous chapters gave many other examples of cost functions. Oracle in chapter 2 did not have any cost function but the graph coloring problem can be easily expanded by adding the cost function “circuit” (or subroutine) that calculates the number of colors in the graph. As we have seen in chapter 10, hardware realization of counting the number of colors is quite different from software, because in software we can create as many as we want auxiliary variables and use them as temporary memory, while in hardware oracle all intermediate data must be combinational signals that are forwarded from left to right and the access to them is geometrically limited. Thus, although the low-level design method of calculating cost function is different in classical and parallel computer, the principle what we want to calculate as the cost is on a deeper level of algorithm creation and stays the same. This is the level, quite abstract, that we are interested in at this stage of explanation of our general search ideas.

5. In many oracles we have several conditions. For instance in the graph coloring example in chapter 2 we checked if any two neighbor nodes have different codes. In some generalization of graph coloring we can check some other condition, for instance if the encodings (colorings) of nodes are in some type of Hamming Distance, for instance larger than 3. This can be used in the design of error correction codes. In yet another variant there may be two relations that we want to check on nodes. For instance the nodes may have costs (gold color is more expensive than red) and we want to be sure that the total number of nodes colored in gold is smaller than 6. Concluding, when we check these conditions we have several ways of designing oracles or checking them in software. We can do this together and separately, in one or more blocks. This affects both the speed of software and hardware and also the size of hardware.
6. While in hardware all conditions are in any case AND-ed and their order is not important, in software the order is important as the condition that is likely to be not satisfied should be checked first as to reduce the search. Then the developer has also to determine the order in which the conditions should be checked. 
· Let us assume, for example, that a set of objects being generated by generator G that satisfy the problem conditions C1 and C2 need to be found.

· One of the methods would be to generate the set S1 out of all the objects generated by G that meet the condition C1 first, and then to test the S1 objects for the satisfaction of condition C2. 

· The procedure in another method would be identical except that the conditions would be reversed. Subsequently, the objects could be generated one at a time using generator G and both conditions checked for each generated object. In this case, we also have to decide on the order of checking the conditions. 

· Finally, another generator that would generate only those objects generated by G that pass the C1 test, etc. can be constructed.

Concluding, very many different methods can be derived from the direct problem formulation based on the methodology provided in this and previous chapter and illustrated more or less  formally in nearly all other chapters of this book. In both cases we will try to demonstrate how the developer determines which combination of method, data structure and strategy is best. In some cases he should create parameterized versions to leave the final decisions to the user of the system for its testing on numerous benchmarks.
Our general methodology is sometimes easier to explain in a general, problem-independent formulation and sometimes in the relation to one concrete problem like SAT, graph coloring or ESOP minimization. We will be following both these explanation/presentation styles. 
23.2. Creating the Method to Solve a Problem
The developer should solve by hand, possibly using Karnaugh Maps, Exor Maps, Unitary matrices (or any other formalism introduced in chapters 2, 3, 5 and 6) as many problem instances as necessary to create the algorithm. When he already understands the problem structure well, he can subsequently move on to the stage of formulating the method to solve the problem. It should be pointed out that the problem and  the method to solve it are entirely different items. The ESOP minimization problem can be for instance solved by searching using “more ones than zeros” heuristic blindly from large groups, or by combining small disjoint cubes in a bottom-up fashion. These methods lead to different data structures, oracles and strategies, but all consider the same problem with the same set of specific properties that should be used in any of the methods.  While formulating the method to solve the problem the developer should take into account the similarities of problems  and the possibilities of reducing problems to other problems.

It is very helpful if he intentionally and systematically follows the methodology answering himself certain sequences of 
questions based on his (or in this case the PSU group) experience. The examples of these questions are given below:

1. Is this an unate covering problem? If not, can this problem be reduced to a unate covering problem? Is this an even-odd covering problem? If not, can it be reduced to such problem?
2. Is this a binate covering problem?  If not, can it be reduced? (reduction should be considered in each problem below, so we will skip this point).
3. Is this an ordering problem? What is the ordering relation? Can we formulate another ordering relation (example can be a modification to MMD algorithm by Stedman [ref])
4. Is this a problem that can be expressed by polarity search? Is it a standard FPRM-like polarity or some more general type of polarity?

5. Is this problem reducible to a Linear Independence Problem (chapter 8)? If yes, what are the basic functions and how to represent them?

6. Is this a constraint-satisfaction problem? Analogy to graph coloring is useful at first. Later on the developer should consult the list of constraint satisfaction problems from chapter 12 and examples from chapter 11. The set of constraint satisfaction problems is very large and  it is very well suited to the presented methodology for both classical and parallel search algorithms.
7. Is this a local optimization problem based on generating the best sequence of operators? Chapter 11 has example of such path problems. Another example was given in chapter 2 where we selected the best sequence of transformations in our algebras to minimize the circuit.
8. Is this a search for certain path in some graph? Euler, Hamilton, shortest, longest or traveling salesman, as well as Man, Wolf, Goat and Cabbage Puzzle may be used as powerful metaphors of path problems. 
9. Is this a partitioning problem? Logic and layout problems give many examples of partitioning.
10. Is this a SAT or generalized SAT problem? 

11. Is this an encoding problem? Is this a mapping problem? Encoding and assignment problems are special cases of mapping problems.
12. Is this a subset selection problem? The subset selection problem is another special case of the mapping problem.

13. Is this a variable ordering problem?

14. Is this a problem of finding one of linearly independent expansions?

15. Is this problem related to some special type of functions such as affine, linear, unate, balanced, conservative, symmetric, or any classification of functions such as NPN?
The similarities that exist between problems of our interest and the reductions that exist between families of such problems offer an experienced developer many opportunities. These possibilities include reusing oracles, parts of oracles, blocks, predicates, cost functions or any already existing subroutines of the system for new problems. A number of useful reductions is presented, for instance, in [KARP72]. Other reductions for digital design problems are discussed [GIMPEL67, NGUYEN87, PERKOWSKI86, WORKSHOP87] and [PERKOWSKI87].

When the developer considers the combinatorial problems that are useful for his design problem, he  specifies whether the new problem is  isomorphic, similar, or  reducible to one of the familiar problems. If such a relation between problems is found, this relation can be used, for example, in one of the following general search-related methods/heuristics:
1. Restricting the solution space (for instance by knowing some constraint on size of mapping in an oracle).
2. Constructing the generator for this space. The concept of a generator is useful  both in software and hardware.

3. Proving theorems related to cutting off or to equivalences in the tree. Such theorems are related to the size of the space and not to the way how this space is searched. They are thus useful for both serial and parallel, classical and parallel searches.

4. Detecting and utilizing symmetries. Again all these methods are general and not related to particular search method. There is another set of heuristics/tricks related to symmetries that is search-type specific. We will discuss both these symmetry types in the book.

5. Creating the quality functions and cost functions, in software and hardware. Parts of this problem are problem- and search-type specific and some other are not.

6. Specifying relations on descriptors or nodes in the tree. In hardware the circuits costs of  various relation realization may differ considerably.

7. Specifying other method conditions.

8. In some problems, only one similarity exists between two problems. It may be a cost function, the generator of the space, the conditions, the operators. Using this single similarity, the user can made an attempt to re-formulate the problem in such a way that the number of similarities is increased. 
9. If there are no similarities and the problem cannot be reduced to some well-known problem, an attempt at decomposing the problem into well-known sub-problems can be made. In this way, part of the problems, or perhaps all of them, should be isomorphic, similar or reducible to one of the well-known problems.
10. Often, it is also useful to find a different problem that is simpler than the original problem, and for which one of the techniques mentioned above can be applied. 
11. Finally, such problems can be transformed by modifying new problem conditions, or by adding new problem conditions, in order to conform with one of the previously mentioned cases. This can lead to another problem with respect to the specified earlier definition of the problem.  This happens quite often, because actual problems are not precisely formulated. 
The successful application of the above techniques can simplify the selection of the generators and the conditions of the solution space, and make it easier to work with the prototype development later on.

Until now, we used most of these techniques in one or another form in development, but we did not yet analyze them systematically. The final book, when the numerical results will be ready, will analyze all (or at least more than now) of these techniques systematically and quantitatively.
23.3. Precise Definition of the algorithm
The next step of the methodology is to formulate precisely, what is the   tree-search algorithm. The existing specific "point" subroutines, such as Graph Coloring or Boolean Operations on logic functions, determine certain  space of methods. The task of the software/hardware developer is to determine how to link them in the most efficient way. Therefore, certain subspace in the space of methods should be systematically investigated.

All of the steps taken are intended to define the method that is computationally efficient.  Three basic directives result from the above general assumption:

1. The solution space needs to be limited by constructing a good tree generator. (root, constraints, generations rules, descriptors of operators, etc).
2. The best possible way of extending the nodes in this space (order of generation) should be found.
3. The processing time and the memory used for each node should be decreased. (this relates to both hardware and software variants, parallel and serial).
The developer complies with these directives by specifying the corresponding generators and conditions for the solution space, and by the selection of appropriate strategies. Therefore, six possible cases of improving the tree search exist for the developer. They are presented in Table from Figure 23.1.
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Figure 23.1.  Six Possible Cases to Improve the Tree Search Methods
23.3.1. Discussion of Methods to Increase the Search Efficiency
Six methods to increase the search efficiency are outlined in detail below. Bear in mind that they are all mutually related.

CASE 23.3.1.1. M1.  
In each problem, the developer should  focus first on maximally decreasing the solution space, by specifying the corresponding generators and conditions. To achieve this, the developer should consider the way in which the states need to be represented, so as to cut-off and check the conditions in these states in the most efficient manner.
1. What should the initial node be? 
2. What the coordinates should be, the operators, the descriptors?
3. What should the cost function be? How calculated? Can we define an additive cost function? The additive cost function should be formulated in such a way that it can be used for cutting off.  The function can be defined in a more or less precise way, thus the final function creation may be deferred, not earlier than some experiments with the search are performed. More precise function may take more to calculate, so may be search should be done once with rough and next with precise functions when the search space is limited?
EXOR logic problems such as PPRM for incomplete functions, FPRM, GRM, ESOP, affine functions, reversible functions give many examples of formulating cost functions and constraints. This was illustrated in chapters 6, 7, 8 and 10 - 12. More explanations will be added on these issues to the final text of this book.
While maintaining a completeness of the strategy, the developer should focus on proving the theorems related to limiting the space.

These can be of the following types.
· 23.3.1.1.1. The theorems to determine the solution space. In some problems it can be proven that certain space S' exists, S'
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 S'  (SS is a set of solutions). The theorems concerned with determining the solution space can be of two types. They either lead to a space-constructing mechanism that is built into a special tree generator, or they lead to new  constraint conditions that are tested for nodes or descriptors. The developer should analyze both the “size” and the “shape” of the space. The shape of the space is tough to define precisely but it is illustrated in many examples of this book, especially in chapters 5 – 12.
· 23.3.1.1.2. The theorems about the limit parameters that specify the solution tree. In some problems, such parameters as SDmax or CFmin min can be determined. Let us assume, for example, that a single, minimal coloring of a planar graph needs to be found, and it was shown that no solution of cost 3 exists, because a clique with 4 nodes exists in the graph. It is a known mathematical fact that a planar graph can be colored using 4 colors. Hence we set the control parameter CFmin min = 4 and when a solution with 4 colors is found, the algorithm terminates.
· 23.3.1.1.3. Theorems about relations on descriptors.  Often, relations of subordinance, dominance, equivalence (local and global), inconsistency, symmetry, or implication, can be found and proven. The utilization of analogies of problems is useful (for example, [PERKOWSKI82] uses analogies to efficiently solve highly cyclic covering problems). It needs to be ascertained whether the relations on the descriptors are independent. Also, the developer should consider the possibility of checking only some of the subsets of those relations. 
· 23.3.1.1.4. Theorems about the relations between the tree nodes.  The relations of identity, isomorphism relations, symmetries, and the similarity between the nodes in the solution tree should be considered, [PERKOWSKI82].
· 23.3.1.1.5. Theorems about the construction of generators.  The possibility of moving the constraint conditions to the tree generator itself should be taken into consideration. Instead of first generating nodes and later removing them, fewer nodes would be generated in this approach.  If, for example, the subset of a certain set is sought that does not fulfill a certain restricting condition W, then instead of generating the tree of type T1 and checking the condition W in the nodes of the tree, it is more reasonable to construct a more efficient generator that would only generate the subsets of the set that do not meet condition W. However, this may be a more time consuming way. Therefore, trade-offs must be thoroughly considered by the developer. These aspects look somewhat differently while creating software and hardware for reasons specified earlier, but they are in essence similar when looking from some deeper perspective of creating systematic search strategies.
CASE 23.3.1.2. M2.  
In case M2 from Figure 23.1 one contemplates which of the elements in the state space has to correspond to the initial node of the solution space. In the problems concerned with finding a path, for instance, the search can be performed from the final situation to the initial situation. The components discussed in the types 3, 4 and 5 above also influence the search method as well as the ordering of the auxiliary sets (see example in [PERKOWSKI85]).  In the Subset Selecting Problem (for instance a set of bound variables, or maximum clique) the developer can start, as the starting  point, from the largest, the middle, or the smallest element of the lattice of subsets.

CASE 23.3.1.3. M3.  
In case M3 from Figure 23.1 the processing time can also be decreased for the following reasons

· 23.3.1.3.a. Selection of the corresponding order of checking the problem conditions and constraint conditions while generating new nodes. Speed is also related to specifying the order in which the coordinates of the state vector are calculated. The problem conditions or constraint conditions can either be calculated jointly or the conditions can be decomposed to several conditions that are calculated in order. These are calculated intermittently using the values of some coordinates to allow for backtracking sooner. The various placement possibilities are considered along with the decomposition of conditions and the influence that they have on cases M1 and M3.
·  23.3.1.3.b. Formulation of weaker relations on descriptors (which is in opposition to the directive related to limiting the solution space). Let us consider the following example as an illustration. It could be possible to generate a small tree by applying strong relations on descriptors, but the search could take a longer time, because the relations would be checked slower. On the other hand, replacing this strategy with one that applies weaker relations that are checked rapidly produces a larger tree, the nodes in this tree are extended with in a reduced time. The total processing time of some problems can, therefore, be decreased if no memory limitation exists. 
·    23.3.1.3.c.  Simplification of the quality functions (which is opposed to the  directives resulting from cases M4 and M5 from Figure 23.1, which will be presented below). The argumentation for this case is similar to that in case 23.3.1.3.b above.
·  23.3.1.3.d.  Specification of the type of nodes that are suitable to be checked in the relations on nodes (it is sometimes sufficient, for example, to investigate only the nodes  that have the same depth, or that are in the same branch of the tree as the current node N).
·   23.3.1.3.e.   Selection  of the  additively calculated cost function and quality function in such a way that they are both mutually related. Additively calculated is the function that is non-decreasing from the root to leafs of the tree and that satisfies certain conditions.  See discussion in [NILSSON71, PERKOWSKI82, PERKOWSKI85].
·    23.3.1.3.f.  Selection of the corresponding data structures of the lowest levels and the auxiliary functions influences both the processing time and the memory size. In some problems it is reasonable to represent sets as the lists or vectors, and in other problems to represent them as binary words in which each set element corresponds to one bit of the computer word. 

CASE 23.4.4 M4.  
In case M4 from Figure 23.1 the solution space can be limited by the selection of the strategy.  In case of complete strategies, the only possibility for such a selection is the application of the cutting-off principle that is based on the value of the cost function. The problem is this way reduced to Case M5 below, in order to find the quasi-optimal solution as quickly as possible. The cutting-off, however, can result from the selection of some local strategy parameter values for incomplete strategies. 

CASE 23.4.4. M5.  
In case M5 from Figure 23.1, the developer needs to consider whether some of the basic strategies match the specifics of the problem. The values of each strategy parameter, different combinations of parameter values, and the quality functions for states and operators should be considered. The possibility and the rationality of focusing on matching the quality function to the cost function should be analyzed, so that they will satisfy the special properties mentioned previously. When the  characteristic of the problem is known, it should be determined which of the strategies discussed is the best fit to the specifics of the problem.  Applying the subroutines for ordering and selection  should be considered by the developer, and next by the user, while selecting the corresponding strategy parameters. 

Case 23.4.4. M6.  
If there is not enough memory for larger data, one should consider the following possibilities:

· A. Changing the strategy (out of the complete strategies, the best is the Depth-First Strategy with One Child). If this is not sufficient, the Random search strategy should be applied, or the developer should use the disk memory for part of the tree.
· B.  Increasing the number and the power of the cutting-off rules. These rules are controlled by the strategy parameters. Adding more constraining rules, and making them more powerful can lead to losing the completeness of the method.  Such and approach can also reduce the calculation time.

With respect to the cases shown above, the developer can expand the concept by experimenting with the program from the simplest to the more complex problem descriptions, and from the standard strategies to those especially created strategies for the problem. For instance, these non-standard strategies can be made by replacing the standard parameters and sections with the non-standard parameter values and code sections. Analysis of some of the above cases is important not only with respect to the efficiency, but is also very useful for the clarity of the results and the required interface to other programs.  For instance, if the complete tree is being extended, the strategy does not affect the efficiency. However, the selection of the strategy is not irrelevant

when a certain order of generating the objects is mandatory or expected.

The methodology outlined above has allowed us to create several classical logic design algorithms in the past [LEE84,NGUYEN87,PERKOWSKI76a,PERKOWSKI85,PERKOWSKI87,43,46]. These include state minimization or various PLA minimization algorithms created by formal transformations of space generators and conditions of the direct problem description. Several new algorithm variants for these problems have also been derived  using the same methodology.

23.5.   Experimenting with Directives by the Developer, and by the User
After having introduced in previous subsections the methodology of creating search programs,

we will discuss now the manner in which the tree searching programs can be improved upon, by experimenting with orthogonal changes in various description sections. This has already been illustrated to some extent in section 23.3.1. These principles will be further illustrated using several examples of problem descriptions.

The advantage of the state-space methods is the natural manner in which they are described and their similarity to the human problem-solving techniques. This description allows for the introduction of various  heuristic rules to the state-space generation process that are direct and easy to modify. The prototype programs created as recommended in previous sections are flexible and adaptable and can be modified by replacing the section codes in problem descriptions, problem and solution conditions, the search strategy parameters, and other sections. This can be done also by adding new classes derived from previous classes. The modification process is  orthogonal  and  incremental  in nature,  which means that the changes in various segments of the code can be done separately, and one at a time. They exhaust the space of search methods.

In final text of the book more examples will be added, all related to problems discussed and solved in this book. 
23.5.1. Heuristics
 A "heuristic" is any method, technique, or directive, that, in general, leads to a solution.  We can only assume, with a certain degree of plausibility, that a given heuristic directive produces the desired results. In our case, the heuristics are expressed as subroutines, program segments, parameter segments, or computational mechanisms that expedite the generation of the optimal solution  (or quasioptimal solution, if so desired) and even enables the developer to find a solution that would otherwise have been impossible. 

If a heuristic directive is proven to lead to optimal solutions all of the time, it can be classified as a  methodic directive  and would no longer be referred to as a heuristic. However, it is usually necessary to have both types of directives because, without directives, the enormously large state-space would make finding solutions impossible. The methodic directives are based on the strict and formal analysis. They can relate to certain parameters that limit the solution space, the parameters that order the descriptors in the solution space nodes, or to the parameters that order such nodes themselves in the OPEN list. The solution method is complete when both the tree generator and the strategy are complete. The search efficiency can be increased through independent attempts to ease the condition governing the method or the strategy completness. This independence is advantageous when experimenting with variants of the program and with various sizes of data for it.

The  heuristic directives considered here are divided into three categories:
1. Those that correspond to the manner in which the problem is formulated. These directives determine the state-space. The introduction of additional problem conditions (or reasonably motivated constraints) can essentially reduce the size of the state-space.
2. Those that are related to the manner in which the problem is represented in the solution space.
3. Those that organize the search process.  

When it is not possible or reasonable to specify a complete solution space, we look for  the heuristic directives that attempt to achieve the same goals as the methodic directives that were described in section 23.3.1. Each of the cases M1 - M6 has its counterparts in heuristic directives.

The categorization of any particular heuristic is not unique. It is often useful, when seeking heuristic directives, to rely on some analogies of the problems, and to use the analogies of the methods applied in their solutions. The existence and type of the heuristic directives influences the speed and the quality of the solutions generated. The developer should look for the best trade-offs. An analysis of various variants of a program written for a single application reveals the presented already trade-offs between the enumeration and the knowledge-based reasoning. The initial, direct problem description uses only the problem conditions. However, the initial program needs not be the most efficient one, and usually it is not. It is sufficient if the initial program works correctly and as specified. Such program is obtained quickly, so that more experience is gained by the developer working with this program. A very large tree is generated and displayed.  The developer can analyze the printouts or screens of the large trees and suggest changes based on redundancies, symmetries and other information found in these trees. The obviously redundant or non-optimal sub-trees are noted. Usually, the analysis as to why they were generated, leads the developer to the introduction of new problem conditions. Often, it leads also to the formulation of new heuristic directives, and sometimes also to the creation and proving of new methodic directives. Incremental changes lead to new variants. The behavior and speed of them are analyzed one by one by the developer, so that the optimal trade-offs between the speed and the quality of results will be found. The limitation of the search can sometimes go too far - solutions are lost or the search time increases because the manner in which the partial solutions are evaluated becomes too complex. In such cases, the developer should withdraw incrementally from some of his previous decisions.  In some other cases, the developer initially "over-constrains" the method description. Therefore, he will have next to experiment with several sets of less constrained descriptions.

23.5.2. The Process of Fast Prototyping
Constructing the program is a complex process in which three phases are iterated: 

· problem definition,

· construction of the algorithm,

· coding of the algorithm.

Coding itself is not the most time consuming task of programming. More time is spent on the problem formulation, testing of variants, debugging, trying various program segments and modifications in the data structure, testing various controls of programs, analyzing the usefulness of

heuristic directives, preparing and modifying documentation, etc. Usually the algorithm is initially not known. It is the goal of this chapter to facilitate the task of finding the correct algorithm and implementing the program. Experimenting with the program towards this end should be simplified by planning and keeping each individual phase independent from other phases, as  much as possible.

In order to solve a problem, when aided by the computer, the developer must  have the knowledge required in the three phases outlined above. Since these phases of the design process, to varying degrees, are contained in  the program experimentation process, the developer needs to keep in mind the aspects of the problem and method description already mentioned. The entire prototype development should consist of the sequence of the vertical transformations described in section  23.3.1 and the horizontal transformations from this section, intermingled with experimental variant evaluations. People learn heuristic directives with the experience of solving a great number of problems that are repetitive in nature. In fact, our methodology postulates that  such learning is facilitated and expedited by the human problem solver's use of the appropriate programmed computer, and not only  through the use of pencil and paper.
Observing human techniques of solving problems we see that people apply several intuitive hypotheses that are often informal analogies to the cutting-off methods of our more formal search model. These hypotheses are often formed based on induction from observing examples of how the program behaves. Sometimes, with new methods, the representation of the problem is also modified or even totally changed. These hypotheses are often not true, not always true, or not sufficiently founded. They play a very fundamental role, however, in the trial-and-error process of constructing the final version of the prototype program. The methodology proposed here has the aim of  improving the fundamental structure of human heuristics by providing  better proofs, based on the model of solution space.
We believe that such an experimental search environment helps to design algorithms that are experimental in nature and must, therefore, be done in an experimental manner. We observed several times the dogmatic tendencies with which the students, engineers, CSP software developers and even researchers view algorithms out of textbooks and research papers. Creating an algorithm systematically and playing with many variants of the algorithm crushes these doctrinaire approaches of them, and makes them more critical and also more creative. The proposed methodology encourages to look for new ways of solving problems.

A reader may ask - "is it worthy to analyze all these problems that carefully, and with such a detail? How much improvement will it bring practically to the problem being solved? " In our opinion, this analysis may prove very useful, since it is a result of tests on many programs, that even small changes in strategies can lead to dramatic changes in the solution cost, the decomposition times, and their mutual trade-offs(see section [ref] and [ref]).
In final text of the book we will illustrate some of these ideas on more  practical examples. In addition,  binate covering, and even-odd covering examples will be given.
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