
Reversible Adder Implementation in VHDL

Homework 1 Report

Digital Design Using HDL (ECE 590)
Portland State University, Spring 2006

Alejandro Y. Pérez V.
PSU ID: 920 01 8090

1 Introduction

In 1961, a physicist from IBM
called Rolf Landauer, proved that when
data is lost in an irreversible circuit, that
data is dissipated in the form of heat [1-

2]. The sprouting of this principle have
made a whole revolution in all the fields
of logic implementation, and even
though it still cannot be perfectly
implemented, it’s union with quantum
computing will lead to heat-less
computers avoiding the need of heat-
sinks, fans, and also the batteries would
last longer. For this reason the scientific
community has shown continuous
interest in matching the already existing
logic principles to avoid the No-Free-
Lunch theorem as much as possible.

2 Design Theory

First of all, we need to know that in
order to build a reversible circuit we
must use reversible gates[3]. The reader
can learn more about the history of
reversible logic by referring to [4].

There are different ways to
implement a reversible adder. These
different implementations depend on a
balance between gates count, garbage
outputs, ancilla bits and quantum cost [5-

6]. Some of the most used universal
quantum gates[7] and their quantum cost
are shown in figures 1.1, 1.2 and 1.3.

Figure 1.1 Toffoli Quantum Gate

Figure 1.2 Fredkin Quantum Gate

Figure 1.3 Peres Quantum Gate

Being universal, these previously
presented gates can implement any
logical function and therefore they can
also implement the well known
functions for a full-adder:

CinBAS ⊗⊗=

ABCinBACout ⊗⊗=)(

For this implementation, I will be using
the Peres gate as it is the gate with the
lower quantum cost as can be seen in
the figures 1.1, 1.2 and 1.3. The Peres’
implemented Full Adder with its
corresponding quantum cost can be seen
below:

Figure 1.4 Peres Full Adder

This PFA (Peres Full Adder) can be
taken as a block in order to facilitate the
notation of its expansion. The inputs
order was also changed to better fit in
an expansion diagram.

Figure 1.5 PFA as a block

Once we take the FPA as a block,
we can derive the algorithm to
implement an n-bits adder. This
algorithm was implemented in this
design and can be seen in figure 1.6.

Figure 1.6 4-bits adder implementation

3 Inputs

The inputs of the complete 4 bits
adder are three input vectors (4 bits) and
a single bit Cin (Carry in). Two of the
three input vectors are the desired added
4-bits values. The remaining vector
could be called the ancilla vector which
is filled with zeros.

4 Outputs

The outputs of the system are one
garbage vector of 8 bits, one sum vector
of 4 bits and a Cout (Carry out) bit.
Unfortunately, as can be seen, the
garbage cost to realize this system is
very high

5 Schematic Diagram

I tried to make the VHDL code as simple as possible, so I recurred to the Tops Down design technique. First I implemented the main architecture
in a general schematic involving each Peres Full Adder as a black box. This design is suited for 4 plus 4 bits.

Figure 5.1 Schematic representation of the “Main” architecture.

Once that I had this, I proceeded to design the PFA block as depicted in the following figure.

Figure 5.2 PFA traditional logic implementation.

6 VHDL Source Code

I tried to make the code as simple as possible, so I recurred to the Tops Down design
technique.

6.1 “Main” Code

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;

entity mainsch is
 port (A : in std_logic_vector (3 downto 0);
 B : in std_logic_vector (3 downto 0);
 Cin : in std_logic;
 K1 : in std_logic;
 K2 : in std_logic;
 K3 : in std_logic;
 K4 : in std_logic;
 G1 : out std_logic;
 G2 : out std_logic;
 G3 : out std_logic;
 G4 : out std_logic;
 G5 : out std_logic;
 G6 : out std_logic;
 G7 : out std_logic;
 G8 : out std_logic;
 S : out std_logic_vector (4 downto 0));
end mainsch;

architecture BEHAVIORAL of mainsch is
 signal c1 : std_logic;
 signal c2 : std_logic;
 signal c3 : std_logic;
 component PFA
 port (Cin : in std_logic;
 A : in std_logic;
 B : in std_logic;
 zero : in std_logic;
 G1 : out std_logic;
 G2 : out std_logic;
 S : out std_logic;
 Cout : out std_logic);
 end component;

begin
 XLXI_1 : PFA
 port map (A=>A(0),
 B=>B(0),
 Cin=>Cin,
 zero=>K1,
 Cout=>c1,
 G1=>G1,
 G2=>G2,
 S=>S(0));

 XLXI_2 : PFA
 port map (A=>A(1),
 B=>B(1),

 Cin=>c1,
 zero=>K2,
 Cout=>c2,
 G1=>G3,
 G2=>G4,
 S=>S(1));

 XLXI_3 : PFA
 port map (A=>A(2),
 B=>B(2),
 Cin=>c2,
 zero=>K3,
 Cout=>c3,
 G1=>G5,
 G2=>G6,
 S=>S(2));

 XLXI_4 : PFA
 port map (A=>A(3),
 B=>B(3),
 Cin=>c3,
 zero=>K4,
 Cout=>S(4),
 G1=>G7,
 G2=>G8,
 S=>S(3));

end BEHAVIORAL;

6.2 “PFA” Code

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;

entity PFA is
 port (A : in std_logic;
 B : in std_logic;
 Cin : in std_logic;
 zero : in std_logic;
 Cout : out std_logic;
 G1 : out std_logic;
 G2 : out std_logic;
 S : out std_logic);
end PFA;

architecture BEHAVIORAL of PFA is
 signal AxB: std_logic; -- This signal is going to be (A xor B)
 signal AB: std_logic; -- This signal is going to be (A and B xor zero)
begin

 AxB <= A xor B; -- First I am loading
 AB <= (A and B) xor zero; -- the auxiliar signals
 G1 <= A; -- Garbage 1
 G2 <= AxB; -- Now I am doing the rest
 S <= AxB xor Cin; -- of the operations
 Cout <= (AxB and Cin) xor AB; -- Carry out

end BEHAVIORAL;

7 Simulation And Results

The project was simulated with the help of the Xilinx ISE 7.1 tool. Remember that the real inputs for this project were the 4 bits A and B and the
1 bit Cin (Carry In). The rest (K1 through K4) are only the ancilla bits and they need to remain always in zero.

Figure 7.1 Timing diagram of the simulation.

Important Note: The system outputs are shifted to the left because of a bug in the tool’s simulator.

8 References

1. Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM J.

Res. Develop., 5: 183-191.
2. Keyes, R.W. and R. Landauer, 1970. Minimal energy dissipation in logic. IBM J. Res.

Develop., pp: 152-157.
3. Bennett, C.H., 1973. Logical reversibility of computation. IBM J. Res. Develop., 17: 525-

532.
4. Bennett, C.H., 1988. Notes on the history of reversible computation. IBM J. Res.

Develop., 32: 16-23.
5. Perkowski, M., L. Jozwiak, P. Kerntopf, A. Mishchenko and A. Al-Rabadi et al., 2001. A

general decomposition for reversible logic. In: 5th Intl. Red-Muller Workshop, pp: 119-
138.

6. Saiful Islam and Rafiqul Islam., 2005. Minimization of Reversible Adder Circuits. Asian
Journal of Information Technology 4 (12): 1146-1151.

7. Peres, A. 1985. Reversible logic and quantum computers. Physical Review A, 32: 3266-
3276.

	
	1 Introduction
	7 Simulation And Results

