

Iterative Circuit for an N-Bit Comparator
Mark Hughes

ECE 590-Hardware Description Languages
April 24, 2006
Homework #1

M. Hughes-N Bit Comparator 1

Objective:
Create a two input N-bit comparator. The comparator should be capable of
comparing two input vectors of a variable length by means of the iterative circuit
approach.
Specification:
The comparator under design accepts two input vectors of length specified by the
user. Design compares the two vectors. The result of the function is observed on
the output nodes “A < B,” “A + B” and “A > B.”

N-Bit Comparator

NN

A B

A<B

A=B

A>B

Figure 1: N-Bit Comparator
Theory of Operations:
The system compares the two bits (A and B) and deciphers what the relation is
between the pair. If A is greater than B, the “A>B” output is driven high while the
others are driven low. Only one output can be asserted high at a time. Therefore,
the output is coded in one-hot form.

Condition: (A>B, A=B, A<B) State:
A<B 001 S1
A=B 010 S2
A>B 100 S3

The design begins with the most significant bits of the two vectors of length “N”
and deciphers the relation. The outputs of each component are cascaded into the
next component, which deciphers the relation for the second most significant bits.
The results ripple through the design until the last component completes its
evaluation. The last component’s outputs are the final outputs for the system.

M. Hughes-N Bit Comparator 2

Implementation:

The design implements “N” components because the worse case situation

occurs when both inputs are equal. In this case, each component needs to evaluate
the relation for each bit to verify equality. However, the optimal case occurs when
the most significant bits evaluate to A being greater than or less than B. In this
case, the system just needs to propagate this result its respective output. This can
be done because we are combing the vector from most significant bit to least
significant bit. Once we find a relation other than equality, we are done. Note that
if you searched from least significant bit to most significant bit, you would have to
evaluate every component (you would not be able to propagate signals because
there would be no carry in signals). The following flow chart explains the design.

A=A[N]
B=B[N]

carryin A<B = Gnd
carryin A=B =Vdd
carryin A>B =Gnd

Start

Relation of A to BN=0?

A<B =1
A=B =0
A>B =0

A<B

Yes

A=A[N-1]
B=B[N-1]

carryin A<B =1
carryin A=B =0
carryin A>B =0

N=0?

A<B =0
A=B =0
A>B =1

A>B

Yes

A=A[N-1]
B=B[N-1]

carryin A<B =0
carryin A=B =0
carryin A>B =1

N=0?

A=B

A=A[N-1]
B=B[N-1]

carryin A<B =0
carryin A=B =1
carryin A>B =0

No

No No

A<B =0
A=B =1
A>B =0

Yes

End

Chart 1: Flow Chart of Design
*Note: Inputs in red refer to the extra initialization inputs for the N

Cascading Single Bit Comparator Approach

M. Hughes-N Bit Comparator 3

In this project I chose to implement this design two ways.One form uses the

same component N times resulting in a truly iterative circuit. This component that
is instantiated repeatedly has a two 1-bit primary input, three 1-bit control input
and three 1-bit output interface (see figure 2).

Cascading
Single Bit

Comparator

A[i] B[i]

A<B[i+1] A<B[i]

A>B[i+1] A>B[i]

A=B[i]A=B[i+1]

Figure 2: Cascading Single Bit Comparators Interface

The three control inputs are the three comparison (relation) outputs from the
previous pair of bits. However, the first comparator in this design requires the
control signals being driven by ground and high voltage in order to initialize the
system and guarantee functionality. Refer to figure 3 to view to structure of this
first design.

Cascading
Single Bit

Comparator

A[N-1] B[N-1]

Cascading
Single Bit

Comparator

A[N-2] B[N-2]

GND(0) A<B[N-1] A<B[N-2]

GND(0) A>B[N-1] A>B[N-2]

A=B[N-2]A=B[N-1]VDD(1) Cascading
Single Bit

Comparator

A[0] B[0]

A<B[1]

A>B[1]

A=B[1]

A<B

A>B

A=B

Figure 3: Design Using N Cascading Single Bit Comparators

 The second design implementation I chose to design uses a basic single bit
comparator with no control inputs for the first comparator block. Then N-1
cascading comparators are used to finish of the design (i.e. all of the design is
iterative except for the first component). The advantage to this design is that it has
a clean, straightforward input interface. There is no need to ground or power any
input pins because the initial component has been designed without the control
inputs. The outputs of the first comparator are the control inputs for the second
comparator (or the first cascading single bit comparator.) Figure 4 displays the
structure and Figure 5 points out the deviation between this design and the
previous design.

M. Hughes-N Bit Comparator 4

Single Bit
Comparator

A[N-1] B[N-1]

Cascading
Single Bit

Comparator

A[N-2] B[N-2]

A<B[N-1] A<B[N-2]

A>B[N-1] A>B[N-2]

A=B[N-2]A=B[N-1] Cascading
Single Bit

Comparator

A[0] B[0]

A<B[1]

A>B[1]

A=B[1]

A<B

A>B

A=B

Figure 4: Design Using Single Bit Comparator and N-1 Cascading Single Bit

Comparators

Single Bit
Comparator

A[N-1] B[N-1]

Cascading
Single Bit

Comparator

A[N-2] B[N-2]

A<B[N-1] A<B[N-2]

A>B[N-1] A>B[N-2]

A=B[N-2]A=B[N-1]

No Cascade inputs because the
N-1 index comparison is the first

comparison executed.
Therefore, there are no inputs
carrying in the relation of the

previous pair of bits.

Single Bit
Comparator

A[N-1] B[N-1]

Cascading
Single Bit

Comparator

A[N-2] B[N-2]

Cascading
Single Bit

Comparator

A[N-3] B[N-3]

A<B[N-1] A<B[N-2] A<B[N-3]

A>B[N-1] A>B[N-2] A>B[N-3]

A=B[N-3]A=B[N-2]A=B[N-1]

From index N-2 to 0, the
cascaded inputs are carrying in
the relation of the previous pair

of bits.
Figure 5: Single Bit Comparator/N-1 Cascading Single Bit Comparator

Design Interface
The completely iterative design is composed completely of the cascading

single bit comparator. In order to analyze the combinational design needed for
this component, the following state diagram was developed.

Input Pattern Architecture

Bit: 4(MSB) 3 2 1 0

M. Hughes-N Bit Comparator 5

Description: A<B carry-in A=B carry-in A>B carry-in A B

Figure 6: Cascading Single Bit Comparator State Diagram

This diagram can be converted to a Karnaugh map (see Figure 7) in order to
express the output state for each input combination. Notice the cascade inputs are
three-bits. However, since they are in the one-hot form rather than binary form,
they only have four possible values rather than eight possible values.

Figure 7: Karnaugh Map for Cascading Single Bit Comparator State

Diagram

Each state is encoded in the one-hot form so that each relation operator has its own
status output bit (i.e. 001 means [A>B]=0, [A=B]=0, [A<B]=1 so A is less than
B). After this encoding conversion our state diagram and first karnaugh map look
like the following:

M. Hughes-N Bit Comparator 6

Figure 8: Encoded State Diagram of Cascaded Single Bit Comparator

Figure 9: Encoded State Karnaugh Map of Cascaded Single Bit Comparator

 Next, the map is described for each of the output (next state) bits. The start
notation refers to which next state bit is being described through the karnaugh
map. The following explains the notation.

Notation: Description:
A 1-bit primary input from vector A
B 1-bit primary input from vector B
G 1-bit cascaded input describing “greater

than” status of previous bits
E 1-bit cascaded input describing “equal

to” status of previous bits
L 1-bit cascaded input describing “less

than” status of previous bits
*G 1-bit output describing “greater than”

status of the current primary and
cascaded inputs

*E 1-bit output describing “equal to” status
of the current primary and cascaded
inputs

M. Hughes-N Bit Comparator 7

*L 1-bit output describing “less than”
status of the current primary and
cascaded inputs

Using this notation, the following explains the map for each individual

output.

Figure 10: Karnaugh Maps for each Output

From these maps, we can determine the logic equation for each ouput.

A less than B = L* =(L or (E and(not A) and B))
A equal to B = E* = (E and((not A) xor B))

A greater than B = G* = (G or (E and A and (not B)))
Therefore, the cascading single bit comparator can be designed as the following:

M. Hughes-N Bit Comparator 8

Cascading
Single Bit

Comparator

A[i] B[i]

A<B[i+1] A<B[i]

A>B[i+1] A>B[i]

A=B[i]A=B[i+1]

A[i] B[i]

A<B[i]

A=B[i]

A>B[i]

A<B[i+1]

A=B[i+1]

A>B[i+1]

Figure 11: Combinational Circuitry for Cascading Single Bit

Comparator
Now, the fully iterative N bit comparator can be implemented by cascading

this circuitry together “N” times (see Figure 3). However, a single bit comparator
needs to be constructed in order to complete the second design. The following is
the state diagram for single bit comparator (the component with 2 primary inputs
and 3 outputs). Note that the inputs documented for the transitions are a
concatenation of the A input (MSB) and B input (LSB). For example, the input
values of A=1 and B=0 refer to the input “10” on the diagram.

M. Hughes-N Bit Comparator 9

Figure 12: State Diagram for the Single Bit Comparator

Again, the diagram can be described as a karnaugh map.

Figure 13: Karnaugh State Map for the Single Bit Comparator

The map can then be modified by utilizing the appropriate one-hot encoding we
explained earlier. The resulting diagram and map is the following:

M. Hughes-N Bit Comparator 10

Figure 14: Karnaugh Encoded State Diagram & Map for the Single Bit

Comparator

Next, the map is described for each of the output (next state) bits. The start
notation refers to which next state bit is being described through the karnaugh
map. The following explains the notation.
Notation: Description:
A 1-bit primary input from vector A
B 1-bit primary input from vector B
*G 1-bit output describing “greater than”

status of the current primary and
cascaded inputs

*E 1-bit output describing “equal to” status
of the current primary and cascaded
inputs

*L 1-bit output describing “less than”
status of the current primary and
cascaded inputs

 Using this notation, the following explains the map for each individual output.

M. Hughes-N Bit Comparator 11

Figure 15: Karnaugh Maps for each Output

From these maps, we can determine the logic equation for each ouput.
A greater than B = G* = A and (not B)

A equal to B = E* = A xor (not B)
A less than B = L* = (not A) and B

Therefore, the initial single bit comparator can be designed as the following:

Single Bit
Comparator

A[N] B[N]

A<B[N]

A>B[N]

A=B[N]

A[N] B[N]

A<B[N]

A=B[N]

A>B[N]

Figure 16: Combinational Circuitry for Single Bit Comparator

 Each design was implemented in VHDL by means of the GENERIC and
GENERATE keywords. The GENERIC keyword was utilized so that the author
of the test bench can adjust the program to accurately compare two input vectors
of any length they wish. The GENERATE keyword allows us to instantiate a
module in a loop fashion. This makes it much easier for us to code a program to
call a module “N” times. The high level design looks like the following:

M. Hughes-N Bit Comparator 12

Source Code
(All Cascading

Single Bit
Comparators)

Test Bench

Generic Specification

Gnd
Vdd

Input
A
B

N-bits

Gnd & Vdd Constants

A & B N-bit Vectors

A<B

A=B

A>B

Figure 17: High Level View of VHDL Implementation of Design with All

Cascading Single Bit Comparators with Test Bench

Source Code
(1 Single Bit

Comparator and N-1
Cascading Single
Bit Comparators)

Test Bench

Generic Specification

Input
A
B

N-bits

A & B N-bit Vectors

A<B

A=B

A>B

M. Hughes-N Bit Comparator 13

Figure 18: High Level View of VHDL Implementation of Design with 1 Single
Bit Comparator and N-1 Cascading Single Bit Comparators with Test Bench

Verification:
 Both designs were implemented and verified in ModelSim using VHDL.
Each design approach was tested with the same specifications for N in the
comparator as well as with the same test vectors for each test. The test was run for
a 1-bit, 2-bit, 4-bit and 8-bit comparator. Please refer to the “Simulation Results”
section for further evidence of verification.

VHDL Implementation:

Source Code:

--This entity and architecture describes the cascading single bit comparator. This
--comparator receives two 1-bit primary inputs as well as three cascaded control inputs
--which refer to the relational status of the previous pair of bits. The design yields
--three one bit outputs. If the three outputs are concatenated, the three-bit output is
--expressed in one-hot form.

ENTITY cascading_single_bit_comparator IS
 PORT (a, b, carryin_lessthan, carryin_equal,
 carryin_greaterthan: IN BIT;
 lessthan, equal, greaterthan: OUT BIT);
END cascading_single_bit_comparator;

ARCHITECTURE dataflow OF cascading_single_bit_comparator IS
BEGIN

--the following three statements are the implementation of the circuitry designed for the
-- cascading single bit comparator earlier in the report
--if A is 0 and B is 1 or if the carryin_lessthan signal is asserted then A is "less
--than" B so the "lessthan" output is driven high

 lessthan<=(carryin_lessthan OR (carryin_equal AND (NOT a) AND b));

--if the carryin_equal signal is asserted and not A does not equal B then A is equal to B
--and the "equal" output is driven high

equal<=(carryin_equal AND ((NOT a) XOR b));

--if A is 1 and B is 0 or if the carryin_greaterthan signal is asserted then A is
--"greater than" B so the "greaterthan" output is driven high

greaterthan<=(carryin_greaterthan OR (carryin_equal AND a AND (NOT b)));

END dataflow;

Code 1: Source Code for Cascading Single Bit Comparator

--This all iterative component uses N blocks of the cascading single bit comparators.
--Receives two N-bit input vectors A and B for comparison. Since this design uses all
--cascading single bit comparators, three control (carry-in) inputs are needed for the
--first component. Component outputs three one-bit outputs.

ENTITY n_bit_comparator_all_iterative IS

M. Hughes-N Bit Comparator 14

--generic allows test bench to control the number of bits the comparator will evaluate

 GENERIC(number_of_bits:INTEGER);

--Component will have two N bit input vectors, A and B, as well as three single bit
--conrol operators, A<B, A>B and
--A=B, since we are using a cascading single bit comparator as our
--initial comparator.
--Component will have three 1-bit outputs A>B, A<B, A=B

 PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 carryin_lessthan, carryin_equal, carryin_greaterthan: BIT;
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
END n_bit_comparator_all_iterative;

ARCHITECTURE iterative OF n_bit_comparator_all_iterative IS

--declaration of the component title and port list for the cascading
--single bit comparator

COMPONENT comp1 PORT(a, b, carryin_lessthan, carryin_equal,
 carryin_greaterthan: IN BIT;

 lessthan, equal, greaterthan: OUT BIT);
 END COMPONENT;

--for all instantiations of the component title, link the port map to
--the cascading_single_bit_comparator entity
--and the dataflow architecture in the WORK folder

 FOR ALL:comp1 USE ENTITY WORK.cascading_single_bit_comparator(dataflow);

--declaration of all the intermediate signals needed for the cascading control inputs

 SIGNAL int_agtb, int_aeqb, int_altb: BIT_VECTOR ((number_of_bits-2) DOWNTO 0);
 BEGIN

--if i is in the range of (number of bits - 1) and) 0 generate on of the
--following...

CompareBitN_1to1: FOR i IN (number_of_bits-1) DOWNTO 0 GENERATE

--if i is equal to the (number of bits - 1) and the number of bits is 1 then
--generate only one cascading
--single bit comparator where the control inputs are the three 1-bit inputs
--provided by the N-bit comparator

 --interface and the outputs of the one comparator are the final result

i1:IF i=(number_of_bits-1) AND number_of_bits=1 GENERATE
 CompareBitN: comp1 PORT MAP(A(number_of_bits-1), B(number_of_bits-1),
 carryin_lessthan, carryin_equal, carryin_greaterthan,
 A_lessthan_B, inputs_equal, A_greaterthan_B);
 END GENERATE;

--if i is equal to the (number of bits - 1) and the number of bits is greater than
--1 then generate one cascading
--single bit comparator wheret he control inputs are the three 1-bit inputs
--provided by the N-bit comparator
--interface and the outputs of the comparator are the control (or carry-in) inputs
--for the next comparator

N:IF i=(number_of_bits-1) AND (number_of_bits>1) GENERATE

 CompareBitN: comp1 PORT MAP(A(number_of_bits-1), B(number_of_bits-1),
 carryin_lessthan, carryin_equal, carryin_greaterthan,

int_altb(number_of_bits-2), int_aeqb(number_of_bits-2),
int_agtb(number_of_bits-2));

 END GENERATE;

--if i is less than (number of bits - 1) but i is greater than 0 then generate one
--cascading single bit comparator where the control (carry-in) inputs are the

M. Hughes-N Bit Comparator 15

--outputs of the previous comparator and the outputs of the current comparator are
--the control (carry-in) inputs to the next comparator

 Nto0:IF i>0 AND i<(number_of_bits-1) GENERATE
 CompaterBitN: comp1 PORT MAP (A(i-1), B(i-1), int_altb(i),
 int_aeqb(i), int_agtb(i), int_altb(i-1),
 int_aeqb(i-1), int_agtb(i-1));
 END GENERATE;

--if i is equal to 0 and the number of bits is greater than 1 then generate only
--one cascading single bit comparator where the control (carry-in) inputs are the
--previous comparator's outputs and the outputs of the current comparator are the
--final result

 i2:IF i=0 AND (number_of_bits>1)GENERATE
 CompareBit0: comp1 PORT MAP(A(0), B(0), int_altb(0), int_aeqb(0),
int_agtb(0),
 A_lessthan_B, inputs_equal, A_greaterthan_B);
 END GENERATE;
 END GENERATE;
END iterative;

Code 2: Source Code for N-Bit Comparator Using N Cascading Single Bit
Comparators (All Iterative Design)

*Note: Design One is Complete

--Declaration of entity for component used when you do not want cascading inputs
--on your first component. This components takes two 1-bit inputs and determine which
--one is greater or if they are equal. System has three primary outputs. If the outputs
--are taken as a
--three bit output, the output is read in one-hot form.

ENTITY initial_bit_comparator IS
 PORT (a, b: IN BIT;
 lessthan, equal, greaterthan: OUT BIT);
END initial_bit_comparator;

ARCHITECTURE dataflow OF initial_bit_comparator IS
BEGIN

--the following three statements are the implementation of the circuitry designed for the
--cascading single bit comparator earlier in the report
--if A is 0 and B is 1 then A is "less than" B so the "lessthan" output is driven high

lessthan<=((NOT a) AND b);

--if not A does not equal B then A is "equal" to B so the "equal" output is driven high
 equal<=((NOT a) XOR b);

--if A is 1 and B is 0 then A is "greater than" B so the "greaterthan" output is driven
high
 greaterthan<=(a AND (NOT b));

END dataflow;

Code 3: Source Code for “initial” Single Bit Comparator

--This component uses an initial single bit comparator and N-1 blocks of the cascading
--single bit comparators. Receives two N-bit input vectors A and B for comparison.
--Component outputs three one-bit outputs

ENTITY n_bit_comparator IS

--generic allows test bench to control the number of bits the comparator will evaluate

 GENERIC(number_of_bits:INTEGER);

M. Hughes-N Bit Comparator 16

--Component will have two N bit input vectors, A and B, no single bit control inputs are
--necessary since we are using the single bit comparator as our initial comparator
--Component will have three 1-bit outputs A>B, A<B, A=B

PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
END n_bit_comparator;

ARCHITECTURE iterative OF n_bit_comparator IS

--declaration of the component title and port list for the cascading single bit
--comparator

COMPONENT comp1 PORT(a, b, carryin_lessthan, carryin_equal,
 carryin_greaterthan: IN BIT;

 lessthan, equal, greaterthan: OUT BIT);
 END COMPONENT;
--declaration of the component title and port list for the single bit comparator
 COMPONENT icomp PORT(a, b: IN BIT;
 lessthan, equal, greaterthan: OUT BIT);
 END COMPONENT;
--for all instantiations of the component title comp1, link the port map to the
--cascading_single_bit_comparator entity and the dataflow architecture in the WORK folder

FOR ALL:comp1 USE ENTITY WORK.cascading_single_bit_comparator(dataflow);

--for all instantiations of the component title icomp, link the port map to the
--initial_bit_comparator entity and the dataflow architecture in the WORK folder

FOR ALL:icomp USE ENTITY WORK.initial_bit_comparator(dataflow);

--declare the intermediate signal necessary for the cascading of components

 SIGNAL int_agtb, int_aeqb, int_altb: BIT_VECTOR ((number_of_bits-2) DOWNTO 0);
 BEGIN

--if i is in the range of (number of bits - 1) and) 0 generate on of the
--following...

CompareBitN_1to1: FOR i IN (number_of_bits-1) DOWNTO 0 GENERATE

--if i is equal to the (number of bits - 1) and the number of bits is 1 then
--generate only one single bit

 --comparator where the outputs of the one comparator are the final result

i1:IF i=(number_of_bits-1) AND number_of_bits=1 GENERATE
 CompareBitN: icomp PORT MAP(A(number_of_bits-1), B(number_of_bits-1),
 A_lessthan_B, inputs_equal, A_greaterthan_B);
 END GENERATE;

--if i is equal to the (number of bits - 1) and the number of bits is greater than
--1 then generate one single bit comparator where the outputs of the comparator
--are the control (or carry-in) inputs for the next comparator

N:IF i=(number_of_bits-1) AND number_of_bits>1 GENERATE
CompareBitN: icomp PORT MAP(A(number_of_bits-1), B(number_of_bits-1),
 int_altb(number_of_bits-2),

 int_aeqb(number_of_bits-2),
 int_agtb(number_of_bits-2));

 END GENERATE;

--if i is less than (number of bits - 1) but i is greater than 0 then generate one
--cascading single bit comparator where the control (carry-in) inputs are the
--outputs of the previous comparator and the outputs of the current comparator are
--the control (carry-in) inputs to the next comparator

Nto0:IF i>0 AND i<(number_of_bits-1) GENERATE

 CompaterBitN: comp1 PORT MAP (A(i-1), B(i-1), int_altb(i),
 int_aeqb(i), int_agtb(i), int_altb(i-1),
 int_aeqb(i-1), int_agtb(i-1));

M. Hughes-N Bit Comparator 17

 END GENERATE;

--if i is equal to 0 and the number of bits is greater than 1 then generate only
--one cascading single bit comparator where the control (carry-in) inputs are the
--previous comparator's outputs and the outputs of the current comparator are the
--final result

i2:IF i=0 AND (number_of_bits>1)GENERATE

 CompareBit0: comp1 PORT MAP(A(0), B(0), int_altb(0), int_aeqb(0),
 int_agtb(0),

 A_lessthan_B, inputs_equal, A_greaterthan_B);
 END GENERATE;
 END GENERATE;

END iterative;

Code 4: Source Code for N-Bit Comparator Using Initial Single Bit
Comparator and N-1 Cascading Single Bit Comparators

(Semi-Iterative Design)
*Note: Design Two is Complete

Test Benches:

--Test Bench created to instantiate the "all iterative" design using N cascading single
--bit comparators In this test bench, N is equal to 1 (resulting in a 1 bit comparator)

ENTITY test_bench_1_bit_all_iterative IS
END test_bench_1_bit_all_iterative;

ARCHITECTURE io OF test_bench_1_bit_all_iterative IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=1);
 PORT (A, B:IN BIT_VECTOR ((number_of_bits-1) DOWNTO 0); carryin_lessthan,

 carryin_equal,
 carryin_greaterthan:IN BIT;
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator_all_iterative(iterative);
 SIGNAL a, b: BIT_VECTOR (0 downto 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 SIGNAL gnd: BIT:='0';
 SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, gnd, vdd, gnd, alssb, aeqb, agtrb);
 a<="0",
 "1" AFTER 10 NS,
 "0" AFTER 20 NS;
 b<="0",
 "1" AFTER 5 NS,
 "0" AFTER 15 NS;
END io;

Bench 1: Test Bench for 1 Bit Comparator Using the All Cascading Single Bit
Comparator Approach

--Test Bench created to instantiate the "semi iterative" design using an initial single
--bit comparator and N-1 cascading single bit comparators.
--In this test bench, N is equal to 1 (resulting in a 1 bit comparator)

ENTITY test_bench1 IS
END test_bench1;

ARCHITECTURE io OF test_bench1 IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=1);

M. Hughes-N Bit Comparator 18

 PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator(iterative);
 SIGNAL a, b: BIT_VECTOR (0 downto 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
BEGIN
 C1:comparator PORT MAP(a, b, alssb, aeqb, agtrb);
 a<="0",
 "1" AFTER 10 NS,
 "0" AFTER 20 NS;
 b<="0",
 "1" AFTER 5 NS,
 "0" AFTER 15 NS;
END io;

Bench 2: Test Bench for 1 Bit Comparator Using the Single Bit Comparator +

(N-1) Cascading Single Bit Comparators Approach

--Test Bench created to instantiate the "all iterative" design using N cascading single
--bit comparators. In this test bench, N is equal to 2 (resulting in a 2 bit comparator)

ENTITY test_bench_2_bit_all_iterative IS
END test_bench_2_bit_all_iterative;

ARCHITECTURE io OF test_bench_2_bit_all_iterative IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=2);
 PORT (A, B:IN BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 carryin_lessthan, carryin_equal, carryin_greaterthan:IN BIT;
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator_all_iterative(iterative);
 SIGNAL a, b: BIT_VECTOR (1 downto 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 SIGNAL gnd: BIT:='0';
 SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, gnd, vdd, gnd, alssb, aeqb, agtrb);
 a<="00",
 "10" AFTER 10 NS,
 "11" AFTER 20 NS,
 "01" AFTER 30 NS,
 "01" AFTER 35 NS;
 b<="01",
 "00" AFTER 5 NS,
 "10" AFTER 15 NS,
 "11" AFTER 25 NS;
END io;

Bench 3: Test Bench for 2 Bit Comparator Using the All Cascading Single Bit
Comparator Approach

--Test Bench created to instantiate the "semi iterative" design using an initial single
--bit comparator and N-1 cascading single bit comparators.
--In this test bench, N is equal to 2 (resulting in a 2 bit comparator)

ENTITY test_bench_2_bit IS
END test_bench_2_bit;

ARCHITECTURE io OF test_bench_2_bit IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=2);
 PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator(iterative);

M. Hughes-N Bit Comparator 19

 SIGNAL a, b: BIT_VECTOR(1 DOWNTO 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 --SIGNAL gnd: BIT:='0';
 --SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, alssb, aeqb, agtrb);
 a<="00",
 "10" AFTER 10 NS,
 "11" AFTER 20 NS,
 "01" AFTER 30 NS,
 "01" AFTER 35 NS;
 b<="01",
 "00" AFTER 5 NS,
 "10" AFTER 15 NS,
 "11" AFTER 25 NS;
END io;

Bench 4: Test Bench for 2 Bit Comparator Using the Single Bit Comparator +
(N-1) Cascading Single Bit Comparators Approach

--Test Bench created to instantiate the "all iterative" design using N cascading single
--bit comparators. In this test bench, N is equal to 4 (resulting in a 4 bit comparator)

ENTITY test_bench_4_bit_all_iterative IS
END test_bench_4_bit_all_iterative;

ARCHITECTURE io OF test_bench_4_bit_all_iterative IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=4);
 PORT (A, B:IN BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 carryin_lessthan, carryin_equal, carryin_greaterthan:IN BIT;
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator_all_iterative(iterative);
 SIGNAL a, b: BIT_VECTOR(3 DOWNTO 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 SIGNAL gnd: BIT:='0';
 SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, gnd, vdd, gnd, alssb, aeqb, agtrb);
 a<="0000",
 "1000" AFTER 10 NS,
 "1111" AFTER 20 NS,
 "0001" AFTER 30 NS,
 "0111" AFTER 40 NS;
 b<="1100",
 "0000" AFTER 5 NS,
 "1111" AFTER 15 NS,
 "0010" AFTER 25 NS,
 "1010" AFTER 35 NS,
 "1010" AFTER 40 NS;
END io;

Bench 5: Test Bench for 4 Bit Comparator Using the All Cascading Single Bit
Comparator Approach

--Test Bench created to instantiate the "semi iterative" design using an initial single
--bit comparator and N-1 cascading single bit comparators.
--In this test bench, N is equal to 4 (resulting in a 4 bit comparator)

ENTITY test_bench IS
END test_bench;

ARCHITECTURE io OF test_bench IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=4);
 PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);

M. Hughes-N Bit Comparator 20

 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator(iterative);
 SIGNAL a, b: BIT_VECTOR(3 DOWNTO 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 --SIGNAL gnd: BIT:='0';
 --SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, alssb, aeqb, agtrb);
 a<="0000",
 "1000" AFTER 10 NS,
 "1111" AFTER 20 NS,
 "0001" AFTER 30 NS,
 "0111" AFTER 40 NS;
 b<="1100",
 "0000" AFTER 5 NS,
 "1111" AFTER 15 NS,
 "0010" AFTER 25 NS,
 "1010" AFTER 35 NS,
 "1010" AFTER 40 NS;
END io;

Bench 6: Test Bench for 4 Bit Comparator Using the Single Bit Comparator +
(N-1) Cascading Single Bit Comparators Approach

--Test Bench created to instantiate the "all iterative" design using N cascading single
--bit comparators. In this test bench, N is equal to 8 (resulting in a 8 bit comparator)

ENTITY test_bench_8_bit_all_iterative IS
END test_bench_8_bit_all_iterative;

ARCHITECTURE io OF test_bench_8_bit_all_iterative IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=8);
 PORT (A, B:IN BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 carryin_lessthan, carryin_equal, carryin_greaterthan:IN BIT;
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator_all_iterative(iterative);
 SIGNAL a, b: BIT_VECTOR(7 DOWNTO 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 SIGNAL gnd: BIT:='0';
 SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, gnd, vdd, gnd, alssb, aeqb, agtrb);
 a<="01010000",
 "11010000" AFTER 10 NS,
 "00001101" AFTER 20 NS,
 "00100101" AFTER 30 NS,
 "10000111" AFTER 40 NS;
 b<="11010100",
 "11010000" AFTER 5 NS,
 "11000000" AFTER 15 NS,
 "00101111" AFTER 25 NS,
 "00101000" AFTER 35 NS,
 "10101000" AFTER 45 NS;
END io;

Bench 7: Test Bench for 8 Bit Comparator Using the All Cascading Single Bit

Comparator Approach

--Test Bench created to instantiate the "semi iterative" design using an initial single
--bit comparator and N-1 cascading single bit comparators.
--In this test bench, N is equal to 8 (resulting in a 8 bit comparator)

ENTITY test_bench_8_bit IS
END test_bench_8_bit;

M. Hughes-N Bit Comparator 21

ARCHITECTURE io OF test_bench_8_bit IS
 COMPONENT comparator
 GENERIC(number_of_bits:INTEGER:=8);
 PORT (A, B: BIT_VECTOR ((number_of_bits-1) DOWNTO 0);
 A_lessthan_B, inputs_equal, A_greaterthan_B:OUT BIT);
 END COMPONENT;
 FOR ALL: comparator USE ENTITY WORK.n_bit_comparator(iterative);
 SIGNAL a, b: BIT_VECTOR(7 DOWNTO 0);
 SIGNAL agtrb, alssb, aeqb: BIT;
 --SIGNAL gnd: BIT:='0';
 --SIGNAL vdd: BIT:='1';
BEGIN
 C1:comparator PORT MAP(a, b, alssb, aeqb, agtrb);
 a<="01010000",
 "11010000" AFTER 10 NS,
 "00001101" AFTER 20 NS,
 "00100101" AFTER 30 NS,
 "10000111" AFTER 40 NS;
 b<="11010100",
 "11010000" AFTER 5 NS,
 "11000000" AFTER 15 NS,
 "00101111" AFTER 25 NS,
 "00101000" AFTER 35 NS,
 "10101000" AFTER 45 NS;
END io;

Bench 8: Test Bench for 8 Bit Comparator Using the Single Bit Comparator +
(N-1) Cascading Single Bit Comparators Approach

Simulation:

Figure 19: Waveform Results for test_bench_1_bit_all_iterative
(All Cascading Single Bit Comparator Approach)

M. Hughes-N Bit Comparator 22

Figure 20: Waveform Results for test_bench_1_bit
(Single Bit Comparator + (N-1) Cascading Single Bit Comparators

Approach)

Figure 21: Waveform Results for test_bench_2_bit_all_iterative
(All Cascading Single Bit Comparator Approach)

Figure 22: Waveform Results for test_bench_2_bit
(Single Bit Comparator + (N-1) Cascading Single Bit Comparators

Approach)

M. Hughes-N Bit Comparator 23

Figure 23: Waveform Results for test_bench_4_bit_all_iterative
(All Cascading Single Bit Comparator Approach)

Figure 24: Waveform Results for test_bench_4_bit
(Single Bit Comparator + (N-1) Cascading Single Bit Comparators

Approach)

Figure 25: Waveform Results for test_bench_8_bit_all_iterative
(All Cascading Single Bit Comparator Approach)

M. Hughes-N Bit Comparator 24

Figure 26: Waveform Results for test_bench_8_bit
(Single Bit Comparator + (N-1) Cascading Single Bit Comparators

Approach)

Limitations & Improvements:
 The design obviously is implemented to only support two N-bit inputs.
Further design could include resolving this limitation. The design could be
implemented to compare “M” inputs of size “N.” The input could be a 2
dimensional array specified by the two generic statements (M and N). If this were
to be implemented, the “generate” statements could prove tricky and tedious.
Also, another improvement could be translating the current circuitry to all NAND
gates since NAND gates are the least costly 2-input devices in terms of delay and
resistance digital design (due to P-fets in parallel rather than series).

M. Hughes-N Bit Comparator 25

