
Reversible Adder Implementation in VHDL 
 

Homework 1 Report 
 

Digital Design Using HDL (ECE 590) 
Portland State University, Spring 2006 

 
Alejandro Y. Pérez V. 
PSU ID: 920 01 8090 

1 Introduction 
 

In 1961, a physicist from IBM 
called Rolf Landauer, proved that when 
data is lost in an irreversible circuit, that 
data is dissipated in the form of heat [1-

2]. The sprouting of this principle have 
made a whole revolution in all the fields 
of logic implementation, and even 
though it still cannot be perfectly 
implemented, it’s union with quantum 
computing will lead to heat-less 
computers avoiding the need of heat-
sinks, fans, and also the batteries would 
last longer. For this reason the scientific 
community has shown continuous 
interest in matching the already existing 
logic principles to avoid the No-Free-
Lunch theorem as much as possible. 
 
2 Design Theory 
 

First of all, we need to know that in 
order to build a reversible circuit we 
must use reversible gates[3]. The reader 
can learn more about the history of 
reversible logic by referring to [4]. 
 

There are different ways to 
implement a reversible adder. These 
different implementations depend on a 
balance between gates count, garbage 
outputs, ancilla bits and quantum cost [5-

6]. Some of the most used universal 
quantum gates[7] and their quantum cost 
are shown in figures 1.1, 1.2 and 1.3. 
 
 

 
 

 
Figure 1.1  Toffoli Quantum Gate 

 
 

 
Figure 1.2  Fredkin Quantum Gate 

 
 

 
Figure 1.3  Peres Quantum Gate 

 
 



Being universal, these previously 
presented gates can implement any 
logical function and therefore they can 
also implement the well known 
functions for a full-adder: 

 
CinBAS ⊗⊗=  

 
ABCinBACout ⊗⊗= )(  

 
For this implementation, I will be using 
the Peres gate as it is the gate with the 
lower quantum cost as can be seen in 
the figures 1.1, 1.2 and 1.3. The Peres’ 
implemented Full Adder with its 
corresponding quantum cost can be seen 
below: 
 
 

 
Figure 1.4  Peres Full Adder 

 
 

This PFA (Peres Full Adder) can be 
taken as a block in order to facilitate the 
notation of its expansion. The inputs 
order was also changed to better fit in 
an expansion diagram. 
 
 

 
Figure 1.5  PFA as a block 

 

Once we take the FPA as a block, 
we can derive the algorithm to 
implement an n-bits adder. This 
algorithm was implemented in this 
design and can be seen in figure 1.6. 
 
 

 
Figure 1.6  4-bits adder implementation 
 
 
3 Inputs 
 

The inputs of the complete 4 bits 
adder are three input vectors (4 bits) and 
a single bit Cin (Carry in). Two of the 
three input vectors are the desired added 
4-bits values. The remaining vector 
could be called the ancilla vector which 
is filled with zeros. 
 
 
4 Outputs 
 

The outputs of the system are one 
garbage vector of 8 bits, one sum vector 
of 4 bits and a Cout (Carry out) bit. 
Unfortunately, as can be seen, the 
garbage cost to realize this system is 
very high 
 
 
 
 
 



5 Schematic Diagram 
 
I tried to make the VHDL code as simple as possible, so I recurred to the Tops Down design technique. First I implemented the main architecture 
in a general schematic involving each Peres Full Adder as a black box. This design is suited for 4 plus 4 bits. 

 
Figure 5.1  Schematic representation of the “Main” architecture. 

 

 



 
 
 
 
Once that I had this, I proceeded to design the PFA block as depicted in the following figure. 
 

 

 
Figure 5.2  PFA traditional logic implementation. 

 
 



6 VHDL Source Code 
 
I tried to make the code as simple as possible, so I recurred to the Tops Down design 
technique.  
 
6.1 “Main” Code 
 
library ieee; 
use ieee.std_logic_1164.ALL; 
use ieee.numeric_std.ALL; 
 
entity mainsch is 
   port ( A   : in    std_logic_vector (3 downto 0);  
          B   : in    std_logic_vector (3 downto 0);  
          Cin : in    std_logic;  
          K1  : in    std_logic;  
          K2  : in    std_logic;  
          K3  : in    std_logic;  
          K4  : in    std_logic;  
          G1  : out   std_logic;  
          G2  : out   std_logic;  
          G3  : out   std_logic;  
          G4  : out   std_logic;  
          G5  : out   std_logic;  
          G6  : out   std_logic;  
          G7  : out   std_logic;  
          G8  : out   std_logic;  
          S   : out   std_logic_vector (4 downto 0)); 
end mainsch; 
 
architecture BEHAVIORAL of mainsch is 
   signal c1  : std_logic; 
   signal c2  : std_logic; 
   signal c3  : std_logic; 
   component PFA 
      port ( Cin  : in    std_logic;  
             A    : in    std_logic;  
             B    : in    std_logic;  
             zero : in    std_logic;  
             G1   : out   std_logic;  
             G2   : out   std_logic;  
             S    : out   std_logic;  
             Cout : out   std_logic); 
   end component; 
    
begin 
   XLXI_1 : PFA 
      port map (A=>A(0), 
                B=>B(0), 
                Cin=>Cin, 
                zero=>K1, 
                Cout=>c1, 
                G1=>G1, 
                G2=>G2, 
                S=>S(0)); 
    
   XLXI_2 : PFA 
      port map (A=>A(1), 
                B=>B(1), 



                Cin=>c1, 
                zero=>K2, 
                Cout=>c2, 
                G1=>G3, 
                G2=>G4, 
                S=>S(1)); 
    
   XLXI_3 : PFA 
      port map (A=>A(2), 
                B=>B(2), 
                Cin=>c2, 
                zero=>K3, 
                Cout=>c3, 
                G1=>G5, 
                G2=>G6, 
                S=>S(2)); 
    
   XLXI_4 : PFA 
      port map (A=>A(3), 
                B=>B(3), 
                Cin=>c3, 
                zero=>K4, 
                Cout=>S(4), 
                G1=>G7, 
                G2=>G8, 
                S=>S(3)); 
    
end BEHAVIORAL; 
 
 
6.2 “PFA” Code 
 
library ieee; 
use ieee.std_logic_1164.ALL; 
use ieee.numeric_std.ALL; 
 
entity PFA is 
   port ( A    : in    std_logic;  
          B    : in    std_logic;  
          Cin  : in    std_logic;  
          zero : in    std_logic;  
          Cout : out   std_logic;  
          G1   : out   std_logic;  
          G2   : out   std_logic;  
          S    : out   std_logic); 
end PFA; 
 
architecture BEHAVIORAL of PFA is 
  signal AxB: std_logic;        -- This signal is going to be (A xor B) 
  signal AB: std_logic;         -- This signal is going to be (A and B xor zero) 
begin 
 
  AxB  <= A xor B;              -- First I am loading 
  AB   <= (A and B) xor zero;   -- the auxiliar signals 
  G1   <= A;                    -- Garbage 1 
  G2   <= AxB;                  -- Now I am doing the rest 
  S    <= AxB xor Cin;          -- of the operations 
  Cout <= (AxB and Cin) xor AB; -- Carry out 
 
end BEHAVIORAL; 



7 Simulation And Results 
 
The project was simulated with the help of the Xilinx ISE 7.1 tool. Remember that the real inputs for this project were the 4 bits A and B and the 
1 bit Cin (Carry In). The rest (K1 through K4) are only the ancilla bits and they need to remain always in zero. 
 

 
Figure 7.1  Timing diagram of the simulation. 

 
Important Note: The system outputs are shifted to the left because of a bug in the tool’s simulator.
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