
Copyright 1997/8/9, KJH, 545_5, 5/7/2001
1

Data Types

Prof. K. J. Hintz

Department of Electrical
and

Computer Engineering
George Mason University

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
2

Composite Date Types

■ Arrays
– Single and multi-dimensional
– Single Type

■ Records
– Mixed types

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
3

Array

■ Indexed Collection of Elements All of the
Same Type
– One-dimensional with one index
– Multi-dimensional with several indices

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
4

Array

– Constrained
» the bounds for an index are established when the

type is defined

– Unconstrained
» the bounds are established after the type is defined

– Each position in the array has a scalar index
value associated with it

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
5

Array Definition Syntax

array (discrete_range { , ... })
of element_subtype_indication ;

discrete_range is an index
– name of previously declared type with optional

range constraint

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
6

Array Declaration, e.g.,

type Large_Word is array (63 downto 0)
of bit ;

type Address_List is array (0 to 7) of
Large_Word ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
7

Array Declaration, e.g.,

type 2D_FFT is array

(1 to 128, 1 to 128) of real ;

type Scanner is array

(byte range 0 to 63) of integer ;

type Sensor_Status is array

(Stdby, On, Off) of time ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
8

Unconstrained Declaration

type Detector_Array is array

(natural range <>) of natural ;

■ The symbol ‘<>’ is called a box and can be
thought of as a place-holder for the index
range.

■ Box is filled in later when the type is used.
variable X_Ray_Detector : Detector_Array

(1 to 64) ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
9

Predefined Unconstrained Types

type string is array

(positive range <>) of character ;

type bit_vector is array

(natural range <>) of bit ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
10

Predefined Unconstrained Types

type std_ulogic_vector is array

(natural range <>) of std_ulogic ;

type bit_vector is array

(natural range <>) of bit ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
11

Unconstrained Array Ports

■ 1. Specify Port As Unconstrained

■ 2. Index Bounds of Signal Determine Size
of Port

– e.g., AND Gates With Different Number of
Inputs

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
12

1. Unconstrained Array Port, e.g.,

entity And_Multiple is

port (i : in bit_vector ;

y : out bit) ;

end entity And_Multiple ;

i y

And_Multiple

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
13

2. AND, e.g.,

architecture And_Multiple_B of
And_Multiple is

begin
And_Reducer : process (i) is
variable Result : bit ;
begin
Result := ‘1’ ;
for Index in i’Range loop
Result := Result and i (Index) ;
end loop ;

variable Signal created
outside the loop

i y

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
14

AND, e.g.,

y <= Result ;

end process And_Reducer ;

end architecture And_Multiple_B ;

signal

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
15

AND, e.g.,

signal count_value :

bit_vector (7 downto 0) ;

signal terminal_count : bit ;

tc_gate : entity work.And_Multiple

(And_Multiple_B)

port map (i => count_value ,

y => terminal_count) ;

i y

And_Multiple

terminal_count

count_value 8 bits

architecture And_Multiple_B

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
16

AND, e.g.,

■ The Input Port Is Constrained by the Index
Range of the Input Signal, i.e., An 8-Input
AND Gate.

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
17

Array References

■ Arrays Can Be Equated, Rather Than
Having to Transfer Element by Element

■ Refer to Individual Elements By
– Single Index Value, e.g., A (5)

– Range: a contiguous sequence of a one-
dimensional array can be referred to by using it
as an index. e.g., A(5 to 15)

– Previously defined subtype
– Index types do not have to be the same

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
18

Array Aggregate Syntax

■ A List of Element Values Enclosed in
Parentheses

■ Used to Initialize Elements of an Array to
Literal Values

aggregate <= ([choices =>]

expression { ... })

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
19

Array Aggregate

■ Two Ways of Referring to Elements
– Positional: explicitly list values in order
– Named Association: Explicitly list values by

their index using “choices”
» Order NOT important

■ Positional and Named Association Cannot
Be Mixed Within an Aggregate.

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
20

Array Aggregate, e.g.,

type Sensor_Status is

array (Stdby , On , Off) of time ;

variable FLIR_Status :

Sensor_Status := (0 sec , 0 sec , 0 sec);

variable FLIR_Status :

Sensor_Status := (On => 5 sec) ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
21

Array Aggregate, e.g.,

■ others Can Be Used in Place of an Index
in a Named Association,
– Indicating a Value to Be Used for All Elements

Not Explicitly Mentioned

variable FLIR_Status : Sensor_Status :=

(Off => 10 min, others => 0 sec) ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
22

Array Aggregate, e.g.,

■ A Set of Values Can Be Set to a Single
Value by Forming a List of ElementsList of Elements
Separated by Vertical Bars, Separated by Vertical Bars, | | ..

type 2D_FFT is array

(1 to 128, 1 to 128) of real ;

variable X_Ray_FFT : 2D_FFT :=

((60, 68) | (62, 67) | (67, 73)
| (60, 60) => 1.0 , others 0.0) ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
23

Array Operations

■ One-Dimensional Arrays of Bit or Boolean
– Element by element AND, OR, NAND, NOR,

XOR, XNOR can be done on array

type Large_Word is array
(63 downto 0) of bit ;

variable Samp_1 , Samp_2 : Large_Word
(0 to 63 => ‘0’) ;

Large_Word

0 63

0 0

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
24

Array Operations, e.g.,

constant Bit_Mask : Large_Word

(8 to 15 => ‘1’) ;

Samp_2 := Samp_1 and Bit_Mask ;

Bits from 8 to 15 are
AND-ed with Bit_Mask

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
25

Array Operations

– Complement of elements of a single array,
NOT

Samp_2 := not Samp_1 ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
26

Array Operations

■ One-Dimensional Arrays Can Be Shifted
and Rotated
– Shift

» Logical: Shifts and fills with zeros
» Arithmetic: Shifts and fills with copies from the end

being vacated

– Rotate
» Shifts bits out and back in at other end

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
27

Array Operations, e.g.,

B” 1010_1100 ” sll 4 == B” 1100_0000 ”

B” 1010_1100 ” sla 4 == B” 1100_0000 ”

B” 1010_1100 ” sra 4 == B” 1111_1010 ”

B” 1010_1100 ” rol 4 == B” 1100_1010 ”

Rotate leftShift right arithmetic

Shift left logic

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
28

Array Operations

■ One-Dimensional Arrays Can Be Operated
on by Relational Operators,
= , /= , < , <= , > , >=
– Arrays need not be of the same length
– Arrays must be of same type

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
29

Array Operations

■ Concatenation Operator, &
– Can combine array and scalar

B” 1010_1100 ” & B” 1100_0000 ” ==

B” 1010_1100_1100_0000 ”

B” 1010_1100 ” & ‘1’ == B” 1010_1100_1 ”

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
30

Array Type Conversions

■ One Array Type Can Be Converted to
Another If:
– Same element type
– Same number of dimensions
– Same index types

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
31

Array Type Conversions, e.g.,

Example

subtype name is string (1 to 20) ;

type display_string is array (integer
range 0 to 19) of character ;

variable item_name : name ;

variable display : display_string ;

display := display_string (item_name) ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
32

Array Aggregate, e.g.,

■ Assignments Can Be Made From a Vector
to an Aggregate of Scalars or Vice-Versa.

type Sensor_Status is array

(Stdby, On, Off) of time ;

variable Stdby_Time, On_Time, Off_Time :
time ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
33

Array Aggregate, e.g.,

Variable FLIR_Status :

Sensor_Status := (0 sec ,

0 sec ,

0 sec) ;

(Stdby_Time,

On_Time,

Off_Time) := Flir_Status ;

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
34

Records

■ Collections of Named Elements of Possibly
Different Types.

■ To Refer to a Field of a Record Object, Use
a Selected Name.

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
35

Records

■ Aggregates Can Be Used to Write Literal
Values for Records.

■ Positional and Named Association Can Be
Used
– Record field names being used in place of array

index names.

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
36

Record e.g.,*

type instruction is

record

op_code : processor_op ;

address_mode : mode ;

operand1, operand2 :

integer range 0 to 15 ;

end record ;

*Ashenden, VHDL cookbook

Copyright 1997/8/9, KJH, 545_5, 5/7/2001
37

End of Lecture

