Incremental Hough Transform

Derek Schmidlkofer

ECE 590: VHDL
Prof. Marek Perkowski

June 15, 2006

Final Project
Introduction
The Hough transform was first introduced by Paul Hough in 1962 [1] with the aim of detecting alignments in T.V. lines. It later became the basis of a great number of image analysis applications. The Hough transform is mainly used to detect parametric shapes in images. It was first used to detect straight lines and later extended to other parametric models such as circumferences or ellipses, being finally generalized to any parametric shape [2]. The key idea of the Hough transform is that spatially extended patterns are transformed into a parameter space where they can be represented in a spatially compact way. Thus, a difficult global detection problem in the image space is reduced to an easier problem of peak detection in a parameter space.
A set of collinear image points (x, y) can be represented by the equation:

[image: image1.wmf]b

mx

y

+

=

(1)

where m and b are two parameters, the slope and intercept, which characterize the line. Equation (1) maps each value of the parameter combination (m, b) to a set of image points. But Equation (1) can be “read” as a backprojection, i.e. it represents the set of straight lines, each defined by a point (m, b) in the parameter space, passing through an image point (x, y). From this point of view, each image point (x, y) defines a straight line in the parameter space which represents all possible combinations of (m, b) defining lines passing through (x, y). Points which are collinear in the image space all intersect at a common point in the parameter space and the coordinates of this parameter point characterize the straight line connecting the image points. Thus, the problem of line detection in image space is transformed to the problem of finding intersection points (peaks) in the parameter space.

The Hough transform offers several advantages. First, each image point is treated independently and therefore parallel processing is possible and the method is suitable for real-time applications. Second, the method is robust to the presence of noise, since noisy image points are very unlikely to contribute to a peak in the parameter space. Third, since each image point contributes independently to the parameter space points, the algorithm is able to work even if the shape is occluded. A final advantage is that Hough transform is able to detect different instances of the desired shape at the same time, depending on the number of peaks which are considered in the parameter space. The main drawbacks of the Hough transform are its large storage and computational requirements.
Standard Hough Transform
The Straight Line Hough transform (SLHT) was the first, and probably the most, used of the parameter-based transformations. The SLHT idea has been introduced in the previous section starting from Equation (1). However, a problem arises when lines have large slopes, i.e.
[image: image2.wmf]¥

®

m

. Duda and Hart [3] solved the problem of an unbounded parameter space suggesting that straight lines might be more usefully parameterized by the use of polar coordinates, i.e. the length r and the orientation θ of the normal vector to the line from the image origin. Thus, a straight line is represented by the following equation:

[image: image3.wmf]q

q

sin

cos

y

x

r

+

=

(2)

In the conventional implementation, The Hough transform essentially consists of three stages:

1. Characteristic point detection. Not all the image points are mapped to the parameter space. An information reduction is performed in the image such that it preserves the shapes which are wanted to be detected. Thus, some pixels of the image are selected according to certain local properties (e.g. gradient magnitude and gradient orientation). Usually this preprocessing step is a local edge detector.

2. Transform mapping. Each characteristic point of the image space is mapped to the parameter space. This parameter space is represented by a two-dimensional accumulator array (n-dimensional for detection of higher-order shapes). A voting rule usually underlies the transform mapping. This voting rule determines how the transform mapping affects the contents of the accumulator array. The simplest voting rule is to increment the parameter points (θ, r) mapped from an image point (x, y).

3. Peak detection. To extract the corresponding parameter values of the detected shape from the accumulator array. The simplest method consists in performing a global thresholding on the accumulator array. Since the presence of noise and distortion may result in true peaks split between several accumulator cells and, thus, not detected, different kinds of clustering procedures are also applied.

Each image point (x, y) is mapped using the Hough transform to the curve Equation (2) in the
[image: image4.wmf]q

-

r

 plane. Both r and θ axes have to be quantized and hence a two-dimensional accumulator array must be constructed in the
[image: image5.wmf]q

-

r

 plane. Equation (2) is applied to each point in the image and the contents of all the cells in the transform plane that the corresponding curve passes through are incremented. This equation represents the line in the
[image: image6.wmf]q

-

r

 plane that has a distance r to the origin and the normal to which makes an angle θ with the x-axis (Fig 1). Therefore, all points in the
[image: image7.wmf]q

-

r

 plane located on the line
[image: image8.wmf]0

0

0

sin

cos

q

q

y

x

r

+

=

 are mapped to curves (1) in the
[image: image9.wmf]q

-

r

 plane that all pass through the point
[image: image10.wmf](

)

0

0

,

q

r

. The Hough transform method described above is known in literature as the Standard Hough Transform (SHT) [1]. Using of direct implementation of the SHT in PLD leads to slow and large multipliers and look-up table utilization. To solve this problem, we utilize the incremental Hough Transform (IHT) [4], which eliminates necessity of trigonometric operations and is based on the following ideas.
[image: image11.emf]
Figure 1: Relationship between (x, y) and (r, θ)

Incremental Hough Transform

The equation
[image: image12.wmf]n

n

n

y

x

r

q

q

sin

cos

+

=

 can be written as:

[image: image13.wmf])

sin(

)

cos(

e

e

n

y

n

x

r

n

+

=

(3)
where
[image: image14.wmf]K

p

e

=

and n and K are the index and the number of the divisions of the θ-axis of
the parameter space, respectively. From (3) follows:

[image: image15.wmf][

]

[

]

[

]

[

]

e

e

e

e

e

e

e

e

e

e

sin

)

cos(

cos

)

sin(

sin

)

sin(

cos

)

cos(

)

1

(

sin

)

1

(

cos

1

1

n

n

y

n

n

x

r

n

y

n

x

r

n

n

-

+

-

=

+

+

+

=

+

+

(4)
For small values of ε we can assume that
[image: image16.wmf]1

cos

=

e

 and
[image: image17.wmf]e

e

=

sin

. Then:

[image: image18.wmf][

]

)

sin(

)

cos(

)

sin(

)

cos(

1

e

e

e

e

e

n

x

n

y

n

y

n

x

r

n

-

+

+

=

+

(5)
If
[image: image19.wmf])

sin(

)

cos(

'

e

e

n

y

n

x

r

n

-

=

, we can write:

[image: image20.wmf]n

n

n

n

n

n

r

r

r

r

r

r

e

e

-

=

+

=

+

+

'

'

'

1

1

(6)
Note that

[image: image21.wmf][

]

[

]

n

K

n

n

r

n

y

n

x

r

n

x

n

y

r

+

=

+

+

+

=

-

=

)

2

/

(

)

2

(

sin

)

2

(

cos

'

)

sin(

)

cos(

'

e

p

e

p

e

e

(7)
Thus, the IHT2 is defined by the equations:

[image: image22.wmf]n

n

K

n

K

n

K

n

n

r

r

r

r

r

r

e

e

-

=

+

=

+

+

+

+

+

)

2

/

(

1

)

2

/

(

)

2

/

(

1

for
[image: image23.wmf]2

/

0

K

n

<

£

(8)
with
[image: image24.wmf]x

r

=

0

 and
[image: image25.wmf]y

r

K

=

2

/

[4].
Modifications of the Incremental Hough Transform
As can be seen on Fig.2, IHT2 result contains an error increased with each transform step. At
[image: image26.wmf]o

90

2

/

=

=

p

q

 the beginning to the 2nd part is the difference eliminated, but in the next step is error increased as well. We can assume the increasing of the initial points can decrease error comparing to SHT.

[image: image27.emf]
Figure 2: SHT vs. IHT2 for point
[image: image28.wmf](

)

8

,

2

=

=

y

x

 with K = 20
Let’s assume
[image: image29.wmf]4

/

K

n

=

, then

[image: image30.wmf](

)

4

/

)

4

/

(

)

2

/

(

1

)

4

/

(

)

2

/

(

)

4

/

(

)

2

/

(

4

/

1

4

/

K

K

K

K

K

K

K

K

K

r

r

r

r

r

r

e

e

-

=

+

=

+

+

+

+

+

(9)

For calculation for (8) and (9) is for each n+1 step necessary to substitute results

from nth step. Let’s divide the range of K:

[image: image31.wmf]K

K

n

K

K

n

K

K

n

K

n

,

4

/

3

;

4

/

3

,

2

/

;

2

/

,

4

/

;

4

/

,

0

4

3

2

1

=

=

=

=

(10)

By application of each sub-ranges
[image: image32.wmf]1

n

 and
[image: image33.wmf]3

n

 to (8) and
[image: image34.wmf]2

n

 and
[image: image35.wmf]4

n

 to (9) we obtain 4 ranges, where are independent to each other for each n+1 step. Then a new

modification of the incremental Hough Transform (IHT4) [5]can be expressed:

[image: image36.wmf]n

K

n

K

n

K

n

n

K

n

K

n

K

n

K

n

K

n

K

n

n

r

r

r

r

r

r

r

r

r

r

r

r

+

+

+

+

+

+

+

+

+

+

+

+

+

-

=

-

=

+

=

+

=

)

4

/

(

)

4

/

3

(

1

)

4

/

3

(

)

2

/

(

1

)

2

/

(

)

4

/

3

(

)

4

/

(

1

)

4

/

(

)

2

/

(

1

e

e

e

e

for
[image: image37.wmf]4

/

0

K

n

<

£

(11)
and the initial computing points are calculated:

[image: image38.wmf])

(

2

/

2

)

4

/

3

sin(

)

4

/

3

cos(

)

(

2

/

2

)

4

/

sin(

)

4

/

cos(

;

4

/

3

4

/

2

/

0

x

y

y

x

r

x

y

y

x

r

y

r

x

r

K

K

K

-

=

+

=

+

=

+

=

=

=

p

p

p

p

(12)
Objective

Create a circuit that will perform the Hough transform on an image that has undergone edge detection information reduction. The design should be able to read in an image of arbitrary size and output equations representing lines that are present in the image.

Specifications

The design should have a request bit, an input ready bit, a parallel vector input equal to the height of the image, an output bit representing that the task is complete, an output referencing which line coordinates are being output, an output for the r (distance coordinate, and an output for the θ (angle) coordinate. All the edges in the image will be represented by ones in the image array all other elements of the array will be zero. Each element of the image array will undergo Hough transformation and output to an accumulator array representing Hough Space. The largest elements of the accumulator represent lines in the image. The coordinates of these elements are sent to the output once all the input image points have undergone transformation.

[image: image39]
Figure 3: Hough Transformation Circuit

Implementation

The circuit will be divided into three sections. The first section will obtain and store the image in an array. This section is part of the control unit (CU) and can be seen in Fig. 4 CU0. It first waits for a request form the user to start image acquisition. It will then wait for each vector to be applied and then it will store them, sequentially, in an array of memory. Once the entire image is obtained, a flag will be set to let the processing elements start the transform of the image.

The second section of the circuit contains the processing elements and will be explained in the next section (Fig. 6 Process Flow Chart). The third and final step is to output the results of the transform. The third step is actually the second part of the CU (CU1). CU1 waits for the processing elements to finish; it then searches the accumulator for peek values which represent lines. The design can be set to search for a certain number of lines, or lines of a certain length. Once the indicated lines are located, the values for r and θ are output along with a corresponding line number and a flag for the user indicating that the circuit has finished (Fig. 4).

[image: image40]
Figure 4: CU Flowchart

 IHT4 Image Processing Element Implementation
Implementation of the IHT4 processor can be seen in the architecture of Fig. 5. In the first transform step the initial values for each section of K are calculated from equations (12). Then the actual values with help of the previous values are calculated in each transform step. If the value of ε is carefully selected as 1/2m, multiplication from equations (11) can be realized using only shift registers. This simplification leads to
effective and fast realization, which can be expressed as:

[image: image41.wmf])

,

(

)

,

(

)

,

(

)

,

(

1

3

3

0

2

2

3

1

1

2

0

0

m

MUX

rot

MUX

REG

m

MUX

rot

MUX

REG

m

MUX

rot

MUX

REG

m

MUX

rot

MUX

REG

+

=

+

=

+

=

+

=

A more detailed view of the dynamics of the processing elements can be seen in the flow chart of Fig. 6.
[image: image42.png]Step 0
MUX, > REG,
L] o > shit__|—»|
S0 | I'mux, N > REG,
P <Ki4 Ki2> >__shift
Step 0
=R MUX , »| REG,
| <Ki2,3K14> —PL_Shift g
Step 0 —
—mux, L REG;
> <3KiMK> | T PL_Shit >

Figure 5: Architecture of IHT4 processor

[image: image43]
Figure 6: Processor Flowchart
VHDL Code for IHT4 Circuit

--Derek Schmidlkofer
--ECE 590
--Final Project: Hough Transform
Library ieee;

use ieee.std_logic_1164.all;

use work.all;

--define entity
entity HT is

 port (Clk: in std_logic;

 request: in std_logic;

 image_vector_ready: in integer;

 image_vector: in bit_vector(0 to 9);

 hough_done: out bit;

 line_number: out integer;

 r_out: out integer;

 n_out: out integer);

end entity HT;

architecture IHT4 of HT is
begin
--set constants
constant image_width: integer := (10-1); --image width
constant image_height: integer := (10-1); --image heigth
constant K: integer := 20;
--resolution of theta in hough accumulator
constant number_of_lines: integer := 3;

--number of lines that are to be detected
constant length_of_line: integer := 5;

--minimum number of pixles required for a line
constant e: real := 0.15708;
--e = pi/K
--internal signals
signal n0: integer :=0; --pointers for the accumulator
signal n1: integer :=0; --one for each processor
signal n2: integer :=0;

signal n3: integer :=0;

type accum_array is array (0 to K, 0 to K) of integer; --row#, column#
signal accum: accum_array;

type image_array is array (0 to image_height, 0 to image_width) of integer;

signal image: image_array;

signal image_ready: bit := '0';

 --lets image processors know that image is now in the image array
signal rn0: real;
--intermediat values used in calculations
signal rn1: real;
--one for each image processor
signal rn2: real;

signal rn3: real;

signal mux0: real;
--intermediate values used in calculations
signal mux1: real;
--again one for each processor
signal mux2: real;

signal mux3: real;

signal p0_done: bit := '0'; --process0 is done
signal p1_done: bit := '0'; --process1 is done
signal p2_done: bit := '0'; --process2 is done
signal p3_done: bit := '0'; --process3 is done
signal j: integer := 0; --local pointer for cu1
type r_out_array is array (0 to number_of_lines) of integer;

signal roa: r_out_array; --storage array for cu1
type n_out_array is array (0 to number_of_lines) of integer;

signal noa: n_out_array; --storage array for cu1

--convert image_vector (bit) to image array (integer)
cu0: process
variable x: integer :=0; --local pointers x and y
variable y: integer :=0;

begin
 wait until request = '1'; --wait for request form external source
 x := 0; --set starting column
 while x <= image_width loop --image width = 10
 wait until image_vector_ready = x;

 --wait for new image vector to be input
 y := 0; --reset y pointer
 while y <= image_height loop
 if image_vector(y) = '1' then

 --convert vector to 2D array
 image(x,y) <= 1;

 else

 image(x,y) <= 0;

 end if;

 y := y + 1; --increment y pointer
 end loop;

 x := x + 1; --increment x pointer
 end loop;

 image_ready <= '1'; --tell image processors that image is in array
end process cu0;

--IHT4 process element
--<0,K/4>
process0: process
variable x0: integer :=0;
--local pointers x and y
variable y0: integer :=0;

variable rn0i : integer;
--used in converting real to integer
begin
 wait until image_ready = '1';
--image is in array
 x0 := 0;
--set x pointer to inital position
 while x0 <= image_width loop

 y0 := 0;
--set y pointer to inital position
 while y0 <= image_height loop
 n0 <= 0;
--set n pointer to initial position
 rn0 <= real(x0);

 --set r to initial value/convert integer to real
 mux0 <= rn0;

 if image(y0,x0) = 1 then

--check to see if calculations are needed
 rn0i := integer(rn0);

--converting real to integer
 accum(rn0i,n0) <= accum(rn0i,n0) + 1;

--increment accumulator at initaial point
 while n0 < (K/4) loop

--n goes from 0 to 4 because K = 20
 n0 <= n0 + 1; --increment n pointer
 wait until n0 = n2;

--wait for r value from other processor
 rn0 <= (mux0 + (e*rn2));

--calculate new r value

--later on, multiplication will be done using

--shift registers by selecting e to be 1/2m
 mux0 <= rn0; --update mux value
 rn0i := integer(rn0);

--converting real to integer
 accum(rn0i,n0) <= accum(rn0i,n0) + 1;

--increment accumulator
 end loop;

 else n0 <= 0; --do nothing, reset n pointer
 end if;

 y0 := y0 + 1; --increment y pointer
 end loop;

 x0 := x0 + 1; --increment x pointer
 end loop;

 p0_done <= '1'; --process is done
end process process0;

--<K/4,K/2> --see process0 for code comments
process1: process
variable x1: integer :=0;

variable y1: integer :=0;

variable rn1i : integer;

begin
 wait until image_ready = '1';

 x1 := 0;

 while x1 <= image_width loop

 y1 := 0;

 while y1 <= image_height loop
 n1 <= 0;

 rn1 <= (0.707* (real(y1 + x1)));

 mux1 <= rn1;

 if image(y1,x1) = 1 then
 rn1i := integer(rn1);

 accum(rn1i,(n1 + (K/4))) <= accum(rn1i,(n1 + (K/4))) + 1;

 while n1 < (K/4) loop
 n1 <= n1 + 1;

 wait until n1 = n3;

 rn1 <= (mux1 + (e*rn3));

 mux1 <= rn1;

 rn1i := integer(rn1);

 accum(rn1i,(n1 + (K/4))) <= accum(rn1i,(n1 + (K/4))) + 1;

 end loop;

 else n1 <= 0;

 end if;

 y1 := y1 + 1;

 end loop;

 x1 := x1 + 1;

 end loop;

 p1_done <= '1';

end process process1;

--<K/2,3K/4> --see process0 for code comments
process2: process
variable x2: integer :=0;

variable y2: integer :=0;

variable rn2i : integer;

begin
 wait until image_ready = '1';

 x2 := 0;

 while x2 <= image_width loop

 y2 := 0;

 while y2 <= image_height loop
 n1 <= 0;

 rn2 <= real(y2);

 mux2 <= rn2;

 if image(y2,x2) = 1 then
 rn2i := integer(rn2);

 accum(rn2i,(n2 + (K/2))) <= accum(rn2i,(n2 + (K/2))) + 1;

 while n2 < (K/4) loop
 n2 <= n2 + 1;

 wait until n2 = n0;

 rn2 <= (mux2 - (e*rn0));

 mux2 <= rn2;

 rn2i := integer(rn2);

 accum(rn2i,(n2 + (K/2))) <= accum(rn2i,(n2 + (K/2))) + 1;

 end loop;

 else n2 <= 0;

 end if;

 y2 := y2 + 1;

 end loop;

 x2 := x2 + 1;

 end loop;

 p2_done <= '1';

end process process2;

--<3K/4,K> --see process0 for code comments
process3: process
variable x3: integer :=0;

variable y3: integer :=0;

variable rn3i : integer;

begin
 wait until image_ready = '1';

 x3 := 0;

 while x3 <= image_width loop

 y3 := 0;

 while y3 <= image_height loop
 n3 <= 0;

 rn3 <= (0.707* (real(y3 - x3)));

 mux3 <= rn3;

 if image(y3,x3) = 1 then
 rn3i := integer(rn3);

 accum(rn3i,(n3 + ((3*K)/4))) <= accum(rn3i,(n3 + ((3*K)/4))) + 1;

 while n3 < (K/4) loop
 n3 <= n3 + 1;

 wait until n3 = n1;

 rn3 <= (mux3 - (e*rn1));

 mux3 <= rn3;

 rn3i := integer(rn3);

 accum(rn3i,(n3 + ((3*K)/4))) <= accum(rn3i,(n3 + ((3*K)/4))) + 1;

 end loop;

 else n3 <= 0;

 end if;

 y3 := y3 + 1;

 end loop;

 x3 := x3 + 1;

 end loop;

 p3_done <= '1';

end process process3;

--locate and output lines from accumulator
cu1: process
variable x4: integer :=0;
--local pointers x and y
variable y4: integer :=0;

begin
 wait until (p0_done and p1_done and p2_done and p3_done) = '1';

--wait for processing to finish
 x4 := 0;
--set starting column
 while x4 <= K loop
 y4 := 0;
--reset y pointer
 while y4 <= 9 loop
 if accum(x4, y4) >= length_of_line then

 roa(j) <= x4;

 noa(j) <= y4;

 j <= j + 1;

 y4 := y4 + 1;

 exit when j > number_of_lines;

--exit loop after lines are found
 else

 y4 := y4 + 1;
--increment y pointer
 end if;

 end loop;

 x4 := x4 + 1;
--increment x pointer
 exit when j > number_of_lines;

--exit loop after lines are found
 end loop;

 hough_done <= '1';
--equations are ready to be output
 j <= 0;
--set j pointer to initial value
 while j <= number_of_lines loop
 line_number <= j;
--output current line number
 r_out <= roa(j);
--output current line r value
 n_out <= noa(j);
--output current line n value
 wait for 10 ns; --output new line elements every 10 ns
 j <= j + 1;
--increment j pointer
 end loop;

end process cu1;

end architecture IHT4;

Testbench for first part of CU (CU0)
library ieee;

use ieee.std_logic_1164.all;

use work.all;

use globals.all;

package globals is
 constant image_width: integer := 10;

 constant image_height: integer := 10;

end globals;

entity cu0 is

 port (Clk: in bit;

 request: in bit;

 image_vector_ready: in integer;

 image_vector: in bit_vector(0 to 9)); --image height = 10
end entity cu0;

architecture IHT4 of cu0 is
type image_array is array (0 to 9, 0 to 9) of integer; --row,column
signal image: image_array;

signal image_ready: bit :='0';

begin
cu0: process
variable x: integer :=0; --local pointers x and y
variable y: integer :=0;

begin
 wait until request = '1'; --wait for request form external source
 x := 0; --set starting column
 while x <= 9 loop --image width = 10
 wait until image_vector_ready = x;

 --wait for new image vector to be input
 y := 0; --reset y pointer
 while y <= 9 loop
 if image_vector(y) = '1' then

 --convert vector to 2D array
 image(x,y) <= 1;

 else

 image(x,y) <= 0;

 end if;

 y := y + 1; --increment y pointer
 end loop;

 x := x + 1; --increment x pointer
 end loop;

 image_ready <= '1'; --tell image processors that image is in array
end process cu0;

end IHT4;

library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity testcu0 is
end testcu0;

architecture stimulus of testcu0 is
 component cu0

 port (Clk: in bit;

 request: in bit;

 image_vector_ready: in integer;

 image_vector: in bit_vector(0 to 9));

 end component;

signal Clk: bit;

signal request: bit;

signal image_vector_ready: integer;

signal image_vector: bit_vector(0 to 9);

type image_array is array (0 to 9, 0 to 9) of integer;

signal image: image_array;

signal image_ready: bit :='0';

begin
 uut: cu0 port map(Clk, request, image_vector_ready, image_vector);

process
constant PERIOD: time := 40 ns;

begin
--test image
--0('1','1','0','0','0','0','0','0','0','0')
--1('0','1','0','0','0','0','0','0','0','0')
--2('0','1','1','0','0','0','0','0','0','0')
--3('0','1','0','1','0','0','0','0','0','0')
--4('0','1','0','0','1','0','0','0','0','0')
--5('0','1','0','0','0','1','0','0','0','0')
--6('0','1','0','0','0','0','1','0','0','0')
--7('1','1','1','1','1','1','1','1','1','1')
--8('0','1','0','0','0','0','0','0','1','0')
--9('0','1','0','0','0','0','0','0','0','1')
 image_vector <= ('1','1','0','0','0','0','0','0','0','0');

 image_vector_ready <= 0;

 request <= '1';

 wait for PERIOD;

 image_vector <= ('0','1','0','0','0','0','0','0','0','0');

 image_vector_ready <= 1;

 wait for PERIOD;

 image_vector <= ('0','1','1','0','0','0','0','0','0','0');

 image_vector_ready <= 2;

 wait for PERIOD;

 image_vector <= ('0','1','0','1','0','0','0','0','0','0');

 image_vector_ready <= 3;

 wait for PERIOD;

 image_vector <= ('0','1','0','0','1','0','0','0','0','0');

 image_vector_ready <= 4;

 wait for PERIOD;

 image_vector <= ('0','1','0','0','0','1','0','0','0','0');

 image_vector_ready <= 5;

 request <= '1';

 wait for PERIOD;

 image_vector <= ('0','1','0','0','0','0','1','0','0','0');

 image_vector_ready <= 6;

 wait for PERIOD;

 image_vector <= ('1','1','1','1','1','1','1','1','1','1');

 image_vector_ready <= 7;

 wait for PERIOD;

 image_vector <= ('0','1','0','0','0','0','0','0','1','0');

 image_vector_ready <= 8;

 wait for PERIOD;

 image_vector <= ('0','1','0','0','0','0','0','0','0','1');

 image_vector_ready <= 9;

 wait for PERIOD;

 image_vector <= ('0','0','0','0','0','0','0','0','0','0');

 image_vector_ready <= 10;

 wait for PERIOD;

 wait;

 end process;

end stimulus;

[image: image44.png]0 1 2 3 £ 5 & 7] 3 10
E] 300/ 100) 180) 140 120 110) 108 3) 10z) 1ol 00
Source: Simator N She | dogns | Stns | Zodne | Zstns | 0dns || Gstns | 4ddns | 4Sng
Cursor: 479195.979p5 473158

Figure : Testbench results for CU0
Testbench for process0 (p0)

library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity p0 is

 --no ports, all signals
end entity p0;

--IHT4 process element
--<0,K/4>
architecture IHT4 of p0 is
constant K: integer := 20;

constant e: real := 0.15708; --e = pi/K
signal n0: integer :=0;

signal n2: integer :=0;

signal rn0: real;

signal rn2: real;

signal mux0: real;

type accum_array is array (0 to K, 0 to K) of integer; --row#, column#
signal accum: accum_array;

type image_array is array (0 to 4, 0 to 4) of integer; --row,column
signal image: image_array;

signal image_ready: bit :='0';

signal p0_done: bit :='0';

begin
process0: process
variable x0: integer :=0; --local pointers x and y
variable y0: integer :=0;

variable rn0i : integer; --used in converting real to integer
begin
 wait until image_ready = '1'; --image is in array
 x0 := 0; --set x pointer to initial position
 while x0 <= 4 loop

 y0 := 0; --set y pointer to initial position
 while y0 <= 4 loop
 n0 <= 0; --set n pointer to initial position
 rn0 <= real(x0); --set r to initial value/convert

 --integer to real
 mux0 <= rn0;

 if image(y0,x0) = 1 then --check to see if

--calculations are needed
 rn0i := integer(rn0); --converting real to int
 accum(rn0i,n0) <= accum(rn0i,n0) + 1;

 --increment accumulator at initial point
 while n0 < (K/4) loop --n goes from 0 to 4

--because K = 20
 n0 <= n0 + 1; --increment n pointer
 wait until n0 = n2;

 --wait for r value from other processor
 rn0 <= (mux0 + (e*rn2));

--calculate new r value --later on,

--multiplication will be done using shift registers by selecting e to be 1/2m
 mux0 <= rn0; --update mux value
 rn0i := integer(rn0);

--converting real to integer
 accum(rn0i,n0) <= accum(rn0i,n0) + 1;

--increment accumulator
 end loop;

 else n0 <= 0; --do nothing, reset n pointer
 end if;

 y0 := y0 + 1; --increment y pointer
 end loop;

 x0 := x0 + 1; --increment x pointer
 end loop;

 p0_done <= '1'; --process is done
end process process0;

end IHT4;

library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity testp0 is
end testp0;

architecture stimulus of testp0 is
 component pr0

 port (Clk: in bit;

 image_ready: in bit;

 n2: in integer;

 rn2: in real;

 p0_done: out bit);

 end component;

signal Clk: bit;

signal n0: integer :=0;

signal n2: integer;

signal rn0: real;

signal rn2: real;

signal mux0: real;

type accum_array is array (0 to 4, 0 to 20) of integer; --row#, column#
signal accum: accum_array;

type image_array is array (0 to 4, 0 to 4) of integer; --row,column
--signal image: image_array;
signal image_ready: bit :='0';

signal p0_done: bit :='0';

begin
 uut: pr0 port map(Clk, image_ready, n2, rn2, p0_done);

process
constant PERIOD: time := 40 ns;

constant image: image_array := ((1,1,0,0,0),

 (0,1,0,0,0),

 (0,1,1,0,0),

 (0,1,0,1,0),

 (0,1,0,0,1));

begin
 wait for PERIOD;

 rn2 <= 0.0;

 n2 <= 0;

 wait for PERIOD;

 image_ready <= '1';

 wait for PERIOD;

 rn2 <= 0.0;

 n2 <= 1;

 wait for PERIOD;

 rn2 <= 0.0;

 n2 <= 2;

 wait for PERIOD;

 rn2 <= 0.0;

 n2 <= 3;

 wait for PERIOD;

 rn2 <= 0.0;

 n2 <= 4;

 wait for PERIOD;

 rn2 <= 1.0;

 n2 <= 0;

 wait for PERIOD;

 rn2 <= 1.0;

 n2 <= 1;

 wait for PERIOD;

 rn2 <= 0.975;

 n2 <= 2;

 wait for PERIOD;

 rn2 <= 0.926;

 n2 <= 3;

 wait for PERIOD;

 rn2 <= 0.853;

 n2 <= 4;

 wait for PERIOD;

 rn2 <= 2.0;

 n2 <= 0;

 wait for PERIOD;

 rn2 <= 2.0;

 n2 <= 1;

 wait for PERIOD;

 rn2 <= 1.951;

 n2 <= 2;

 wait for PERIOD;

 rn2 <= 1.852;

 n2 <= 3;

 wait for PERIOD;

 rn2 <= 1.705;

 n2 <= 4;

 wait for PERIOD;

 wait;

 end process;

end stimulus;

[image: image45.png]2

Source: Simator
Cursor: 678307.017p5

1705

0

Z. 0 0 Wiz a4 0 1z 3 a 012 (3 4
LA
& 0 TR (S T i (L. L7
(2147483648, 2147483648, 2147483648, 2147433645, 2147489640, 2147453645, 2147403648, 21474,
=S d0gne | 1S0n: | 200n: | 2S0n a00ne | a5One | aDOne | 4SOne | SoOne | SSdne | endne | esdn:
78807,

Figure : Testbench results for process0

	
	x=0
	
	
	x=1
	
	
	x=2
	
	
	x=3
	
	
	x=4
	

	y=0
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0.000
	0.000
	
	1.000
	0.000
	
	2.000
	0.000
	
	3.000
	0.000
	
	4.000
	0.000

	n=1
	0.000
	0.000
	
	1.000
	-0.157
	
	2.000
	-0.314
	
	3.000
	-0.471
	
	4.000
	-0.628

	n=2
	0.000
	0.000
	
	0.975
	-0.314
	
	1.951
	-0.628
	
	2.926
	-0.942
	
	3.901
	-1.257

	n=3
	0.000
	0.000
	
	0.926
	-0.467
	
	1.852
	-0.935
	
	2.778
	-1.402
	
	3.704
	-1.869

	n=4
	0.000
	0.000
	
	0.853
	-0.613
	
	1.705
	-1.226
	
	2.558
	-1.838
	
	3.410
	-2.451

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0.000
	1.000
	
	1.000
	1.000
	
	2.000
	1.000
	
	3.000
	1.000
	
	4.000
	1.000

	n=1
	0.157
	1.000
	
	1.157
	0.843
	
	2.157
	0.686
	
	3.157
	0.529
	
	4.157
	0.372

	n=2
	0.314
	0.975
	
	1.289
	0.661
	
	2.265
	0.347
	
	3.240
	0.033
	
	4.215
	-0.281

	n=3
	0.467
	0.926
	
	1.393
	0.459
	
	2.319
	-0.009
	
	3.245
	-0.476
	
	4.171
	-0.943

	n=4
	0.613
	0.853
	
	1.465
	0.240
	
	2.318
	-0.373
	
	3.171
	-0.986
	
	4.023
	-1.599

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=2
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0.000
	2.000
	
	1.000
	2.000
	
	2.000
	2.000
	
	3.000
	2.000
	
	4.000
	2.000

	n=1
	0.314
	2.000
	
	1.314
	1.843
	
	2.314
	1.686
	
	3.314
	1.529
	
	4.314
	1.372

	n=2
	0.628
	1.951
	
	1.604
	1.636
	
	2.579
	1.322
	
	3.554
	1.008
	
	4.530
	0.694

	n=3
	0.935
	1.852
	
	1.861
	1.385
	
	2.787
	0.917
	
	3.713
	0.450
	
	4.639
	-0.017

	n=4
	1.226
	1.705
	
	2.078
	1.092
	
	2.931
	0.480
	
	3.783
	-0.133
	
	4.636
	-0.746

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=3
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0.000
	3.000
	
	1.000
	3.000
	
	2.000
	3.000
	
	3.000
	3.000
	
	4.000
	3.000

	n=1
	0.471
	3.000
	
	1.471
	2.843
	
	2.471
	2.686
	
	3.471
	2.529
	
	4.471
	2.372

	n=2
	0.942
	2.926
	
	1.918
	2.612
	
	2.893
	2.298
	
	3.868
	1.984
	
	4.844
	1.669

	n=3
	1.402
	2.778
	
	2.328
	2.311
	
	3.254
	1.843
	
	4.180
	1.376
	
	5.106
	0.908

	n=4
	1.838
	2.558
	
	2.691
	1.945
	
	3.544
	1.332
	
	4.396
	0.719
	
	5.249
	0.106

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=4
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0.000
	4.000
	
	1.000
	4.000
	
	2.000
	4.000
	
	3.000
	4.000
	
	4.000
	4.000

	n=1
	0.628
	4.000
	
	1.628
	3.843
	
	2.628
	3.686
	
	3.628
	3.529
	
	4.628
	3.372

	n=2
	1.257
	3.901
	
	2.232
	3.587
	
	3.207
	3.273
	
	4.183
	2.959
	
	5.158
	2.645

	n=3
	1.869
	3.704
	
	2.795
	3.237
	
	3.721
	2.769
	
	4.647
	2.302
	
	5.573
	1.834

	n=4
	2.451
	3.410
	
	3.304
	2.797
	
	4.156
	2.185
	
	5.009
	1.572
	
	5.862
	0.959

Table : real values for testbench p0
	
	x=0
	
	
	x=1
	
	
	x=2
	
	
	x=3
	
	
	x=4
	

	y=0
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0
	0
	
	1
	0
	
	2
	0
	
	3
	0
	
	4
	0

	n=1
	0
	0
	
	1
	0
	
	2
	0
	
	3
	0
	
	4
	-1

	n=2
	0
	0
	
	1
	0
	
	2
	-1
	
	3
	-1
	
	4
	-1

	n=3
	0
	0
	
	1
	0
	
	2
	-1
	
	3
	-1
	
	4
	-2

	n=4
	0
	0
	
	1
	-1
	
	2
	-1
	
	3
	-2
	
	3
	-2

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0
	1
	
	1
	1
	
	2
	1
	
	3
	1
	
	4
	1

	n=1
	0
	1
	
	1
	1
	
	2
	1
	
	3
	1
	
	4
	0

	n=2
	0
	1
	
	1
	1
	
	2
	0
	
	3
	0
	
	4
	0

	n=3
	0
	1
	
	1
	0
	
	2
	0
	
	3
	0
	
	4
	-1

	n=4
	1
	1
	
	1
	0
	
	2
	0
	
	3
	-1
	
	4
	-2

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=2
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0
	2
	
	1
	2
	
	2
	2
	
	3
	2
	
	4
	2

	n=1
	0
	2
	
	1
	2
	
	2
	2
	
	3
	2
	
	4
	1

	n=2
	1
	2
	
	2
	2
	
	3
	1
	
	4
	1
	
	5
	1

	n=3
	1
	2
	
	2
	1
	
	3
	1
	
	4
	0
	
	5
	0

	n=4
	1
	2
	
	2
	1
	
	3
	0
	
	4
	0
	
	5
	-1

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=3
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0
	3
	
	1
	3
	
	2
	3
	
	3
	3
	
	4
	3

	n=1
	0
	3
	
	1
	3
	
	2
	3
	
	3
	3
	
	4
	2

	n=2
	1
	3
	
	2
	3
	
	3
	2
	
	4
	2
	
	5
	2

	n=3
	1
	3
	
	2
	2
	
	3
	2
	
	4
	1
	
	5
	1

	n=4
	2
	3
	
	3
	2
	
	4
	1
	
	4
	1
	
	5
	0

	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2
	
	rn0
	rn2

	y=4
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	n=0
	0
	4
	
	1
	4
	
	2
	4
	
	3
	4
	
	4
	4

	n=1
	1
	4
	
	2
	4
	
	3
	4
	
	4
	4
	
	5
	3

	n=2
	1
	4
	
	2
	4
	
	3
	3
	
	4
	3
	
	5
	3

	n=3
	2
	4
	
	3
	3
	
	4
	3
	
	5
	2
	
	6
	2

	n=4
	2
	3
	
	3
	3
	
	4
	2
	
	5
	2
	
	6
	1

Table : Integer values for testbench p0
Testbench for second part of CU (CU1)

library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity cu1 is

 port (hough_done: out bit;

 line_number: out integer;

 r_out: out integer;

 n_out: out integer);

end entity cu1;

--locate and output lines from accumulator
architecture IHT4 of cu1 is
constant K: integer := 4; --resolution of theta in hough accumulator
constant number_of_lines: integer := 3;

--number of lines that are to be detected
constant length_of_line: integer := 4;

--minimum number of pixles required for a line
signal p0_done: bit := '0'; --process0 is done
signal p1_done: bit := '0'; --process1 is done
signal p2_done: bit := '0'; --process2 is done
signal p3_done: bit := '0'; --process3 is done
signal j: integer := 0; --local pointer
type r_out_array is array (0 to number_of_lines) of integer;

signal roa: r_out_array;

type n_out_array is array (0 to number_of_lines) of integer;

signal noa: n_out_array;

type accum_array is array (0 to K, 0 to K) of integer; --row#, column#
signal accum: accum_array;

begin

cu1: process
variable x4: integer :=0; --local pointers x and y
variable y4: integer :=0;

begin
 wait until (p0_done and p1_done and p2_done and p3_done) = '1';

--wait for processing to finish
 x4 := 0;
--set starting column
 while x4 <= K loop
 y4 := 0;
--reset y pointer
 while y4 <= 9 loop
 if accum(x4, y4) >= length_of_line then

 roa(j) <= x4;

 noa(j) <= y4;

 j <= j + 1;

 y4 := y4 + 1;

 exit when j > number_of_lines;

--exit loop after lines are found
 else

 y4 := y4 + 1;
--increment y pointer
 end if;

 end loop;

 x4 := x4 + 1;
--increment x pointer
 exit when j > number_of_lines;

--exit loop after lines are found
 end loop;

 hough_done <= '1';
--equations are ready to be output
 j <= 0;
--set j pointer to initial value
 while j <= number_of_lines loop
 line_number <= j;
--output current line number
 r_out <= roa(j);
--output current line r value
 n_out <= noa(j);
--output current line n value
 wait for 10 ns; --output new line elements every 10 ns
 j <= j + 1;
--increment j pointer
 end loop;

end process cu1;

end architecture IHT4;

library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity testcu1 is
end testcu1;

architecture stimulus of testcu1 is
 component cu1

 port (hough_done: out bit;

 line_number: out integer;

 r_out: out integer;

 n_out: out integer);

 end component;

constant K: integer := 4;

constant number_of_lines: integer := 3

constant length_of_line: integer := 4

signal hough_done: bit;

signal line_number: integer;

signal r_out: integer;

signal n_out: integer;

signal p0_done: bit := '0'; --process0 is done
signal p1_done: bit := '0'; --process1 is done
signal p2_done: bit := '0'; --process2 is done
signal p3_done: bit := '0'; --process3 is done
signal j: integer := 0; --local pointer
type r_out_array is array (0 to number_of_lines) of integer;

signal roa: r_out_array;

type n_out_array is array (0 to number_of_lines) of integer;

signal noa: n_out_array;

type accum_array is array (0 to K, 0 to K) of integer; --row#, column#
begin
 uut: cu1 port map(hough_done, line_number, r_out, n_out);

process
constant PERIOD: time := 40 ns;

constant image: accum_array := ((0,0,0,0,0),

 (0,4,0,1,0),

 (3,0,0,5,6),

 (0,5,0,0,0),

 (0,0,0,0,2));

begin
 wait for PERIOD;

 p0_done <= '1';

 p1_done <= '1';

 p2_done <= '1';

 wait for PERIOD;

 p3_done <= '1';

 wait;

 end process;

end stimulus;

[image: image46.png]line_number

Source: Simator
Cursar: aons

2147453

Ete
214748348
247483648

0

2147463615, 2147463645, 2147453648, 2147453698)

EY

Tohs

The

Zohe

Zohe

i

Tohe

ohe

e

Sohe

Sohe

Eohe

ohe

Tohs

Figure : Testbench results for CU1

Conclusion
We have created a circuit that will perform the Hough transform on an image that has undergone edge detection information reduction. Our design is able to read in an image of arbitrary size and output equations representing the lines present in the image. We have done so using a novel modification of incremental HT (IHT4), the key module of the invariant feature extractor. The main benefit of IHT4 is increasing of parallelism of computing by factor of 2 comparing to IHT and by factor of 4 comparing to SHT. Another benefit of IHT4 is decreasing of inaccuracy of IHT by 50% in comparison to SHT.
Improvements
The most difficult aspect of coding was dealing with different data types and converting them from one form to another. I would prefer to stay away from the real data type but is just not possible to do so in this situation. IHT processor (IHT2 and IHT4) are parametrisable, i.e. it is possible to modify a format of representation of the float-point number, width of a mantissa or an exponent of a processed numbers as well as an image dimension. By shrinking the width of the floating-point numbers, it’s possible to increase calculation speed and decrease the number of resources needed by the calculations without increasing error by a large margin. I indicated in the processing elements to use shifting to perform the multiplication this would remove the need for large/slow multipliers. The shifting elements will be left for future coding. One final improvement would be to start processing the image as soon as the first vector is applied to the image array.
Contact Info

E-mail: dereks@covad.net
Web: http://www.geocities.com/dschmidlkofer/ECE590.html
References

[1] P.V.C. Hough. Method and means for recognizing complex patterns. Technical

 report, 1962. U.S. Patent No. 3069654

[2] D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern

 Recognition, 13(2):111-122, 1981.

[3] R.O. Duda and P.E. Hart. Use of the Hough transform to detect lines and curves in

 pictures. Communications of the Association for Computer Machinery, 15:11-15,

 1972.

[4] S. Tagzout, K. Achour, and K. Dejekoune. Hough transform algorithm for FPGA

 implementation. Signal Processing, 84, 2001, 1295-1301.
[5] J. Turan and M. Benca. PLD Implementation of Novel Algorithm of Incremental

 Hough Transform. 3, 2003

Clock

Input Image Vector

Hough Transform

Input Vector Ready

Line Number

Image Height

r Value Out

Transform Request

Hough Done

Transform Request

Wait For Input Vector Ready

Vector Ready

Place Image Vector into Image array

Increment to next column of image array

Whole Image Obtained

Wait for Hough Transform to complete

Transform Done

Request Line Equations

Wait for Line Equations

Equations Ready

Output Equations and Hough Done Bit

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Set Initial MUX Value

Increment Accumulator

Increment n

Wait for other MUX

MUX in other process done

Calculate new r value

New r value goes to MUX

Increment Accumulator

n > K

Wait for image ready

Image ready

Set y = 0

Increment y

y > image width

Increment x

x > image height

Output done to CU

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

CU0

CU1

θ Value Out

Image element an edge

Yes

No

Derek Schmidlkofer
1
ECE 590 Final Project

_1211612773.unknown

_1211614352.unknown

_1211616452.unknown

_1211627798.unknown

_1211634740.unknown

_1211698621.unknown

_1211630181.unknown

_1211616493.unknown

_1211616654.unknown

_1211616476.unknown

_1211615962.unknown

_1211616395.unknown

_1211614631.unknown

_1211613731.unknown

_1211614070.unknown

_1211613588.unknown

_1211610028.unknown

_1211610565.unknown

_1211611249.unknown

_1211611529.unknown

_1211611788.unknown

_1211612079.unknown

_1211611355.unknown

_1211610902.unknown

_1211610984.unknown

_1211611034.unknown

_1211610868.unknown

_1211610393.unknown

_1211610441.unknown

_1211610273.unknown

_1211609868.unknown

_1211609958.unknown

_1211609788.unknown

