CHAPTER 3
COMBINATORIAL OBJECTS AND THEIR GENERATORS
3.1. INTRODUCTION. COMBINATORIAL OBJECTS AND SEARCH.

Often we have to search in a space of some combinatorial objects such as subsets of a set, combinations or permutations. The ideas presented in this chapter  apply to both software and hardware search. 
There are several approaches to find solutions in combinational problems. One group of approaches are based on tree searching. In other methods the objects are generated in a linear way or using some kind of a matrix. 
Search can be realized on a serial (one-processor computer, one data path with controller) and on a parallel computer. Parallelism gives of course the increase of the processing power thanks to many processors working in parallel that can be used to decrease the processing time. 
There are two types of parallelism:
1) The parallelism   based on long words. 
2) There can be a set of standard processors that work in parallel. This is similar to a parallel computing system of normal computers, and various structure and network types of parallel computers can be used.  These processors can be very simple.
3.2. Advanced Search Method

3.2.1. Introduction to Advanced Search Methods

One of the most important components to create successful programs for many CSP problems is developing a good search strategy that is based on the particular problem to be solved and its problem-specific properties or heuristics.

In principle, better search methods either use some kind of heuristics, or utilize some systematic search strategies that guarantee, at least local, optima. One convenient and popular way of describing such strategies is to use the concepts of tree searching. Tree is a structure of sub-trees, these sub-trees can be searched in parallel or in series. Each sub-search can be executed on a standard computer, or a parallel computer. The theory that we present here relates thus both to the entire tree search problem and to each sub-search problem.
The problem of creating complex heuristic strategies to deal with combinatorial CSP problems is very similar to that of general problem-solving methods in CAD, Artificial Intelligence and Robotics. There are five main principles of problem solving in AI:

· state-space approaches including constraint satisfaction,

· problem decomposition, 

· automatic theorem proving,

· rule-based systems,

· learning methods (neural nets, abductive nets, immunological, fuzzy logic, genetic algorithm, genetic programming, Artificial Life, etc.).

Since we will limit the discussion in this chapter to the description of the state-space principle, the approach that we will use is based on the assumption that any (combinatorial) problem of our class can be solved by searching some space of states. The space is enormously large in practical problems and it has a certain structure or not. If the space has no structure, not much can be done other than making the search as parallel as possible. But usually the space has some type of structure and this structure should be used to design the improved search method. 

Search in space of states seems to be the best approach because of its simplicity, generality, adaptability, parallelization, parameterization and other nice properties. By using this approach, the sets of problems within this framework are not greatly restricted.
There are also other reasons for choosing the state-space heuristic programming approach:

3.2.1a. The combinatorial problem can be often reduced to integer programming, dynamic programming, or graph-theoretic problems. The graph-theoretic approaches include in particular, the set covering, the maximum clique, and the graph coloring. The computer programs that would result from pure, classical formulations in these approaches would not sufficiently take into account the specific features and heuristics of the problems. Instead reducing to known models, we will create our own general model, and "personalize" it to our problems. For instance, instead of using a standard (proper) graph coloring approach, we may formulate the compatible graph coloring problem, an adaptation of proper graph coloring that uses also other constraints. Moreover, we use heuristic directives based on our data to solve the modified/adapted problem efficiently. The problems are rather difficult to describe using these standard formulations. The transition from the problem formulation, in these cases, to the working version of the problem-solving program is usually not direct and cannot be automated well. It is difficult to experiment with strategy changes, heuristics, etc. These parameterized experimentations are one of our main goals here in case of standard computers. The same rules and methods can be however used also in parallel computers. We aim at the model's flexibility, and of the model’s being able to easily tune its parameters experimentally. In a sense, we are looking at a "fast prototyping" possibility. 

3.2.1b. Some of these combinatorial problems (or similar problems) have been successfully solved using the state-space heuristic programming methods. The state-space methods include some methods that result from other AI approaches mentioned above. Some backtracking methods of integer programming, and graph-traversing programs used in graph partitioning and clustering methods, are for instance somewhat similar to the variable partitioning problem. They can be considered as special cases of the problem-solving strategies in the space of states.

3.2.1c. Other problems were solved using Genetic Algorithm as it was not possible to use another type of search because of problem size. Hopefully, reconfigurable parallel computing will allow to create algorithms of higher quality and efficiency, including exact minimizations for problem instances that are not possible on standard computers.

3.2.1d. We found that there are, in most cases, some straightforward procedures to convert search algorithms to   oracle problem formulations.
Roughly speaking, several partial CSP problems can be reduced to the following general model:

3.2.2a. The rules governing the generation of some set
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, called state-space, are given. This space can be created in series and in parallel. This set is in most cases implicitly defined, not explicitely. Explicit formulation is only in the simplest games and puzzles used as illustrations.
3.2.2b. Constraint conditions exist which, if not met, would cause some set 
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 to be deleted from the set of potential solutions. Again, this deletion can be done in series or in parallel.
3.2.2c. The solution is an element of S that meets all the problem conditions.
      3.2.2d. The cost function 
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 is defined for all solutions. This function is calculated in series, in parallel or in a mixed serial/parallel way. It is calculated by software or by hardware. The hardware oracle block is combinational or sequential (have memory and automata components). 
      3.2.2e. The solution (one, more than one, or all of them) should be found such that the value of the cost function is optimal (quasi-optimal) out of all the solutions.
A problem condition pc is a function with arguments in 
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 and values true and false. For instance, if set 
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 is the set of natural numbers:

                                 pc1(x) = true – if x is a prime number; false - otherwise 
In general, a problem can be defined as an ordered triple: 
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 where:

3.2.3a. PC is a set of predicates on the elements 
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 of, called problem conditions. In standard design the conditions are checked for one candidate at a time. However, the power of parallel computing is that all conditions are verified for all the states being solution candidates in parallel.
3.2.3b. F is the cost function that evaluates numerically the solutions. Solution is an element of S that satisfies all the conditions in PC.

 The tree search method includes: 

3.2.3b.1. The problem P,

3.2.3b.2. The constraint conditions,

3.2.3b.3. Additional solution conditions that are checked together with the problem conditions,

3.2.3b.4. The generator of the tree. Generation can be done in parallel, in series, in quantum, in standard software, using sequential or combinational circuit.
3.2.3b.5. The tree-searching strategy. The strategy can be parallel, serial, quantum, standard software, etc. As discussed earlier. The strategy is usually composed of several sub-strategies. Only in didactic examples we will use pure strategies that are not mixed. 
Additional solution conditions are defined to increase the search efficiency. 

For instance, assume that there exists an auxiliary condition that is always satisfied when the solution conditions are satisfied, but the auxiliary condition can be tested less expensively than the original solution conditions. In such case the search efficiency is increased by excluding the candidates for solutions that do not satisfy this auxiliary condition. This can be done in the same search process or in another search process, executed subsequently. Standard processor gives more flexibility but parallel computer gives more processing power.
The additional solution conditions together with the problem conditions are called solution conditions. The method is complete if it searches the entire state-space and thus assures the optimality of the solutions. Otherwise, the entire space is not searched and the search methods will be referred to as incomplete methods. Obviously, for practical examples most of our searches will use incomplete search methods. Although parallel computer may give enormously high processing power comparing to standard computers, it will be also restricted as we will formulate more complex problems for them.  
We will illustrate these ideas for the case of the minimal covering (set covering, unate covering) problem, which has several applications. For instance, the problem is defined as follows:
A. The problem is represented as a rectangular table with rows and columns. Each column is to be covered with the minimum total cost of rows. The state-space 
[image: image8.wmf]S

is a set that includes all of the subsets of the set of rows of the covering table (rows correspond for instance to prime implicants contained in a Boolean function [Kohavi70].
B. The solution is an element of 
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 that covers all the columns of the function.
C. A cost function assigns the cost to each solution. The cost of a solution is the number of selected rows. It may also be the total sum of the selected rows and their costs.
D. A solution (set of rows) should be found that is a solution and minimizes the cost function.
E. Additional quality functions are also defined that evaluate states and rows in the search process. 
F. This process consists of successively selecting "good" rows (based on the value of the quality function), deleting other rows that cover fewer of the matrix columns (these are the dominated rows), and calculating the value of the cost function. 
G. The cost value of each solution cover found can then be used to limit the search by  backtracking.
H.  This process can be viewed as a search for sets of rows in the state-space, and can be described as a generation of a tree(solution tree) using rows as operators, sets of rows as nodes of the tree, and solutions as terminal nodes.
A combinatorial problem of a set covering type can either be reduced to a covering table, or solved using its original data structures. Finally it can be reduced to a logic equation (Petrick Function) which is evaluated in software, in a simple (classical oracle) or in a sequential oracle. It has been shown by many authors [Cordone01], that the following classical logic synthesis problems, (among many other), can be reduced to the Set Covering Problem.

These problems are:
(1) the PLA minimization problem.
(2) the finding of vacuous variables.
(3) the column minimization problem.
(4) the microcode optimization problem.
(5) the data path allocation problem.
(6) the Three Level AND/NOT Network with True Inputs (TANT) minimization problem.
(7) the factorization problem.
(8) the test minimization problem, and many other classical logic synthesis problems.

(9) the layout minimization problems.
(10) the ESOP minimization problem.
Therefore, the Set Covering, Even/odd covering, Binate covering, and many similar (selection) problems can be treated as a generic logic synthesis subroutine. Several efficient algorithms for this problem have been created [Dill97, Perkowski99, Files97, Files98, Files98a]. Some of these algorithms can be used also to create oracles.
The methods presented here can be applied to all problems presented in chapters 2, 3, 4, 7 – 11 and specifically to:

1. Finding minimum solutions to various satisfiability problems (chapter 2)

2. Finding minimum realization of PPRM for incompletely specified function

3. Finding minimum realization of FPRM for completely and incompletely specified function

4. Finding minimum realization GRM for completely and incompletely specified functions

5. Finding minimum realization for all kinds of affine circuits for various polarities.

6. Finding minimum realizations for all other canonical forms and ESOP.

We can use the search ideas from this chapter to solve efficiently all these problems. Some will be illustrated. Equivalently, we believe that some of the ideas from the literature about optimization and oracle construction can also be used to extend the search framework presented by us.
Moreover, various methods of reducing a given problem to the Set Covering Problem exist. These methods would result in various sizes of the covering problem. By a smart approach, the problem may still be NP-hard, but of a smaller dimension. For a particular problem then, one reduction will make the problem practically manageable, while the other reduction will create a non-manageable problem. This is true, for instance, when the PLA minimization problem is reduced to the set covering with the signature cubes [Brayton87] as columns of the covering table, rather than the minterms as the columns of this table. Such reduction reduces significantly the size of the covering table. Similar properties exist for the Graph Coloring, Maximum Clique, reversible logic synthesis, ESOP minimization, multi-level logic circuit minimization and other combinatorial problems of our interest. Although the problems are still NP-hard as a class, good heuristics can solve a high percent of real life problems efficiently. This is because of the Occam's Razor principle – circuits described by engineers are not random circuits – the random circuits are the most difficult to minimize, but hopefully there is no use to minimize them so they will be not a subject of optimizations. 

Many other partial problems for CAD of classical computers, including those in high-level synthesis, logic synthesis, and physical CAD, can also be reduced to a class of NP-hard combinatorial problems that can be characterized as the constrained logic optimization problems. This is a subclass of the constraint satisfaction problems.
These problems are described using binary and multiple-valued Boolean functions, various graphs and multi-graphs, arrays of symbols or other specifications. Some constraints are formulated on these data, and some transformations are executed in order to minimize the values of cost functions. These problems include Boolean satisfiability, tautology, logic complementation, set covering [Hochbaum82], clique partitioning [Pozak95], maximum clique [Jou93], generalized clique partition, graph coloring, maximum independent set, set partitioning, matching, variable partitioning, linear and quadratic assignment, encoding, and others. These entire problems can be realized as combinational or sequential, simple or complex, oracles, and we will illustrate several of them in chapter 9 and next chapters.
With respect to high importance of these problems, several different approaches have been proposed in the literature to solve them. These approaches include:

1. Mathematical analyses of the problems are performed in order to find the most efficient algorithms (the algorithms may be exact or approximate). If this cannot be achieved, the algorithms for particular sub-classes of these problems are created. This can speed up solving problems on large classes of practical data, in spite of the fact that the problems are NP-hard so that no efficient (polynomial) algorithms exist for them. For instance, the proper graph coloring problem is NP-hard, but for a non-cyclic graph there exists a polynomial complexity algorithm. How practical is the polynomial algorithm, it depends only on how often non-cyclic graphs are found in any given area of application where the graph coloring is used.
2. Special hardware accelerators are designed to speed-up the most executed or the slowest operations on standard types of data used in the algorithms.
3. General purpose parallel computers, like message-passing hypercube processors, SIMD arrays, data flow computers and shared memory computers are used [Duncan90]. Some ideas of parallel, systolic, cellular and pipelined hardware can be applied to building oracles. For instance, the sorter/absorber circuit that we use for converting lists to sets in oracles has been adapted from pipelined sorters used in standard hardware.
4. The ideas of Artificial Intelligence, computer learning, genetic algorithms, and neural networks are used, also mimicking humans that solve these problems. In this book    we also follow some of these ideas [Nilsson71].
3.3. Multi-strategic Combinatorial Problem Solving

3.3.1. Basic Ideas of Multi-strategic search
The goal of this section is to explain how the general objectives outlined in sections 3.1 and 3.2 can be realized in programs and hardware systems to solve combinatorial problems. It is well-known that the difference between hardware and software has been recently blurred with the introduction of reconfigurable computers and Field Programmable Gate Arrays. It should be thus clear to the reader that many of ideas that we present below are applicable to both software and hardware, including oracles. 

Some of the methods presented here have been already programmed, some other not yet. Some have been used to design oracles from next chapters, some other are not  incorporated into the book as they lead to very complex circuits and would expand the book too much. Our interest is in a uniform explanation and the creation of state-space tree search methods that would be general and independent on the computing substrate. Our first goal is Fast Prototyping. By fast prototyping, we want the program to be written or a system to be designed in such a way that the developer will be able to easily change the program/hardware for each experiment. This is illustrated by the set covering software and by the way of building respective logic oracles in chapter 12.  

Our general methodology includes an important component of changing the problem description variants and create various search strategies for different tree search methods to optimize the efficiency of the search. 

The tree-search strategy was created by selecting respective classes and values of  strategy parameters. The creation of multiple variants of a tree-searching program,  that could require weeks of writing and debugging code would then be possible in a shorter period of time. Some efficiency during execution will be lost, but the gain of being able to test many variants of the algorithm will be much more substantial. The behavior of the variants of the tree search methods will then be compared and evaluated by the developer to create even more efficient algorithms.
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Figure 3.3.1.1: Example of  T1 type tree generator of a full tree.
Figure 3.3.1.1 presents a tree generator. Such generator can be used in software or standard hardware. It generates all subsets of a set of elements {1, 2, 3}. This generation can be done in series or in parallel. It can be decomposed to many sub-trees. For instance, we can imagine a hierarchical system that has parallel structure of individual simple computers. The initial problem for set {1, 2, 3} is created in a processor corresponding to node n0. It is decomposed serially to two sub-problems, Sub-problem-1 is for the sub-tree with nodes n1, n4, n7, n5. Another sub-problem, Sub-problem-2 has nodes n2, n6 and n3. Observe that the Sub-problem-2 is the complete search of all subsets of set {2, 3} so it has a general nature which can be used to build a parallel processor for all subsets of set {2, 3}. The Sub-problem-1 includes all solutions with element 1, and in addition it searches the subsets of set {2, 3}. Thus another processor can be constructed for set {2, 3} which in addition knows that element 1 is selected. These processors can be realized dynamically using a software/hardware design approach that extends standard FPGAs. We call it Reconfigurable FPGA. In this simple example we have Processor-0 which is a standard processor, and two subordinated to it processors: Processor-1 and Processor-2 that execute Sub-problem-1 and Sub-problem-2, respectively. Observe that when one of the processors finds a solution it informs the Processor-0 about the cost value and the Processor-0 can change its strategy of giving values and sub-problems to subordinated processors. It can also reconfigure them, by practically designing them from scratch using logic circuit design. For instance, in case of graph coloring, if a proper coloring with a new cost value k is found, if this value is much lower than the current assumed or computed value, the processors are redesigned for a smaller value of k, which means a smaller number of bits encoding every node of the graph. This will be illustrated in more detail in chapters 9 and next.
3.3.2. Description of the Solution Tree

3.3.2.1. Basic concepts
The search strategy realizes some design task by seeking to find a set of solutions that fulfill all problem conditions. It checks a large number of partial results and temporary solutions in the tree search process, until finally it determines the optimality of the solutions, the quasi-optimality of the solutions, or just stops when any solution is found.
3.3.2.1. The state-space S for a particular problem solved by the program is a set which includes all the solutions to the problem. The elements of S are referred to as states. New states are created from previous states by application of operators. During the realization of the search process  in the state-space, a memory structure termed solution tree, solution space, is used. 
3.3.2.1.1. The solution tree is defined as a graph: D  = [NO, RS].  A solution tree contains nodes from set NO, and arrows from the set of arrows RS. Nodes correspond to the stages of the solution process (see Figure 3.3.1.1 and Figure 3.3.1.2.)
3.3.2.1.2. Each arrow is a pair of nodes ni1, ni2. Arrows are also called oriented edges. They correspond to transitions from stages to stages of the solution process.
3.3.2.1.3. An open node is the node without created children, or immediate successors. A child of child is called grandchild. If s is a child of p then p is a  parent of s. A successor  is defined recursively as a child or a successor of a child. A predecessor is defined recursively as a parent or a predecessor of a parent.
3.3.2.1.4. A semi-open node is a node that has part of its children created, but not yet all of its children are implicitly formed.
3.3.2.1.5. A  closed node is a node, where all of its children have already been created in the tree.
3.3.2.1.6. The set of all nodes corresponding to the solutions will be denoted by SF.

3.3.3. Terminology and Notations
The Sub-Spaces of the Solution Space are related to its structure. 

In the solution space we can distinguish the following sub-spaces:

3.3.3.1. actual solution space - the space which has a representation in the computer memory (both RAM and disk),
3.3.3.2. potential solution space - the implicit space that can be created from the actual space using operators and taking into account constraints,
3.3.3.3. closed space - the space which has already been an actual space for some time, but has been removed from the memory (with exception of the solutions). 
3.3.3.4. As the search process grows, the actual space is at the expense of the potential space. The closed space grows at the expense of the actual space. The actual space is permanently modified by adding new tree segments and removing other segments. Sometimes the closed space is saved in hard disk, and re-used only if necessary.

3.3.3.5. By “opening a node” we will mean creating successors of this node. The way to expand the space, called the search strategy, is determined by:
 (3.3.5.1) the way the open and semi-open nodes are selected, 
(3.3.5.2) the way the operators applied to them are selected, 
(3.3.5.3) the way the termination of search procedure is determined, 
(3.3.5.4) the conditions for which the new search process is started, and 
(3.3.5.5) the way the parts of the space are removed from the memory.

3.3.3.6. The arrows in the tree are labeled by the descriptors of the operators. Each node contains a description of a state-space state and some other search-related information. In particular, the state can include the data structure corresponding to the descriptors of the operators  that can be applied to this node. Descriptors are some simple data items. For instance, the descriptors can be: numbers, names, atoms, symbols, pairs of elements, sets of elements. The choice of what the descriptors are, is often done by the programmer. Descriptors are always manipulated by the search program. (In some problems, they are also created dynamically by the search program.) Descriptors can be stored in nodes or removed from the descriptions of nodes. As an example of using descriptors, we will discuss the case where the partial solutions are the sets of integers. In this problem then, the descriptors can be the pairs of symbols (aritmetic_operator, integer). The application of an operator consists in taking a number from the partial solution and creating a new number. This is performed like this:

                               <new_number> :=  <number> <aritmetic_operator>< integer>
The number is replaced in the partial solution of the successor node by the new_number.
3.3.3.7. In those cases that the descriptors are dynamically created, the programs that create them are called the descriptor generators. They generate descriptors for each node one-by-one, or all of them at once. The operators traverse the tree from a node to a node. Operator is a concept that corresponds to applying certain program to nodes of the solution tree. This program has the descriptor as its parameter. Creating new nodes of the tree is equivalent to searching among the states of S.
3.3.3.8. Each of the solution tree's nodes is a vector of data structures. For explanation purposes,  this vector's coordinates will be denoted as follows:

· N  -  the node number,

· SD  -  the node depth,

· CF   -  the node cost,
· AS  -  description of the hereditary structure,

· QS  -  partial solution,

· GS  -  set of descriptors of available operators.

3.3.3.9. Additional coordinates can then be defined, of course, as they are required.

Other notations used:

· NN  -  the node number of the immediately succeeding node (a child),

· OP  -  the descriptor of the operator applied from N to NN,

· NAS -  actual length of list AS,

· NQS -  actual length of list QS,

· NGS -  actual length of list GS.

3.3.3.10. The operator is denoted by OPi,  and it's corresponding descriptor by ri. An application of operator OPi with the descriptor ri to node N of the tree is denoted by O(ri, N). A  macro-operator is a sequence of operators that can be applied successively without retaining the temporarily created nodes. 

 3.4. Formulating a Problem

A prerequisite to formulating the combinatorial problem in the search model is to ascertain the necessary coordinates for the specified problem in the initial node (the root of the tree). The way in which the coordinates of the subsequent nodes are created from the preceding nodes must be also found. This leads to the description of the generator of the solution space (tree generator). Solution conditions and/or cost functions should be formulated for most of the problems. There are, however, generation problems (such as generating all the cliques of a specific kind), where only the generator of the space is used to generate all the objects of a certain kind.

3.4.1. QS is the partial solution: that portion of the solution that is incrementally grown along the branch of the tree until the final solution is arrived at. A set of all possible values of QS is a state-space of the problem. According to our thesis, some relation 
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 such that s  RE  s'. The solution tree usually starts with QS( N0 ) which is either the minimal or the maximal element of S.  All kinds of relations in S should be tried to find by the researcher/developer, since they are very useful in creating efficient search strategies.
3.4.2. The set GS(N)  of descriptors denotes the set of all operators that can be applied to node N.
3.4.3. AS(N) denotes the  hereditary structure. By a hereditary structure we understand any data structure that describes some properties of the node  N  that it has inherited along the path of successor nodes from the root of the tree. 

3.4.4. The  solution is a state of space that meets all the solution conditions. 

3.4.5. The  cost function CF is a function that assigns the cost to each solution. 
3.4.6. The quality function  QF can be defined as a function of integer or real values pertinent to each node, i.e., to evaluate its quality. It is convenient to define the cost and quality functions such that 
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 and if QS(N) is the solution, then QF(N) = CF(N)   Equation 3.4.1
3.4.7. TREE(N) denotes a subtree with node N as the root. Often function QF(N) is defined as a sum of function  F(N) and function 
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3.4.8. 
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 evaluates the distance h(N) of node N from the best solution in TREE(N). F(N), in such a case, defines a partial cost of QS(N), thus 
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 is called a heuristic function. We want to define 
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 in such a way that it  as close to h as possible (see [Nilsson71] for general description and mathematical proofs).

3.4.9. Cost function f
A theoretical concept of function f is also useful to investigate strategies as well as cost and quality functions. This function is defined recursively on nodes of the extended tree, starting from the terminal nodes, as follows:

f(NN) =  CF(NN) when the  terminal node NN is  a solution from SF,     Equation 3.4.3
 f(NN) =  
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 when the terminal node NN is not a solution,                      Equation 3.4.4
f(N) =  min ( f( Ni ) ), for all  which Ni are the children of node N.          Equation 3.4.5
This function can be calculated for each node only if all its children have known values, which means practically that the whole tree has been expanded. f(N) is the cost of the least expensive solution for the path which leads through node N. We assume that the function CF can be created for every node N (and not only for the nodes from the set SF, of solutions), it holds that the following must also be true
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         Equation 3.4.7
The general idea of the Branch and Bound Strategy consists in having a CF that satisfies equations 3.4.1, 3.4.2, and 3.4.3. Then, knowing a cost CFmin of any intermediate solution that is temporarily treated as the minimal solution, one can cut-off all sub-trees TREE(N) for which CF(N)> CFmin (or, 
[image: image24.wmf]min

)

(

CF

NN

CF

³

 when we look for only one minimal solution).

 In many problems it is advantageous to use a separate function QF, distinct from CF, such that CF guides the process of cutting-off sub-trees, while QF guides the selection of nodes for expansion of the tree.  
In particular, the following functions are defined:
g(N) the smallest from all the values of cost function calculated on all paths from N0 to N.                                                                                                               Equation 3.4.8
h(N) the smallest from all the values of increment of cost function calculated from N to some 
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. This is the so-called heuristic function.                     Equation 3.4.9
f(N) = g(N) + h(N).                                                                                Equation 3.4.10
Since function h cannot be calculated in practice for node N during tree's expansion, and g is often difficult to find, some approximating functions are usually defined. Function CF approximates function g. Function 
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where h(M,N) is the smallest of all increment values of cost function from M to N, when M,
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                                  QF(N) = CF(N) for 
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[image: image33.wmf]F

S

N

Î

                                Equation 3.4.15
Functions defined like this are useful in some search strategies, called Nilsson A* Search Strategies. Sometimes while using branch-and-bound strategies it is not possible to entirely define the cost function g(N) for 
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. However, in some cases one can define a function QF such that for each N.
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For nodes 
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 one calculates then g(N) = CF(N), and then uses standard cut-off principles, defining for the remaining nodes Ni: CF(Ni) = QF(Ni), and using function CF in a standard way for cutting-off. A second, standard role of QF is to control the selection of non-closed nodes. (By non-closed nodes we mean those that are either open or semi-open.) One should then try to create QF that plays both of these roles. 

A  quasi-optimal  or  approximate solution is one with no redundancy; i.e., if the solution is a set, all of its elements are needed. When the solution is a path in a certain graph, for example, it has no loops.  An  optimal solution  is a solution 
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[image: image38.wmf]S

s

Î

¢

 where QF(s) > QF(s').  The problem can have more than one optimal solution. The set of all solutions will be denoted by SS. Additional quality functions for operators can also be used.

3.4.10. Descriptors and tree types 
 In many combinatorial problems, the set of all mathematical objects of some type are needed: sets, functions, relations, vectors, etc. For example, the following data are created:

· The set of all subsets of prime implicants in the minimization of a Boolean function. 

· The set of all subsets of bound variables in the Variable Partitioning Problem.

· The set of all two-block partitions in the Encoding Problem.

· The set of maximal compatibles in the Column Minimization Problem.

These sets can be generated by the respective search routines created for them in a standard way, that use the generators of trees. This is useful in direct problem descriptions.
It is desirable to develop descriptor generators for several standard sets, several types of tree generators, many ordering possibilities for each generation procedure, and several tree extension strategies for each ordering. The type of tree is defined by two generators: the generator that creates the descriptors, and the generator that generates the tree. A full tree is a tree created by the generators only, ignoring constraint conditions, quality functions, dominations, etc. Full trees of the following types exist:

· T1 - a tree of all subsets of a given set,

· T2 - a tree of all permutations of a given set,

· T3 - a tree of all one-to-one functions from a set A to set B.

and many others. 
[image: image39.emf]
Figure 3.4.10.1: Examples of tree generators. (a) tree of all subsets of set {1,2,3}, (b) tree of all combinations without repetitions of  set {1,2,3}; the lowest level of the tree corresponds to all permutations, (c) tree of all binary vectors of length 3, (d) tree of all two-block partitions of set {1,2,3,4},  (e) ) tree of all partitions of set {1,2,3,4},  (f) tree of all coverings of set {1,2,3}.  
[image: image40.emf]
Figure 3.4.10.2: More examples of tree generators.(a)set of all numerical strings with a sum of 6 (in last level) , (b) set of all subsets in increasing Hamming distances , (c), (d), (e)set of all
The type T1 tree generator of the full tree of the set of all set's {1, 2, 3} subsets, as shown in Figure 3.3.1, can be described as follows.

1. Initial node (root) is described as:
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where 
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 is an empty set, and N0 is the root of the tree.

2. In a recursive way, the children of any node N are described as follows:


[image: image44.wmf]}]

|

)

(

{

)

(

};

{

)

(

)

(

))[

(

(

1

1

r

r

N

GS

r

NN

GS

r

N

QS

NN

QS

N

GS

r

>

Î

=

È

=

Î

"


                                                                                                              Equation 3.4.10.3
where NN is some child of node N, and r is the descriptor of the operator that creates the new nodes in this tree. Set GS is either stored in the node or its elements are generated one by one in accordance with the ordering relation > while calculating the children nodes.

Figure 3.4.10.1 and Figure 3.4.10.2 present examples of full trees for many important combinatorial problems. They show the partial solutions in nodes and the descriptors near arrows. 
The trees in Figure 3.4.10.1 are: 
(a) the tree of all subsets of set, 

(b) the tree of all permutations of a set, 
(c) the tree of all binary vectors of length 3, 
(d) the tree of all two-block partitions of set {1, 2, 3, 4}, 
(e) the tree of all partitions of set {1, 2, 3, 4}, 
(f) the tree of all covers of set {1, 2, 3, 4} with its subsets.

The trees in Figure 3.4.10.1 and 3.4.10.2 are the following. Figure 3.4.10.1 a presents the tree for all 3-element numerical vectors, such that they sum is a constant in every level. In the first level the sum is 3, in the second level the sum is 4, in the third level the sum is 5, in the fourth level the sum is 6.  Figure 3.4.10.2 presents the tree of all subsets of set {1, 2, 3, 4, 5}.The tree generates levels of equal distance from the subset {1, 2, 3}, in the second level there are subsets that differ by one from {1, 2, 3}. All descriptors from set {1, 2, 3, 4, 5} are checked in the first level. If the descriptor is in the subset, it is subtracted, if the descriptor is not in the subset, it is added. In all next levels, the sets of descriptors for each node are created in exactly the same way as in the standard tree for all subsets, that have been shown in detail in Figure 3.4.2. Others can be explained in a similar way. 
Let us observe that trees organize all generated objects in certain way – they impose a structure on the set of all objects. These objects can be also generated in various other ways, for instance linear. For instance, the third level of a tree from Figure 3.4.10.1a has all sets with two elements being subsets of set {1,2,3}, i.e. combinations without repetitions. There are 3!/2!(3-2)! = 3 of them.

Analogically, the third level of a tree from Figure 3.4.10.1b has all combinations with repetitions with two elements out of a set of 3 elements. There are 3!/(3-2)! = 6 of them.

The fourth level of this tree has all permutations of the set {1,2,3}.  There are 3!/(3-2)! = 6 of them.

Let us observe that the order of these elements imposes a regular way of creating all permutations, as follows: (a) permute last two elements, (b) shift cyclically right, (c) permute last two elements, (d) shift cyclically left, (e) permute last two elements.

The last level of the tree from Figure 3.4.10.1c has an order of binary numbers in natural binary code. It can be thus generated by counting. There are 23=8 of them. As we see, there is some link between counting, tree search and permuting. We will use such relations in this book.
3.4.11. Encoding for GA and Search Algorithms to synthesize circuits.

Genetic algorithm is used as a component in our general search framework. We do not explain it as it is popularly known.
As an illustration, in this section we introduce a notation that will be useful to explain not only genetic algorithm but also search and other algorithms to synthesize circuits in a systematic and uniform way. Let us denote the element of a generated object by a symbol. For instance, symbols A, B and C are used to denote elements of a generated string. 

Figure 3.4.11.3 illustrates hypothetical operation of the Genetic Algorithm to find the circuit from Figure 3.4.11.2.  The analysis/simulation method of circuits is used to calculate the fitness function and to verify the correctness of the solution genotype circuit from Figure 3.4.11.2. Figure 3.4.11.4 illustrates the operation of the exhaustive breadth-first search algorithm for the same task. As we see, the GA and the tree are just two different strategies to search the same space of character strings. Our intelligent learning algorithm from this chapter 6 uses these two “pure” search methods, many other methods and also combined search methods as its special cases.
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Figure 3.4.11.1: Operation of the Genetic Algorithm to find the chromosome BCB leading to a generated combinatorial object.
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 Figure 3.4.11.2:  Operation of the exhaustive breadth first search algorithm to find the object BCB. The fitness function uses as its component the circuit’s cost function which is the same as in the GA.
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