

What are Cellular Automata?
• It is a model that can be used to show how
the elements of a system interact with each
other.
• Each element of the system is assigned a
cell.
• The cells can be 2-dimensional squares, 3-
dimensional blocks or another shape such as
a hexagon.

Each cell has a defined neighborhood.

For example, in a one dimension cellular automaton, a
neighborhood of radius one for a given cell would include the
cell to the immediate right and the cell to the immediate left.

The cell itself may or may not be included in the
neighborhood.

Different models.

(A,B,C,D,E,F,X) are cells

The cells on the end may (or may not) be treated as
"touching" each other as if the line of cells were

circular.
If we consider them as they touch each other, then the

cell (A) is a neighbor of cell (C)

 Let us take an example to make things clear.

Here is a 2-d model, with
256 cells, each cell in this
example can be in either (0
or 1) state,

State 1 is encoded with
color black, 0 with white.

Each cell has eight
neighbors (excluding
itself).

One difficulty with three-dimensional cellular automata
is the graphical representation (on two-dimensional
paper or screen)

In the initial configuration of the cellular automata,
each cell is assigned a "starting" value from the
range of possible values.

For example, if the range of possible values is 0 or
1, then each cell would be assigned a 0 or a 1 in the
initial configuration.

Each value represents a color to the computer.

Each cell is associated a transition rule.

Here is an example
In this example, the initial configuration for all the cells is state
0, except for 4 cells in state 1.

 Initial Step1 Step2

The next slide shows animation for this example

•The transition rule for this example, is :
•a cell stays in state 1 (black), if it has two or three black
neighbors.
•a cell changes to black, if it has exactly three black neighbors.

In this example:
• Each cell has 8 neighbors,
• Each cell can be in one possible value at any given time,

– the transition takes place in discrete times (imagining a clock
feeds all the cells will help),

• Each State is encoded with a unique color,
– The transition rule takes as input the present states (i.e., the

present values) of all of the cells in a given cell's neighborhood
and generates the next state (i.e., the next value) of the given
cell.

– When applied to all of the cells individually in a cellular
automata, the next state of the whole cellular automata is
generated from the present state.

– Then the next state of the cellular automata is copied to the
(new) present state and the process is repeated for as many
clock cycles as desired.

• Vote is an example of the
simplest possible kind of eight-
neighbor CA.

• Vote is so simple because:
– (1) Vote is a "one-bit rule" and,
– (2) Vote is "totalistic.”

• What do these expressions
mean?

• NineSums:
The NineSum for a cell (C) is the
sum of 1’s in all the surrounding
cells (neighbors including cell (C)).

• EightSum:
EightSum for a cell (C) is the sum
of 1’s in all the surrounding cells
(neighbors excluding cell (C)).

• Let’s consider the above example to explain what
NineSume & EightSum are.

• In this example, each cell can be in either 0 or 1 state.
• Cell C has 8 neighbors, 3 of them are in state 1,

– Then the EightSum for cell C is 3, NineSume is 4.

• Vote is a one-bit rule.
• The cells of Vote have only

two possible states: on or off,
zero or one.

• Choosing between two options
requires one bit of
information, and this is why
we call Vote a one-bit rule.

• Vote is totalistic.
• A totalistic rule updates a cell C by forming the

EightSum of the eight neighbors, adding in the
value of C itself to get the full NineSum, and then
determining the cell's new value strictly on the
basis of where the NineSum lies in the range of
ten possibilities 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

• Under a totalistic rule, a cell's next state depends
only on the total number of bits in its nine-cell
neighborhood.

• Let us discuss this real-life example.

A rule like this is completely specified by a
ten-entry lookup table which gives the
new cell value for each of the ten possible
neighborhood NineSums.

Each of the entries has to be 0 or 1, so filling
in such a lookup table involves making
ten consecutive binary decisions, which
can be done in 210 different ways.

How many different eight-neighborHow many different eight-neighbor
1-bit totalistic rules are there?1-bit totalistic rules are there?

Each time a cell is updated, the NineSum of the cell and its eight
neighbors is formed.

The idea behind Vote's rule is that if most cells in your neighborhood are
1, then you go to 1, and if most cells in your neighborhood are 0, then
you go to 0.

What do we mean by "most cells in your neighborhood?"
Since there are nine cells in your neighborhood, the most obvious

interpretation is to assume that "most" means "five or more".
Here is the lookup table for this simple majority rule.

At this time we have an idea about
what the Cellular Automata is.

Let us now try to get closer to theLet us now try to get closer to the
basic digital logic aspectsbasic digital logic aspects

 and find a and find a different definitiondifferent definition for for
Cellular Automata.Cellular Automata.

• Let us first try to define the cellular automata as
follows:
– it is a Finite State Machine, with one transition

function for all the cells,
– this transition function changes the current state of a

cell depending on the previous state for that cell and
its neighbors.

• All we can do is to design the transition function
and set the initial state.

• Cells here use Flip-Flops.
• In general, registers.

• The advantage of the CA over the FSMs is:
– that each cell uses as many data as number of neighbor cells

to calculate its next state which represents an information that
will be available for all neighbors including itself,

– and the goal is to design the transition function for these cells
– there is no State Assignment problem because all cells are the

same
– transition function is the same for all cells.

• But the complexity is to design the Transition function
that fits our application!!!

• Images that represent different cellular
automata:
– each cell can be in state (0 or 1or 2 …..or n),
– each state is encoded with a unique color,
– each cellular automata, has its own transition

rule.

Nouraddin Alhagi, class 572

SourcesSources

