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� Introduction

– Microelectronics
– Micro “economics”
– What is “design”?

� Techniques for Digital Synthesis
– Architectural-Level Synthesis
– Logic-Level Synthesis
– Geometric Synthesis

� Techniques for Formal Verification
– Automated Theorem-Provers
– Graph-based Algorithms

� Reengineering



CEG790

Overview: MicroelectronicsOverview: Microelectronics

� What is a microelectronic component?
– Devices which exploit the properties of semiconductor materials

– Constructed by patterning a substrate and locally modifying its
properties to shape “wires” and logical “devices”

– Complex functions are “integrated” into one physical package

– Fabrication is very complex

� Microelectronic components enable “smart” systems
– Prevalent in modern systems

– Failures are not taken well - most applications are “critical”
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Overview: “Micro” EconomicsOverview: “Micro” Economics

� IC technology has progressed tremendously over 40 yrs.
– Moore’s Law [SSI - ‘60, MSI - ‘70, VLSI - ‘90, ?? - ‘00]

� Costs have increased tremendously as well
– Larger capital investment due to cost of refining precision

– Larger scale increases effort to achieve zero-defect design
� ICs are nearly impossible to repair

� The design must be correct (and manufacturing defects limited)

– Design and manufacturing costs must be recovered via sales

� Few designs do enjoy a high volume of sales or long life

� Many systems require specialized devices (ASICs) - few hold a
significant market share individually

� Improvement of technology causes immediate obsolescence
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Overview: “Micro” EconomicsOverview: “Micro” Economics

� How can costs be reduced and net profit increased?
– Minimize Design (and test) time

� Reduces both time-to-market and designers’ salaries

– Increase quality of design to increase fabrication yield and provide
competitive performance

� Design automation techniques provide an effective means
for designing economically viable products

– Carrying out a full design w/o errors is increasingly difficult w/o
systematic techniques to handle data

– CAD techniques tend to focus on Digital Synchronous circuits as
they represent the vast majority of circuits in the market
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Overview: What is “Design”?Overview: What is “Design”?

� General model for (Re-)Engineering (Byrne, 1992)
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Automated SynthesisAutomated Synthesis

� Design Process

Register Transfer Level

Behavioral Level

Gate Level

Physical Design

high-level synthesis

logic synthesis

geometrical synthesis

~ Requirements Spec.

~ Implementation Spec.
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Automated SynthesisAutomated Synthesis

� Design Process

Register Transfer Level

Behavioral Level

Gate Level

Physical Design

high-level synthesis

logic synthesis

geometrical synthesis
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High-level SynthesisHigh-level Synthesis

� High-level (Architectural-level) synthesis deals with the
transformation of an abstract model of behavior into a
model consisting of standard functional units

– Goal: to construct the macroscopic structure of a circuit

– Input: an abstract model of behavior
�  Common Abstract Models: HDLs, State diagrams, ASM charts,

Sequencing graphs or Control/Data-flow graphs.

– Output: a structural view of the circuit, in particular of its datapath,
and a logic-level specification of its control unit

� often referred to as the register-transfer level or macro-module model
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High-level SynthesisHigh-level Synthesis

– The data path is an interconnection of resources whose execution
and I/O is determined by the control unit according to a schedule

� functional resources:

– Primitive resources: “stock” functions
– Application-specific resources: requires model

� memory resources: registers or memory arrays to store data
� interface resources: steering logic circuits (e.g., muxes and buses)

that send data to the appropriate destination at the appropriate time
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High-level SynthesisHigh-level Synthesis

� Measuring cost
– Evaluation Metrics: area, cycle-time (clock period), latency, and

throughput (pipelines)

– The objectives form a n-dimensional design space
� Architectural exploration is the traversal of the design space to

provide a spectrum of solutions for the designers selection

� Generally only the resources are considered (resource dominant)

� The fundamental architectural synthesis problem
– Explore the design space to minimize “cost” given:

� A circuit model (behavioral)

� A set of constraints (on cost)

� A set of functional resources (characterized for area, delay, etc.)
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Temporal SchedulingTemporal Scheduling

� Automated approaches to the fundamental problem consist
of two related constrained optimization problems:
Temporal Scheduling and Spatial Binding

� Temporal Scheduling
– Each architectural-level operation is reduced to resource operations

and the time interval for the operation execution determined
� A graph of resources must be created such that one path from start to

end exists to perform each operation (in parallel)

� The length of the path represents the operation latency

� Constraints include maximum latency, bounds on the resource usage
per type, etc.
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Scheduled Sequencing GraphScheduled Sequencing Graph

� BDDs
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Spatial BindingSpatial Binding

� Spatial Binding
– Determining the detailed interconnections of the data path and the

logic-level specifications of the control unit
� The scheduled sequencing graph represents all necessary operations
� Each resource may cover several operations (for example, an ALU

covers addition, subtraction, comparison, etc.)
� A simple case is dedicated resource binding - each operation is bound

to one resource
� In general, we wish to share a resources - we don’t need to replicate

beyond the maximum number of resources at any given temporal
depth

� In essence, this becomes a set-covering problem (NPC)

� Once a set of resources is identified, area and performance
estimations can be calculated from model data
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Scheduled Sequencing Graph w/Resource BindingScheduled Sequencing Graph w/Resource Binding

� BDDs
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Automated SynthesisAutomated Synthesis

� Design Process

Register Transfer Level

Behavioral Level

Gate Level

Physical Design

high-level synthesis
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Logic-level SynthesisLogic-level Synthesis

� Logic-level synthesis deals with the transformation of an
macroscopic model to an interconnection of logic
primitives

– These primitives determine the microscopic (i.e., gate-level)
structure of the circuit

� A basic approach is to replace “stock” modules with pre-
optimized “stock” logic-level representations

– Local optimizations of do not necessarily create an optimal result

– Cost is increased (area, latency, power) / decreased (design time)

� Alternatively, the modules are partitioned into manageable
designs (generally straightforward for the data path)

– Several different types of finite-state machine decompositions exist
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Logic-level Synthesis TasksLogic-level Synthesis Tasks
� Optimize finite-state machines by state minimization

– Stated as a bi-partite covering problem

� Select a state encoding (for control unit)
– Heuristics include one-hot, almost one-hot, minimal-bit change,

prioritized-adjacency, etc.

� Minimize the related combinational component
– Two-level (SOP) minimization (Quine-McCluksey,  Rudell-

Sangiovanni, and McGeer algorithms)
– Multi-level minimization (Decomposition is non-trivial)

� Cell-library binding
– Implement minimized combinational functions as an

interconnection of devices that are available in a given technology
library (a bound network)
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Automated SynthesisAutomated Synthesis

Register Transfer Level
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Gate Level
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Geometrical-level SynthesisGeometrical-level Synthesis

� Geometrical-level synthesis (physical design) consists of
creating a physical view at the geometric level

– It entails the specification of all geometric patterns defining the
physical layout of the chip, as well as their position
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Validation and VerificationValidation and Verification

� Design Process

Register Transfer Level

Behavioral Level

Gate Level

Physical Design

high-level synthesis

logic synthesis

geometrical synthesis

D D
+

MULT

ADD

RAM

CONTROL

...
PC = PC + 1;
FETCH(PC);
DECODE(INST);
...

?



CEG790

Validation and VerificationValidation and Verification

� Design Process
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Validation and VerificationValidation and Verification
� Circuit validation consists of acquiring reasonable

certainty that a circuit will function correctly
– Assume no manufacturing fault is present
– Can be performed via simulation or via verification

� Simulation (Traditional Validation)
– Traditional verification consists of analyzing circuit variables (at

different levels) over an interval of time
� Unless exhaustive, simulation does not provide full coverage

� Formal Verification (Design Verification)
– Verification methods mathematically prove or disprove the

consistency between two models, or a model and some set of
circuit model properties

� Requires a suitable representation system
� Proofs must be mechanizable
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Formal VerificationFormal Verification

� Property Testing (Testing via partial specification)
– Safety properties: verify “bad things will never occur”

� ex: for every path in the future, at every node on the path, if the
Request signal is low, it remain lows until Acknowledge goes low

– Liveness properties: verify “good things will occur”
� ex: for every path in the future, if there has been a Request signal,

then eventually there will be an Acknowledge signal in response to
the request on at least one node on the path

� Popular FV approaches include:
– Theorem Proving

– Symbolic Model Checking

– Recursive Learning

– many graph-based approaches (BDDs, etc.)
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Automated Theorem-Automated Theorem-ProversProvers

� Automated Theorem-Proving techniques require:
– A representation of the model and/or properties as a series of

formulas (axioms) in a High-Order Language

– A finite collection of rules of inference

� By means of a rule of inference a new formula can be
derived from a given finite set of formulas

– A formal proof is a finite sequence of formulas, each member of
which is either an axiom or the outcome of apply a rule of
inference to previous members of the sequence

– The last formal proof is the theorem

� Allows exhaustive (heuristic directed) search for proof
– Theorem-provers presently require extensive user intervention
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Equivalence CheckingEquivalence Checking

� Equivalence checking (complete functional testing)
– The function of an model is equivalent to the function of another if

input, state, and output correspondences exist under which the
functions are equivalent

– Many techniques require factorial exploration of the input and state
correspondence search space (in the worst-case)

– FV equivalence checking of designs is known to be intractable
� co-NP complete

� heuristic techniques to achieve efficient performance
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Representations of External FunctionRepresentations of External Function

� BDDs

  M1

X1

X2

X3

F

  M2

  M3

  M4

 F

ARCHITECTURE behavioral OF simplecircuit IS
BEGIN
  F <= (not X1) and ((not X2) and X3) or (X2 and (not X3))) after 10 ns;
END behavioral

F ↔ ¬X1 ∧ ((¬X2 ∧ X3) ∨ (X2 ∧ ¬X3))

X1 X2 X3 F
1 d d 0
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

Schematic of simplecircuit
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BDD RepresentationBDD Representation

� BDDs

ARCHITECTURE behavioral OF simplecircuit IS
BEGIN
  F <= (not X1) and ((not X2) and X3) or (X2 and (not X3))) after 10 ns;
END behavioral

X1 X2 X3 F
1 d d 0
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

1

X3

0

X1

X3

X2
1

1

1 10

0

0

0

BDD for F

F ↔ ¬X1 ∧ ((¬X2 ∧ X3) ∨ (X2 ∧ ¬X3))
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BDD RepresentationBDD Representation

� BDDs

  M1

X1

X2

X3

  M2

  M3

  M4

 F

Schematic of simplecircuit

F
X1 X2 X3 M1 M2 M3 M4 F
1 1 1 0 0 0 1 0
1 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0

ARCHITECTURE structural OF simplecircuit IS
  SIGNAL M1, M2, M3, M4: bit ;
BEGIN
 gate0: nor2 PORT MAP ( O => M1, a=> X2, b => X3 );
 gate1: nor2 PORT MAP ( O => M2, a=> X2, b => M1 );
 gate2: nor2 PORT MAP ( O => M3, a=> M1, b => X3 );
 gate3: nor2 PORT MAP ( O => M4, a=> M1, b => M3 );
 gate4: nor2 PORT MAP ( O => F,    a=> X1,  b => M4 );
 output: probe PORTMAP ( F );
END structural
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BDD RepresentationBDD Representation

� BDDs

  M1

X1

X2

X3

  M2

  M3

  M4

 F
X1 X2 X3 M1 M2 M3 M4 F
1 1 1 0 0 0 1 0
1 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0

Schematic of simplecircuit

F

1 0

BDD representing the
characteristic function of 

NOR gate M1:
(M1 ↔ ¬(X2 ∧ X3) )

X1

X2

M1M1

X2 X3 M1 BDD
1 d 0 1
0 1 0 1
0 0 1 1
otherwise 0

0

0

0

1

1

1
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0
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BDD RepresentationBDD Representation

� BDDsX1

X2

X3

M1

M2

M3

M4

F

1
BDD representing structural relationships
All edges not shown lead to the 0-terminal

(M1 ↔ ¬(X2 ∧ X3) ) ∧
(M2 ↔ ¬(X2 ∧ M1) ) ∧
(M3 ↔ ¬(X3 ∧ M1) ) ∧
(M4 ↔ ¬(M2 ∧ M3) ) ∧
(F   ↔ ¬(X1 ∧ M4) )

X1 X2 X3 M1 M2 M3 M4 F
1 1 1 0 0 0 1 0
1 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0
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Binary Decision DiagramsBinary Decision Diagrams

� BDDs have been shown to be efficient under a mild
assumption on the order of the variables

� OBDDS have more practical applications than most
graphical representations:

– OBDDs can be transformed into canonical forms to uniquely
characterize their function

– Operations on OBDDs can be done in O(|G|) time

� OBDDs are the basis for many new FV approaches
– Unfortunately, the size of the BDD is based upon the variable

ordering and can have exponential size in the worst case

– FV problems are far from solved!
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Modern Design ApproachesModern Design Approaches

� The most common contemporary design approaches are:
– Custom Approach:  Designed primarily by hand (so to speak)

� Full Custom Vs. Standard Cell - Using standard cell designs (same
height, variable width) and routing channels simplifies design process

� Highest Density, Highest Manufacturing Cost

– Semi-custom Approach:  Design process focuses on CAD tools
� Gate array: a partially prefabricated IC that incorporates a large

number of identical devices (ex: 3-input NAND or NOR gates) that
are laid out in a regular two-dimensional array

� Technology mapping:  The process of designing a logic function as a
network of the available devices (a.k.a cell-library binding)

� Lower Density (110-125% devices of equivalent custom design)

� Inexpensive: Requires only metal deposition (to define device
interconnections), economies of scale
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Modern Design ApproachesModern Design Approaches

� The most common contemporary design approaches are:
– PLD Approach: Often dependent on CAD tools

� ex: Field Programmable Gate Arrays (FPGAs)

� VLSI modules that can be programmed to implement a digital system
consisting of tens of thousands of gates.

� LSI PLDs implement two-level combinational and sequential
networks

� FPGAs allow the realization of “reprogrammable” multilevel
networks and complex systems on a single chip

� Low cost

� May produce slower network

� May require a larger silicon area
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ReengineeringReengineering

� Design Process

Register Transfer Level

Behavioral Level

Gate Level

Physical Design

high-level synthesis

logic synthesis

geometrical synthesis
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CAD tools for Design RecoveryCAD tools for Design Recovery

� REW’98

Image Acquisition

Sample Preparation

Geometric Description Transistor Netlist

Register Transfer Level

Behavioral Level

Gate-level Netlist

Etching

SEM
Staging
Image Processing
BMP to GDL

DRC

Syntactic Pattern Matching

Model Generation
Domain Specific Info.

Syntactic Pattern Matching
Semantic Pattern Matching

REW’98


