
Introduction ToIntroduction To
VHDL forVHDL for

CombinationalCombinational Logic Logic
• VHDL is a language used for simulation and synthesis of digital logic.
• A VHDL description of a digital system can be transformed into a

gate level implementation.
• This process is know as synthesis.
• It is important to understand how statements are compiled by VHDL

tools to combinational logic

library ieee;
use ieee.std_logic_1164.all;

entity majconc is
 port (A, B, C : in std_logic;
 Y: out std_logic
);
end majconc;

ARCHITECTURE a of majconc is

begin

Y <= (A and B) or (A and C) or (B and C);
end a;

A Sample ModelA Sample Model
Description Implementation

Majority gateMajority gate

VHDL StatementsVHDL Statements
• VHDL has a reputation as a complex language (it is!)
• We will use a subset of the language for our purposes
• Some VHDL constructs:

– Signal Assignment: A <= B;
– Comparisons = (equal), > (greater than), < (less than), etc.
– Boolean operations AND, OR, NOT, XOR
– Sequential statements (CASE, IF, FOR)
– Concurrent statements (when-else)

• READ YOUR BOOK. We will cover VHDL by
'example'; will explain VHDL constructs as we get to
them. The book has many examples.

• SPIRAL APPROACH.

VHDLVHDL Combinational Combinational Template Template

• Every VHDL model is composed of an entity and
at least one architecture .

• Entity describes the interface to the model (inputs,
outputs)

• Architecture describes the behavior of the model
• Can have multiple architectures for one entity (we

will only use one in this class).

A VHDL Template for A VHDL Template for Combinational Combinational LogicLogic

entity model_name is
 port (
 list of inputs and outputs);
 end model_name;
 architecture arch_name of model_name is
 begin
 concurrent statement 1
 concurrent statement 2
 ... concurrent statement N;

 end arch_name ;

•All of the text not in italics are VHDL keywords.
•VHDL is NOT case sensitive.

•(ENTITY is same as entity is same as EnTiTy).

Majority Gate Example
The following is an example of a three input XOR gate (majority
gate) implemented in VHDL

library ieee;
use ieee.std_logic_1164.all;

entity majority is
 port (A, B, C : in std_logic; -- two dashes is a COMMENT in VHDL
 Y: out std_logic
);
end majority;
-- this is the architecture declaration, uses only one concurrent statement.

ARCHITECTURE concurrent of majority is

begin

Y <= (A and B) or (A and C) or (B and C);
end concurrent;

Majority Gate with Temporary Signals

The following version of the majority gate uses some
temporary signals (entity has been left out, is same).

-- the architecture now uses 4 concurrent statements

ARCHITECTURE newconc of majority is
 signal t1, t2, t3 : std_logic ;

begin
 t1 <= A and B;
 t2 <= A and C;
 t3 <= B and C;
 Y <= t1 or t2 or t3;
end newconc;

Note that temporary signals are declared between architecture
statement and begin statement.

Majority Gate with when-else statement

The following version of the majority gate uses a 'when-else'
statement:

-- the architecture now uses a when-else statement.

ARCHITECTURE whenelse of majority is

begin
 Y <= '1' when ((A and B) or (A and C) or (B and C))
 else '0';
end whenelse;

•You will find that there are many different ways to accomplish
the same result in VHDL.
•There is usually no best way; just use one that you feel most
comfortable with.

Concurrent Versus Sequential Statements

• The statements we have looked at so far are called
concurrent statements.
– Each concurrent statement will synthesize to a block of logic.

• Another class of VHDL statements are called sequential
statements.
– Sequential statements can ONLY appear inside of a process block.
– A process block is considered to be a single concurrent statement.
– Can have multiple process blocks in an architecture.
– Usually use process blocks to describe complex combinational or

sequential logic.

Majority Gate using process block and if statement

The entity declaration has been left out (same as before).
ARCHITECTURE ifstate of majority is

begin
 main: process (A, B, C)
 begin
 Y <= '0'; -- default output assignment.
 if ((A = '1') and (B = '1')) then
 Y <= '1';
 end if;
 if ((A = '1') and (C = '1')) then
 Y <= '1';
 end if;
 if ((B = '1') and (C = '1')) then
 Y <= '1';
 end if;
 end process main;
end ifstate;

name of a
process

name of a
process

Comments on process block model

• The first line in the process "main: process (A, B, C)" has the name
of the process (main) and the sensitivity list of the process.
– The process name is user defined, can also be left out (unnamed process).
– The sensitivity list should contain any signals that appear on the right hand side

of an assignment (inputs) or in any boolean for a sequential control statement.

• The if statement condition must return a boolean value (TRUE or
FALSE) so that is why the conditional is written as:
 ((A='1') and (B= '1'))

• Cannot writeCannot write it as:
 (A and B)
because this will return a 'std_logic' type (more on types later).

Use of if-else

ARCHITECTURE ifelse of majority is

begin
 process (A, B, C)
 begin

 if (((A = '1') and (B = '1')) or
 ((A = '1') and (C = '1')) or
 ((B = '1') and (C = '1'))) then
 Y <= '1';
 else
 Y <= '0';
 end if;

 end process;
end ifelse;

Comments:
Process is anonymous (no
name)
Used an 'else' clause to specify
what the output should be if
the if condition test was not
true.

CAREFUL!CAREFUL! The boolean
operators (OR, AND) do not
have any precedence so must
use parenthesis to define
precedence order

Unassigned outputs in Process blocks

A common mistake in writing a combinational process is to leave an
output unassigned.

ARCHITECTURE bad of majority is

begin
 process (A, B, C)
 begin

 if (((A = '1') and (B = '1')) or
 ((A = '1') and (C = '1')) or
 ((B = '1') and (C = '1'))) then
 Y <= '1';Y <= '1';
 end if;

 end process;
end bad;

If there is a path
through the process
in which an output is
NOT assigned a
value, then that value
is unassigned.

Comments on ‘bad’ architecture

• In the above process, the ELSE clause was left out. If the 'if'
statement condition is false, then the output Y is not assigned a value.
– In synthesis terms, this means the output Y should have a

LATCH placed on it!
– The synthesized logic will have a latch placed on the Y output;

once Y goes to a '1', it can NEVER return to a '0'!!!!!
• This is probably the #1 student mistake in writing processes.
• To avoid this problem do one of the following things:

– ALL signal outputs of the process should have DEFAULT
assignments right at the beginning of the process (this is my
preferred method, is easiest).

– OR, all 'if' statements that affect a signal must have ELSE clauses
that assign the signal a value if the 'if' test is false.

library ieee;
use ieee.std_logic_1164.all;
entity priority is
 port (y1, y2, y3, y4, y5, y6, y7 : in std_logic;
 dout: out std_logic_vector(2 downto 0)
);
end priority;
architecture ifels of priority is
begin
-- priority circuit, Y7 highest priority input
-- Y1 is lowest priority input
process (y1, y2,y3, y4, y5, y6, y7)
begin
if (y7 = '1') then dout <= "111";
elsif (y6 = '1') then dout <= "110";
elsif (y5 = '1') then dout <= "101";
elsif (y4 = '1') then dout <= "100";
elsif (y3 = '1') then dout <= "011";
elsif (y2 = '1') then dout <= "010";
elsif (y1 = '1') then dout <= "001";
else dout <= "000";
end process;
end ifels;

Priority circuit examplePriority circuit example • This priority circuit has 7 inputs;
Y7 is highest priority, Y0 is lowest
priority.

• Three bit output should indicate
the highest priority input that is a '1'
(ie. if Y6 ='1' , Y4 = '1', then output
should be "101").

•If no input is asserted, output
should be "000".

Y7 is highest priority so
it is checked first

Comments on Priority ExampleComments on Priority Example

• This is the first example that used a bus.
• The DOUT signal is a 3 bit output bus.

– std_logic_vector(2 downto 0) describes a 3 bit bus where dout(2) is most
significant bit, dout(0) is least significant bit.

– std_logic_vector (0 to 2) is also a 3 bit bus, but dout(0) is MSB, dout(2) is
LSB. We will always use 'downto' in this class.

• A bus assignmentbus assignment can be done in many waysmany ways:
– dout <= "110"; assigns all three bits
– dout(2) <= '1'; assigns only bit #2
– dout(1 downto 0) <= "10"; assigns two bits of the bus.

• This architecture used the 'elsif' form of the 'if' statement
– Note that it is 'elsif', NOT 'elseif'.
– This called an elsifelsif chain. chain.

Priority Circuit with just IF statements.

architecture plainif of priority is
begin
-- priority circuit, Y7 highest priority input
-- Y1 is lowest priority input
process (y1, y2,y3, y4, y5, y6, y7)
begin
dout <= "000;
if (y1 = '1') then dout <= "001"; end if;
if (y2 = '1') then dout <= "010"; end if;
if (y3 = '1') then dout <= "011"; end if;
if (y4 = '1') then dout <= "100"; end if;
if (y5 = '1') then dout <= "101"; end if;
if (y6 = '1') then dout <= "110"; end if;
if (y7 = '1') then dout <= "111"; end if;
end process;
end plainif;

By reversing the order of the
assignments, we can
accomplish the same as the
elsif priority chain.

 In a process, the LASTIn a process, the LAST
assignment to the output isassignment to the output is
what counts.what counts.

Y7 is highest priority so
it is checked lastchecked last

Priority Circuit with when-else statements.

architecture whenelse of priority is
begin
-- priority circuit, Y7 highest priority input
-- Y1 is lowest priority input
-- uses just one when-else concurrent statement.
dout <= "111" when (y7 = '1') else
 "110" when (y6 = '1') else
 "101" when (y5 = '1') else
 "100" when (y4 = '1') else
 "011" when (y3 = '1') else
 "010" when (y2 = '1') else
 "001" when (y1 = '1') else
 "000";

end process;
end whenelse;

•No process;
•just one concurrent
when-else statement.

A Bad attempt at a Priority CircuitA Bad attempt at a Priority Circuit

architecture bad of priority is
begin
-- priority circuit, Y7 highest priority input
-- Y1 is lowest priority input
-- uses just one when-else concurrent statement.
dout <= "111" when (y7 = '1') else "000";
dout <= "110" when (y6 = '1') else "000";
dout <= "101" when (y5 = '1') else "000";
dout <= "100" when (y4 = '1') else "000";
dout <= "011" when (y3 = '1') else "000";
dout <= "010" when (y2 = '1') else "000";
dout <= "001" when (y1 = '1') else "000";
dout <= "000" ;

end process;
end bad;

You cannot assign to the
same signal doutdout on left,
repeated many times in
concurrent statements!!

Comments on “bad” Priority Circuit

• This is a bad attempt by a neophyte VHDL
writer at a priority circuit.

• There are multiple things wrong with this
description.

• 1. There are multiple concurrent statements
driving the DOUT signal.
– This means MULTIPLE GATE output are tied to

dout signal!
– Physically, this will create an unknown logic

condition on the bus.

Comments on “bad” Priority Circuit

• 2. The writer seems to think that the order of the
concurrent statements makes a difference (ie, the
last concurrent statement just assigns a '000').
– The order in which you arrange concurrent

statements MAKES NO DIFFERENCE.
– The synthesized logic will be the same.

• Ordering of statements only makes a difference within a process.
• This is why statements within a process are called 'sequentialsequential' statements;

the logic synthesized reflects the statement ordering
– (only for assignments to the same output).

NEW EXAMPLE: 4-to-1 mux with 8 bit Datapaths

library ieee;
use ieee.std_logic_1164.all;
entity mux4to1_8 is
 port (a,b,c,d : in std_logic_vector(7 downto 0);
 sel: in std_logic_vector (1 downto 0);
 dout: out std_logic_vector(7 downto 0)
);
end mux4to1_8;
architecture whenelse of mux4to1_8 is
begin
dout <= b when (sel = "01") else
 c when (sel = "10") else
 d when (sel = "11") else
 a; -- default

end process;
end whenelse;

Comments on Comments on Mux Mux exampleexample

• This is one way to write a mux, but is not the best way.
• The when-else structure is actually a priority structure.

– A mux has no priority between inputs, just a simple
selection.

– The synthesis tool has to work harder than
necessary to understand that all possible choices for
sel are specified and that no priority is necessary.

• Just want a simple selection mechanism.

4-to-14-to-1 Mux Mux using Select Concurrent Statement using Select Concurrent Statement

architecture select_statement of mux4to1_8 is
begin
with sel select
 dout <= b when "01",
 c when "10",
 d when "11",
 a when others;
end select_statementselect_statement;

• Some synthesis tools will automatically recognize
this structure as a muxmux
•They will find a more efficient implementation than
using a when-else or if statement structure

• (when-else and if structures define a prioritya priority
structurestructure).

4-to-14-to-1 Mux Mux using using SelectSelect Concurrent Statement Concurrent Statement

architecture select_statement of mux4to1_8 is
begin
with sel select
 dout <= b when "01",
 c when "10",
 d when "11",
 a when othersothers;
end select_statement;

• The others case must be specified.
• This is a concurrent statement;

• the sequential version of the select
statement is the case statement.

continued

4-to-14-to-1 Mux Mux using using CaseCase Sequential Statement Sequential Statement

architecture select_statement of mux4to1_8 is
begin

 process (a, b, c, d, sel)
 begin
 case sel is
 when "01" => dout <= b ;
 when "10" => dout <= c;
 when "11" => dout <= d;
 when others => dout <= a;
 end case;
 end process;
end select_statement;

•There can be multiple
statements for each case;
• only one statement is
needed for each case in this
example.

Uses process, it is sequential

Concurrent => use select

Sequential => use case

Pay attention to this arrow, how it
is directed

Logical Shift Left by 1Logical Shift Left by 1
library ieee;
use ieee.std_logic_1164.all;
entity lshift is
 port (din : in std_logic_vector(7 downto 0);
 shift_en: in std_logic;
 dout: out std_logic_vector(7 downto 0)
);
end lshift;
architecture brute_force of lshift is
begin

process (din, shift_en)
begin
 dout <= din; -- default case
 if (shift_en = '1') then
 dout(0) <= '0'; -- shift a zero into LSB
 dout (1) <= din(0);
 dout (2) <= din(1);
 dout (3) <= din(2);
 dout (4) <= din(3);
 dout (5) <= din(4);
 dout (6) <= din(5);
 dout (7) <= din(6);
 end if;
end process;
end brute_force;
end lshift;

This is one way to do it; surely there is a better way?

Logical Shift Left by 1 (better way)Logical Shift Left by 1 (better way)

architecture better of lshift is
begin
process (din, shift_en)
begin
 dout <= din; -- default case
 if (shift_en = '1') then
 dout(0) <= '0'; -- shift a zero into LSB
 dout (7 downto 1) <= din(6 downto 0);
 end if;
end process;
end better;
end lshift;

• This illustrates the assignment of a segment of one bus to another bus
segment.
• The bus ranges on each side of the assignment statement must be the
name number of bits (each 6 bits in this case).

4 Bit Ripple Carry Adder4 Bit Ripple Carry Adder

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo Cin

A(0)

Cout

B(0)A(1) B(1)A(2) B(2)A(3) B(3)

C(0)C(1)C(2)C(3)C(4)

Sum(0)Sum(1)Sum(2)Sum(3)

Want to write a VHDL model for a 4 bit ripple carry adder.
 Logic equation for each full adder is:
 sum <= a xor b xor ci;
 co <= (a and b) or (ci and (a or b));

4 Bit Ripple Carry Model4 Bit Ripple Carry Model
library ieee;
use ieee.std_logic_1164.all;
entity adder4bit is
 port (a,b: in std_logic_vector(3 downto 0);
 cin : in std_logic;
 cout: out std_logic;
 sum: out std_logic_vector(3 downto 0)
);
end adder4bit;
architecture bruteforce of adder4bit is
 -- temporary signals for internal carries
 signal c : std_logic_vector(4 downto 0); .
begin
 process (a, b, cin, c)
 begin
 c(0) <= cin;
 -- full adder 0
 sum(0) <= a(0) xor b(0) xor c(0);
 c(1) <= (a(0) and b(0)) or (c(0) and (a(0) or b(0)));
 -- full adder 1
 sum(1) <= a(1) xor b(1) xor c(1);
 c(2) <= (a(1) and b(1)) or (c(1) and (a(1) or b(1)));

 -- full adder 2
 sum(2) <= a(2) xor b(2) xor c(2);
 c(3) <= (a(2) and b(2)) or (c(2) and
 (a(2) or b(2)));
 -- full adder 3
 sum(3) <= a(3) xor b(3) xor c(3);
 c(4) <= (a(3) and b(3)) or (c(3) and
 (a(3) or b(3)));
 cout <= c(4);
end process;
end bruteforce;

••Straight forwardStraight forward
implementation.implementation.
••Nothing wrong with this.Nothing wrong with this.
••However, is there an However, is there an easiereasier
way?way?

4 Bit Ripple Carry Model using 4 Bit Ripple Carry Model using For For StatementStatement

architecture forloop of adder4bit is

 signal c : std_logic_vector(4 downto 0); -- temporary signals for internal carries.
begin
 process (a, b, cin, c)
 begin
 c(0) <= cin;
 for i in 0 to 3 loop
 -- all four full adders
 sum(i) <= a(i) xor b(i) xor c(i);
 c(i+1) <= (a(i) and b(i)) or (c(i) and (a(i) or b(i)));
 end loop;

 cout <= c(4);
 end process;
end forloop;

Comments on Comments on for-loop for-loop statementstatement

• The for-loop can be used to repeat blocks of
logic

• The loop variable i is implicity declared for this
loop; does not have to be declared anywhere
else.

• To visualize what logic is created, 'unroll' the
loop by writing down each loop iteration with
loop indices replaced hard numbers.

SummarySummary
• There are many different ways to write VHDL

synthesizablesynthesizable models for models for combinational combinational logic. logic.
• There is no 'best' way to write a model; for now, just use

the statements/style that you feel most comfortable with and
can get to work (of course!)

• READ THE BOOK!!!!!!!!
– There is NO WAY that we can cover all possible examples in class.

The book has many other VHDL examples.
– I have intentionally left out MANY, MANY language details. You

can get by with what I have shown you, but feel free to experiment
with other language features that you see discussed in the book or
elsewhere.

Summary (Summary (contcont.).)
• SEARCH THE WWW!!!!!

– The WWW is full of VHDL examples, tutorials, etc.

• TRY IT OUT!!!!
– If you have a question about a statement or example, try it out in the

Altera Maxplus package and see what happens!

• This course is about Digital System DESIGN, not VHDL.
As such, we will only have 3-4 lectures about VHDL, the
rest will be on design topics.
– VHDL is only a means for efficiently implementing your design - it

is not interesting by itself.
– You will probably learn multiple synthesis languages in your design

career - it is the digital design techniques that you use that will be
common to your designs, not the synthesis language.

