Sequential Statements

> Variable assignment statement
> Signal assignment
$>$ If statement
$>$ Case statement
> Loop statement
$>$ Next statement
$>$ Exit statement
$>$ Null statement
$>$ Procedure call statement
$>$ Return statement
> Assertion statement

Variable

assignment
statement
Signal assignment

Variable assignment statement

architecture RTL of VASSIGN is
signal A, B, J : bit_vector(1 downto 0);
signal $\mathrm{E}, \mathrm{F}, \mathrm{G}:$ bit;
begin
p0 : process (A, B, E, F, G, J)
variable $\mathrm{C}, \mathrm{D}, \mathrm{H}, \mathrm{Y}$: bit_vector(1 downto 0);
variable W, Q : bit_vector(3 downto 0);
variable $Z \quad$: bit_vector(0 to 7);
variable X : bit;
variable DATA : bit_vector(31 downto 0);
begin ...
end process
end RTL;

Variable assignment statement

$>\mathrm{p} 0: \operatorname{process}(\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{J})$
$>$-- A, B, J, D, H: bit_vector -- E, F, G : bit
$>$ begin
> $\mathrm{C} \quad:=$ "01";
$>\quad \mathrm{X} \quad:=\mathrm{E}$ nand F ;
$>\quad \mathrm{Y} \quad:=\mathrm{H}$ or J ;
$>\quad \mathrm{Z}(0$ to 3$):=\mathrm{C} \& \mathrm{D}$;
$>\quad \mathrm{Z}(4$ to 7$):=(\operatorname{not} \mathrm{A}) \&(\mathrm{~A}$ nor B$)$;
:= ('1', '0');
:= (2 downto 1 => G, 3 => ' 1 ', others => ' 0 ');
DATA := (others => '0');
> end process;

Signal assignment statement

VHDL syntax description in metalanguage

Signal assignment statement $::=$

 target<=[transport]waveform_element $\{$,waveform_element \};waveform_element::=
value_expression[after time_expression]|null[after time_expression]
p0 : process (A, B)
begin
$\mathrm{Y}<=\mathrm{A}$ nand B after 10 ns ;
$X<=\operatorname{transport} A$ nand B after 10 ns ;
end process;
p1 : process
begin
A <= '0', '1' after 20 ns , ' 0 ' after 40 ns , ' 1 ' after 60 ns ; B <= '0', '1' after 30 ns , '0' after 35 ns , '1' after 50 ns ; wait for 80 ns ;
end process;

Signal assignment statement

Signal assignment statement

> The optional keyword transport specifies a transport delay rather than an inertial delay
> Inertial delays are characteristic of switching circuits.
-A pulse with a duration shorter than the switching time of the circuit will not be transmitted in transport.

FIGURE 4.1 Inertial and transport delay.
entity DELAY is

end DELAY;

architecture RTL of DELAY is signal A, B, X, Y : bit; begin
p0 : process (A, B)
begin
Y <= A nand B after 10 ns ; $\mathrm{X}<=$ transport A nand B after 10 ns;
end process;

p1 : process

begin

$$
\mathrm{A}<=\text { '0', '1' after } 20 \mathrm{~ns},
$$

'0' after 40 ns , '1' after 60 ns ;
B <= '0', '1' after 30 ns , '0' after 35 ns , '1' after 50 ns ;
wait for 80 ns ;
end process;
end RTL;

FIGURE 4.1 Inertial and transport delay.

Signal assignment statement

FIGURE 4.2 Simulation waveform for a signal driver.
entity DRIVER is end DRIVER;
architecture RTL of DRIVER is
signal A : integer;
begin
pa : process
begin

A $<=3,5$ after $20 \mathrm{~ns}, 7$ after 40 ns, 9 after 60 ns ; wait for 30 ns ;
discarded
A <= 2, 4 after $20 \mathrm{~ns}, 6$ after $40 \mathrm{~ns}, 8$ after 60 ns ;
wait for 50 ns ;
end process;
end RTL;

Signal assignment statement

>Differences between variables and signals

$>\quad 1 . \quad$ Where declared

- Local variables are declared and only visible inside a process or a subprogram.
- Signals cannot be declared inside a process or a subprogram.

2. When updated

- A local variable is immediately updated when the variable assignment statement is executed.
- A signal assignment statement updates the signal driver.
$>$ The new value of the signal is updated when the process is suspended.

Signal assignment statement

3. Variables are cheaper to implement in VHDL simulation since the evaluation of drivers is not needed. They require less memory

4 Signals communicate among concurrent statements Ports declared in the entity are signals. Subprogram arguments can be signals or variables.
5. A signal is used to indicate an interconnect (net in a schematic). A local variable is used as a temporary value in a function description.

Signal assignment statement

6. A local variable is very useful to factor out common parts of complex equations to reduce the mathematical calculation.
7.

> The right-hand side of a variable assignment statement is an expression.
> There is no associated time expression.
> The right-hand side of a signal assignment statement is a sequence of waveform elements with associated time expressions.

Signal assignment statement

entity SIGVAL is
port (
CLK, D : in bit;
FF2, FF3 : out bit;
Y : out bit_vector(7 downto 0)); end SIGVAL;
architecture RTL of SIGVAL is
signal FF1, SIG0, SIG1 : bit; begin
p0 : process (D, SIG1, SIG0) variable VAR0, VAR1 : bit;
begin
VAR0 := D;
VAR1 := D;
SIG0 <= VAR0;
SIG1 <= VAR1;
$\mathrm{Y}(1$ downto 0$)<=$ VAR1 \& VAR0;
Y(3 downto 2) <= SIG1 \& SIG0;
VAR0 := not VAR0;
VAR1 := not VAR1;
SIG0 <= not VAR0;
SIG1 <= not D;
Y(5 downto 4) <= VAR1 \& VAR0;
Y(7 downto 6) <= SIG1 \& SIG0;
end process;

Signal assignment statement

$$
\mathrm{Y}<=(\mathrm{S} 1, \mathrm{~S} 0, \sim \mathrm{D}, \sim \mathrm{D}, \mathrm{~S} 1, \mathrm{~S} 0, \mathrm{D}, \mathrm{D})
$$

Signal assignment statement

FIGURE 4.3 Simulation waveform for variables and signals.

Signal assignment statement

p1: process
begin
wait until CLK'event and CLK = '1';
FF1 <= D; FF2 <= FF1;
end process;
p2 : process
variable V3 : bit;
begin
wait until CLK'event and CLK = '1'; V3 := D; FF3 <= V3;
end process;

FIGURE 4,3 Simulation waveform for variables and signals.

- Signal assignment statement

entity TEMP is
end TEMP;
architecture RTL of TEMP is
signal A, B, C, D, E, F, G, Y, Z : integer;
begin
p0 : process (A, B, C, D, E, F, G)
begin

$$
\begin{aligned}
& \mathrm{Y}<=\mathbf{A}+(\mathrm{B} * \mathrm{C}+\mathrm{D} * \mathrm{E} * \mathrm{~F}+\mathrm{G}) \text {; } \\
& \mathbf{Z}<=\mathbf{A}-(\mathbf{B} * \mathbf{C}+\mathbf{D} * \mathbf{E} * \mathbf{F}+\mathbf{G}) \text {; }
\end{aligned}
$$

end process;
end RTL;
architecture RTL1 of TEMP is
signal A, B, C, D, E, F, G, Y, Z : integer;
begin
p0 : process (A, B, C, D, E, F, G)
variable V : integer;
begin

$$
\begin{aligned}
& \qquad \mathrm{V}:=\left(\mathrm{B} * \mathrm{C}+\mathrm{D} * \mathrm{E}^{*} \mathrm{~F}+\mathrm{G}\right) \text {; } \\
& \qquad \mathrm{Y}<=\mathrm{A}+\mathrm{V} ; \mathrm{Z}<=\mathrm{A}-\mathrm{V} \text {; } \\
& \text { end process; } \\
& \text { end RTL1; }
\end{aligned}
$$

architecture RTL2 of TEMP is
signal A, B, C, D, E, F, G, Y, Z : integer;
signal V : integer;
begin
p0 : process (A, B, C, D, E, F, G)
begin

$$
\begin{aligned}
& \mathrm{V}<=\left(\mathbf{B}^{*} \mathbf{C}+\mathrm{D}^{*} \mathbf{E}^{*} \mathbf{F}+\mathbf{G}\right) ; \\
& \mathrm{Y}<=\mathrm{A}+\mathrm{V} ; \mathrm{Z} \text { <=A }-\mathrm{V}
\end{aligned}
$$

end process;
end RTL2;

