
 Sequential Statements Sequential Statements

➤➤ Variable assignmentVariable assignment
statementstatement

➤➤ Signal assignmentSignal assignment
➤➤ If statementIf statement
➤➤ Case statementCase statement
➤➤ Loop statementLoop statement
➤➤ Next statementNext statement

➤➤ Exit statementExit statement
➤➤ Null statementNull statement
➤➤ Procedure callProcedure call

statementstatement
➤➤ Return statementReturn statement
➤➤ Assertion statementAssertion statement

➤➤

➤➤

Variable assignment statementVariable assignment statement

Variable_assignment_statementVariable_assignment_statement ::= target:=expression;

architecture RTL of VASSIGN is
 signal A, B, J : bit_vector(1 downto 0);
 signal E, F, G : bit;
 begin
 p0 : process (A, B, E, F, G, J)
 variable C, D, H, Y : bit_vector(1 downto 0);
 variable W, Q : bit_vector(3 downto 0);
 variable Z : bit_vector(0 to 7);
 variable X : bit;
 variable DATA : bit_vector(31 downto 0);
 begin ...
 end process
 end RTL;

Variable assignment statementVariable assignment statement
➤➤ p0 : process (A, B, E, F, G, J) p0 : process (A, B, E, F, G, J)
➤➤ -- A, B, J, D, H : bit_vector -- E, F, G : bit-- A, B, J, D, H : bit_vector -- E, F, G : bit
➤➤ begin begin
➤➤ C C :=:= "01";"01";
➤➤ X X := E:= E nand nand F; F;
➤➤ Y Y := H or J;:= H or J;
➤➤ Z(0 to 3) Z(0 to 3) := C & D;:= C & D;
➤➤ Z(4 to 7) Z(4 to 7) := (not A) & (A nor B);:= (not A) & (A nor B);
➤➤ D D := ('1', '0');:= ('1', '0');
➤➤ W W := (2:= (2 downto downto 1 1 =>=> G, 3 => '1', others => '0'); G, 3 => '1', others => '0');
➤➤ DATA := (others => '0'); DATA := (others => '0');
➤➤ end process; end process;

The same signal
G goes to two

bits

Make note of mapping notation again

Signal assignment statementSignal assignment statement

Signal_assignment_statementSignal_assignment_statement ::=::=
 targettarget<=<=[[transporttransport]]waveform_elementwaveform_element{,waveform_element};{,waveform_element};

waveform_element::=waveform_element::=
 value_expression[value_expression[afterafter time_expression]|time_expression]|nullnull[[after after time_expression]time_expression]

VHDL syntax description in
metalanguage

Signal assignment
statement

Signal assignment
statement

p0 : process (A, B)
 begin
 Y <= A nand B after 10 ns;
 X <= transport A nand B

after 10 ns;
 end process;
p1 : process
 begin
 A <= '0', '1' after 20 ns, '0'

after 40 ns, '1' after 60 ns;
 B <= '0', '1' after 30 ns, '0'

after 35 ns, '1' after 50 ns;
 wait for 80 ns;
 end process;

Signal assignment statementSignal assignment statement
➤➤ The optional keywordThe optional keyword transport transport specifies aspecifies a

transport delaytransport delay rather than anrather than an inertial delayinertial delay..
➤➤ Inertial delaysInertial delays are characteristic of switchingare characteristic of switching

circuits.circuits.
➤➤ A pulse with a duration shorter than theA pulse with a duration shorter than the

switching time of the circuit will not beswitching time of the circuit will not be
transmitted intransmitted in transport.transport.

 p1 : process p1 : process
 begin begin
 A <= '0', '1' after 20 ns, A <= '0', '1' after 20 ns,

'0' after 40 ns, '1' after 60 ns;'0' after 40 ns, '1' after 60 ns;
 B <= '0', '1' after 30 ns, B <= '0', '1' after 30 ns,

'0' after 35 ns, '1' after 50 ns;'0' after 35 ns, '1' after 50 ns;
 wait for 80 ns; wait for 80 ns;
 end process; end process;
end RTL;end RTL;

entity DELAY isentity DELAY is
end DELAY;end DELAY;
architecture RTL of DELAY isarchitecture RTL of DELAY is
 signal A, B, X, Y : bit; signal A, B, X, Y : bit;
beginbegin
 p0 : process (A, B) p0 : process (A, B)
 begin begin
 Y <= A Y <= A nand nand B after 10 ns; B after 10 ns;
 X <= transport A X <= transport A nand nand B after B after

10 ns;10 ns;
 end process; end process;

Signal assignment statementSignal assignment statement

entity DRIVER isentity DRIVER is
end DRIVER;end DRIVER;
architecture RTL of DRIVER isarchitecture RTL of DRIVER is
 signal A : integer; signal A : integer;
beginbegin
 pa : process pa : process
beginbegin

A <= 3, 5 after 20 ns,A <= 3, 5 after 20 ns, 7 after 407 after 40
ns, 9 after 60 ns;ns, 9 after 60 ns;

 wait for 30 ns;wait for 30 ns;
 A <= 2, 4 after 20 ns, 6 after A <= 2, 4 after 20 ns, 6 after

40 ns,40 ns, 8 after 60 ns;8 after 60 ns;
 wait for 50 ns;wait for 50 ns;
 end process; end process;
end RTL;end RTL;

discarded

discarded

Signal assignment statementSignal assignment statement

➤ Differences between variables and signals

➤ 1. Where declared
➤ Local variables are declared and only visible inside a process or a

subprogram.
➤ Signals cannot be declared inside a process or a subprogram.

➤ 2. When updated
➤ A local variable is immediately updated when the variable

assignment statement is executed.
➤ A signal assignment statement updates the signal driver.
➤ The new value of the signal is updated when the process is

suspended.

Signal assignment statementSignal assignment statement

3. Variables are cheaper to implement in VHDL
simulation since the evaluation of drivers is not
needed. They require less memory.

4. Signals communicate among concurrent statements.
Ports declared in the entity are signals. Subprogram
arguments can be signals or variables.

5. A signal is used to indicate an interconnect (net in a
schematic). A local variable is used as a temporary
value in a function description.

Signal assignment statementSignal assignment statement

6.A local variable is very useful to factor out
common parts of complex equations to
reduce the mathematical calculation.

7.
➤ The right-hand side of a variable assignment

statement is an expressionexpression.
➤ There is no associated time expression.
➤ The right-hand side of a signal assignment

statement is a sequence of waveform elements with
associated time expressions.

Signal assignment statementSignal assignment statement

entity SIGVAL isentity SIGVAL is
 port (port (
 CLK, D : in bit; CLK, D : in bit;
 FF2, FF3 : out bit; FF2, FF3 : out bit;
 Y : out bit_vector(7 Y : out bit_vector(7 downto downto 0)); 0));
end SIGVAL;end SIGVAL;
architecture RTL of SIGVAL isarchitecture RTL of SIGVAL is
 signal FF1, SIG0, SIG1 : bit; signal FF1, SIG0, SIG1 : bit;
beginbegin
 p0 : process (D, SIG1, SIG0) p0 : process (D, SIG1, SIG0)
 variable VAR0, VAR1 : bit; variable VAR0, VAR1 : bit;

beginbegin
 VAR0 := D;VAR0 := D;
 VAR1 := D; VAR1 := D;
 SIG0 <= VAR0; SIG0 <= VAR0;
 SIG1 <= VAR1; SIG1 <= VAR1;
 Y(1 Y(1 downto downto 0) <= VAR1 & VAR0; 0) <= VAR1 & VAR0;
 Y(3 Y(3 downto downto 2) <= SIG1 & SIG0; 2) <= SIG1 & SIG0;
 VAR0 := not VAR0; VAR0 := not VAR0;
 VAR1 := not VAR1; VAR1 := not VAR1;
 SIG0 <= not VAR0; SIG0 <= not VAR0;
 SIG1 <= not D; SIG1 <= not D;
 Y(5 Y(5 downto downto 4) <= VAR1 & VAR0; 4) <= VAR1 & VAR0;
 Y(7 Y(7 downto downto 6) <= SIG1 & SIG0; 6) <= SIG1 & SIG0;
end process;end process;

Signal assignment statementSignal assignment statement

C
D
V0
V1
S0
S1
Y

Y <= (S1, S0, ~D, ~D, S1, S0, D, D)

Signal assignment statementSignal assignment statement

C
D
V0
V1
S0
S1
Y
F1
F2
V3
F3

Signal assignment statementSignal assignment statement
 p1 : process p1 : process
 begin begin
 wait until wait until CLK'event CLK'event and CLK = '1'; and CLK = '1';
 FF1 <= D; FF2 <= FF1; FF1 <= D; FF2 <= FF1;
 end process; end process;
 p2 : process p2 : process
 variable V3 : bit; variable V3 : bit;
 begin begin
 wait until wait until CLK'event CLK'event and CLK = '1'; and CLK = '1';
 V3 := D; FF3 <= V3; V3 := D; FF3 <= V3;
 end process; end process;
end RTL;end RTL;

C
D
V0
V1
S0
S1
Y
F1
F2
V3
F3

•Signal assignment statement•Signal assignment statement
entity TEMP isentity TEMP is
end TEMP;end TEMP;
architecture RTL of TEMP isarchitecture RTL of TEMP is
 signal A, B, C, D, E, F, G, Y, Z : integer; signal A, B, C, D, E, F, G, Y, Z : integer;
beginbegin
 p0 : process (A, B, C, D, E, F, G) p0 : process (A, B, C, D, E, F, G)
 begin begin
 Y <= A + (B*C + D*E*F + G); Y <= A + (B*C + D*E*F + G);
 Z <= A - (B*C + D*E*F + G); Z <= A - (B*C + D*E*F + G);
 end process; end process;
end RTL;end RTL;
architecture RTL1 of TEMP isarchitecture RTL1 of TEMP is
signal A, B, C, D, E, F, G, Y, Z : integer;signal A, B, C, D, E, F, G, Y, Z : integer;
beginbegin
 p0 : process (A, B, C, D, E, F, G) p0 : process (A, B, C, D, E, F, G)

variable V : integer;variable V : integer;
beginbegin
 V := (B*C + D*E*F + G); V := (B*C + D*E*F + G);
 Y <= A + V; Z <= A - V; Y <= A + V; Z <= A - V;
end process;end process;
end RTL1;end RTL1;
architecture RTL2 of TEMP isarchitecture RTL2 of TEMP is
 signal A, B, C, D, E, F, G, Y, Z : integer; signal A, B, C, D, E, F, G, Y, Z : integer;
 signal V : integer; signal V : integer;
beginbegin
 p0 : process (A, B, C, D, E, F, G) p0 : process (A, B, C, D, E, F, G)
 begin begin
 V <= (B*C + D*E*F + G); V <= (B*C + D*E*F + G);
 Y <= A + V; Z <= A - V; Y <= A + V; Z <= A - V;
 end process; end process;
end RTL2;end RTL2;

