

Sequential ArchitectureSequential Architecture
• Sequential computers are based on the

model presented by John von Neumann
• Performance of the model is limited by:

– Speed of information exchange between
memory and CPU

– Execution rate of instructions
• Performance can be improved by improving

these aspects

Memory Banks & CacheMemory Banks & Cache
• The speed of information exchange

between memory and CPU can be
improved
– by using memory interleaving

• (= simultaneous memory access by having
several memory banks)

– by using very fast memory (cachecache)

PipelinePipeline
• Execution rate of the instructions can be

improved by overlapping the execution of
several instructions
– instruction pipelining means that instructions

are executed and fetched from the memory at
the same time

– execution pipelining means that different
instructions are in different functional units
(multipliers, adders, ...)

Instruction Instruction PipelinesPipelines
• Execution of instructions has 4 phases:

– Fetch
– Decode
– Execute
– Write-back

• Usually these phases are executed as in
industrial assembly lineindustrial assembly line

=> overlapping of execution

NoteNote
• It takes some time to fill the pipeline but as

soon as the pipeline is filled the resultsthe results
come out in every cyclecome out in every cycle

• Branches affect the execution as new
instruction need to be fetched
Slows down the execution
=> Branch prediction

About Sequential ArchitecturesAbout Sequential Architectures

• Pipelining, memory interleaving and caching are
commonly used in sequential computers

• Some restrictions
– Cache speed is limited by technology
– Memory interlaving and pipelining are useful only in

some cases
• Alternate way is to use real parallel architectures

Parallel ArchitecturesParallel Architectures
• Parallel architectures can be classified in

several ways:
– Flynn’s taxonomy
– control mechanism
– address-space organization
– interconnection network
– granularity of processors

• Note! ovelapping categories

Flynn’s taxonomyFlynn’s taxonomy
• The most famous classification according to the data

and instruction streams:
–– SISD SISD (Single Instruction Single Data)

• Sequential architecture
–– MISDMISD (Multiple Instruction Single Data)

• Several processors execute different instructions to the same data
=> not too practical

–– SIMDSIMD (Single Instruction Multiple Data)
• Several processors execute same instruction to several different

data
–– MIMDMIMD (Multiple Instruction Multiple Data)

• Several processors execute instructions independently to their own
data

Control MechanismControl Mechanism
• Parallel architectures consist of several

processing elements PE
• Processing elements may operate

– under centralized control (=SISD)
– independently (=MIMD)

SIMD & MIMDSIMD & MIMD

•• SIMD:SIMD: Control unit dispatches instructions
to processing elements
– synchronous execution
– PE is on/off
– CM-2, Illiac IV, MP-1, MP-2

•• MIMD:MIMD: Each processing element may
execute its own program
– iPSC, Symmetry, nCube 2, CM-5

ComparisonComparison

• SIMD requires less hardware because of
single control unit

• MIMD processors are more complex
because of separate control units

• SIMD requires less memory because only
one copy of the program is used

• SIMD suits for data-parallel programs

ComparisonComparison
• SIMD may execute only one instruction in

each clock cycle
• MIMD is suitable for programs limited by

condition statements
• SIMD offers automatic synchronization
• MIMD processors are common whereas

SIMD are special design

Address-space OrganizationAddress-space Organization

• Solving a problem in parallel architectures
requires communicationcommunication between processors

• Communication can be achieved by using
–– shared memoryshared memory
–– message passingmessage passing

Message PassingMessage Passing

• Multicomputer
• Each processor has its own memory
• Processors are connected through a message

passing interconnection network
• Processors communicate by sending

messages to each other
• Example: CM-5, iPSCiPSC

Shared MemoryShared Memory
• Multiprocessor
• Shared memory architecture uses shared

memory for the communication by
changing variables

• Different variations
– UMA, uniform memory access
– NUMA, non-uniform memory access
– COMA, cache-only memory access

Uniform Memory AccessUniform Memory Access
• First approach is to offer equal accessequal access to

shared memory
• Interconnection network capacitynetwork capacity problem

– all processors may need to have something
from the memory at the same time

– memory access through the networknetwork may be
slow (because of the structure)

Non-uniform Memory AccessNon-uniform Memory Access

• Avoid unnecessary memory references by
using local memory
– Program
– Non-shared data structures

• Local memory concept can be extended by
removing global (shared) memory

• Memory references are mappedreferences are mapped by the
hardware

Cache-only Memory AccessCache-only Memory Access

• NUMA architecture is similar to message
passing architecture
– NUMA provides hardware support
– Message passing architecture requires explicit

message passing
• In some cases the processor contains only

cache memory and no local memory
(= cache only memory access)

Cache CoherenceCache Coherence
• Cache can be added to processors to

speed up the memory referencesspeed up the memory references
• Cache improves the performance as it

does in sequential architecture
– but the parallel architecture causes troubles

if processors modify variables in their own
cache
• Memory value and cache value may differ

Cache Coherence ProblemCache Coherence Problem
• Write-through (WT) and write-back (WB)

caches
– WT: memory follows the cache
– WB: memory is not updated until replacement

• Cache coherence problem may appear if
– Modification of shared data
– Process migration
– I/O operations bypassing caches

Cache CoherenceCache Coherence
• Cache coherence can be achieved by using

several approaches:
– snoopy coherence protocols (snoopy bus)

• write invalidate
– Invalidates all other copies

• write update
– Broadcasts the newly cached copy

Interconnection NetworkInterconnection Network
• Both shared memory and message passing

architectures can use
– static interconnection network
– dynamic interconnection network

• Static networks usually in message passing
computers

• Dynamic networks usually in shared
memory computers

Granularity of ProcessorsGranularity of Processors
• Parallel architecture can be implemented by using

– small number of powerful processors
– large amount of less powerful processors

• Classification into
– coarse-grain (only few processors)
– medium-grain
– fine-grain (a lot of processors)

• Examples: Cray Y-MP, CM-5, CM-2

GranularityGranularity
• Price and availability of processors !

– powerful processors cost a lot and therefore
parallel computers tend to have only limited
number of them

• Different applications suit for different
architectures
– limited parallel properties => coarse-grain
– lot of concurrency => fine-grain

GranularityGranularity
• Ratio of the time required for a basic

communication to the time required for the
basic computation
– Small ratio => suitable for communication

intensive algorithms (= fine grain)
– Large ratio => suitable for computation

intensive algorithms (= coarse grain)

Another approachAnother approach
• Similar way is to classify parallel computers

according to the following terms:
– Homogeneity (SIMD, MIMD, SPMD)
– Synchrony (synchronous, asynhronous, loosely

synchornous, BSP)
– Interaction mechanism (shared, messages)
– Address space (UMA, NUMA, NORMA,

COMA)
– Memory model (EREW, CREW, ...)

TermsTerms
•• HomogeneityHomogeneity

– How alike processors are
•• SynchronySynchrony

– How tight synchronization is used
•• Interaction mechanismInteraction mechanism

– How processes interact
•• Address spaceAddress space

– memory location accessible by the process
•• Memory modelMemory model

– How machine model handles shared memory conflicts

Physical ModelsPhysical Models
• Large scale computer systems can generally be

classified into the following practical models:
–– SIMDSIMD
–– PVPPVP, parallel vector processor
–– SMPSMP, symmetric multiprocessor
–– MPPMPP, massively parallel processor
–– COWCOW, cluster of workstations
–– DSMDSM, Distributed Shared Memory

PVPPVP
• These systems contain a small number of

powerful custom made vector processors
• Each processor is capable of 1 Gflops
• Custom designed crossbar swith network
• Shared memory
• Cray C-90, Cray T-90, NEC SX-4

• Uses common microprocessors
• Bus / crossbar switch
• Symmetric i.e. each processor has equal access to

memory, I/O, ...
• Number of processors is limited by the centralized

memory, interconnection (scaling)
• Used for database applications, data warehouses
• IBM R50, SGI Power Challenge, DEC Alpha

server 8400

• Very large-scale computer system:
– common microprocessors
– physically distributed memory
– high communication bandwith and low latency

interconnection
– scales well (up to 1000s of processors)
– asynchronous MIMD machine with message passing
– program consist of multiple processes (private address

space)
• Tightly coupled

COWCOW
• Low-cost variation of MPP

– each node is a complete workstation (PC/SMP)
– low-cost network (Ethernet, FDDI, Fiber-channel,

ATM, ...)
– loosely coupled (separate I/O bus)
– loacl disk
– complete operating system

• Digital TruCluster, IBM SP2, Berkley NOW

DSMDSM
• Uses cache directory (supports distributed

coherent caches) or special hardware and
software extensions

• Stanford DASH, Cray T3D
• Difference to SMP is physical distribution

of the memory (hardware and software
makes on illusion of shared memory)

• Sofware inplementation (TreadMarks)

CommentsComments

• Boundary between MPPs and COW is
becoming fuzzy
– IBM SP2 is MPP but has a cluster architecture

with high-performance switch
– Clustering is becoming a trend for scalable

parallel computers

ClusteringClustering
• Cluster is a collection of complete computers

(nodes) that are physically interconnected by a
high-performance network or a local area network

•• Characteristics:Characteristics:
– Each computer is an SMP, workstation or PC
– Nodes work together as a single integrated computing

resource
– Each node can be used separately if necessary

Architecturel concepts
• Cluster nodes
• Internode connection

– Ethernet, FDDI, ATM, Fiber-channel
– Standard protocols

• Single system image
– single resource vs. distributed system

• Enhanced availability
– cost-effective way to enhance availability (% of time system is

available for the user)
• Better performance

– superserver, minimize time for a job

Architectural comparison

• Clusters, SMP, MPP, distributed systems
are overlapping
– node complexity – hardware and software

capability
– Single system image – relative concept

Benefits and difficulties

• Usability
– Single nodes are traditional platform

⇒develop and run application as used

– More difficult to program than message passing MPP

• Availability
– Percentage of time system is available for productive

use
– Use of common components (redundancy)
– Processors, memory, disk array, operating system

Benefits and difficulties

• Scalable performance
– add performance by increasing nodes
– processors, memory, disks scale well

• Performance/cost ratio
– clusters are cost-effective (cmp. PVP, MPP)
– made of common components (Moore’s law)

Abstract models

• Few abstract models have been developed
for the parallel computing
– PRAM, Parallel random access machine
– BSP, Bulk synchronous parallel model
– Phase parallel model

• Design and analysis of algorithms without
worrying about the details of physical
machines

PRAM

• Ideal architecture
• Characteristics:

– p processors + unlimited memory
– MIMD
– Fine grain
– Tightly synchronous
– Zero overhead for synchronization
– Shared variables (no communication overhead)

PRAM

• Simple and clean approach
– many theoretical parallel algorithms are specified with

PRAM
– widely used for analysing algorithms

• Zero communication time is unrealistic
• Overheads may affect in real life
• Because of unrealistic assumptions PRAM model

has not been used as a machine model for real life
parallel computers

Memory models

• Memory references that happen at the same time
can be solved as follows:
– EREW (Exclusive Read Exclusive Write)

• No memory operations at the same time
• Weakest model

– CREW (Concurrent Read Exclusive Write)
• Several reads allowed but only one write
• Concurrent writes happen sequentially

– ERCW (Exclusive Read Concurrent Write)
• Several writes but only one read

– CRCW (Concurrent Read Concurrent Write)
• Several reads and writes at the same time allowed

Concurrent write

• Concurrent write can be solved in CRCW and
ERCW models as follows:
– Common value

• Concurrent write can be performed if the same value
– Arbitrary value

• One arbitrary processor succeeds
– Priority

• Processor with the highest priority succeeds
– Function

• Use some function of the values e.g. sum

BSP

• Bulk synchronous parallel model
• Overcome shortcomings of PRAM model

– p processor memory pairs (nodes)
– Interconnection network
– p processes (one / node)
– Time steps & supersteps

• Computation operations w time steps
• Communication gh time steps
• Barrier synchronization l time steps

BSP

• BSP is an MIMD type computer
• Loose synchrony at superstep level (compare tight

instruction level synchrony in PRAM)
• Within superstep each process execute instructions

asynchronously
• Communication may use shared memory or

message passing
• Point-to-point communication

BSP

• BSP is more realistic than PRAM because it
consideres overheads

• Exeution time of superstep is determined by:
– load imbalance: w is max time spent on computation

operations
– synchronization overhead: lower bound for the

communication network latency
– communication overhead: gh time steps, platform

dependent part g * h relation
– time for superstep is w + gh + l

Phase Parallel Model

• Combines both PARM and BSP
– Parallel program is executed as sequence of

phases (superstep)
• parallelism phase
• computation phase
• interaction phase

– Different computation phases may execute
different workloads at different speeds (w, tf)

– Different interactions may take different times

• Lappeenranta Univ of Technology
• Labra

Sources

