
1B.Ramamurthy

Basic Pipelining

B.Ramamurthy

CS506

2B.Ramamurthy

Introduction

� In a typical system speedup is achieved through
parallelism at all levels: Multi-user, multi-
tasking, multi-processing, multi-programming,
multi-threading, compiler optimizations.

� Pipelining : is a technique for overlapping
operations during execution. Today this is a key
feature that makes fast CPUs.

� Different types of pipeline: instruction pipeline,
operation pipeline, multi-issue pipelines.

3B.Ramamurthy

Topics to be discussed
� What is a pipeline?

� A simple implementation of DLX

� Basic pipeline of DLX

� Performance issues

� Structural hazards

� Data hazards

� Control hazards

� Implementation issues

� Handling multi-cycle operations

� Instruction set design and pipelining

� Example: MIPS pipeline

� Summary

4B.Ramamurthy

What is a pipeline?

� Pipeline is like an automobile assembly line.

� A pipeline has many steps or stages or segments.

� Each stage carries out a different part of
instruction or operation.

� The stages are connected to form a pipe.

� An inst or operation enters through one end and
progresses thru’ the stages and exit thru’ the other
end.

� Pipelining is an implementation technique that
exploits parallelism among the instructions in a
sequential instruction stream.

5B.Ramamurthy

Pipeline characteristics
� Throughput: Number of items (cars, instructions,

operations) that exit the pipeline per unit time. Ex: 1 inst /
clock cycle, 10 cars/ hour, 10 fp operations /cycle.

� Stage time: The pipeline designer’s goal is to balance the
length of each pipeline stage. Balanced pipeline. In
general,

stage time = Time per instruction on non-pipelined machine /
number of stages.

In many instances, stage time = max (times for all stages).

� CPI : Pipeline yields a reduction in cycles per instruction.
CPI approx = stage time.

6B.Ramamurthy

Implementation of DLX’s ISA

� DLX instruction can be implemented in at
most five cycles:

� Instruction fetch (IF):
IR <== Mem[PC]

NPC <== PC + 4

� Instruction decode (ID)

A <== Regs[IR 6..10]

B <== Regs[IR 11..15]

Imm <== IR 16..31 with sign

7B.Ramamurthy

Implementation of DLX’s ISA
� Execution/Effective address (EX): Four alternatives:

� Mem. Reference :

ALUoutput <== A + Imm;

� Register-Register ALU inst:

 ALUoutput <== A op B;

� Register-Immediate :

ALUoutput <== A op Imm;

� Branch:

ALUoutput <== NPC + Imm; Cond <== (A op 0)

8B.Ramamurthy

Implementation … (contd.)

� Memory access /branch completion
(MEM):

� Memory access:

LMD <== Mem[ALUoutput] or

Mem[ALUoutput] <== B

� Branch:

if (cond) PC <== ALUoutput else PC<==
NPC

9B.Ramamurthy

Implementation … (contd.)

� Write Back cycle (WB):

� Register-register ALU inst:

Regs[IR 16..20] <== ALUoutput

� Register-Immediate ALU inst. :

Regs[IR 11..15] <== ALUoutput

� Load Instruction:

Regs[IR 11..15] <== LMD

10B.Ramamurthy

Hardware diagram

� Fig. 3.1 Study and understand thoroughly
the various components.

11B.Ramamurthy

12B.Ramamurthy

13B.Ramamurthy

Timing and control (The missing
links)

� What’s missing in the RTL description of
DLX given above is the timing and control
information:

� For example: (Add R1,R2,R3)

Add.t0: IR <== Mem[PC], NPC <== PC + 4

Add.t1: A <== Regs[IR 6..10], B <== Regs[IR
11..15]

Add.t2: ALUoutput <== A op B;

Add.t3: do nothing (idling)

Add.t4: Regs[IR 16..20] <== ALUoutput

14B.Ramamurthy

Timing and control - Branch

Br.t0 : IR <== Mem[PC], NPC <== PC + 4

Br.t1 : A <== Regs[IR 6..10], Imm <== IR 16..31

with sign

Br.t2 : ALUoutput <== NPC + Imm; Cond
<== (A op 0)

Br.t3 : if (cond) PC <== ALUoutput else
PC<== NPC

15B.Ramamurthy

Basic pipeline of DLX

� Five stages: IF, ID, EX, MEM, WB

� On each clock cycle an instruction is
fetched and begins its five cycle execution.

� Performance is up to five times that of a
machine that is non-pipelined.

� What do we need in the implementation of
the data path to support pipelining?

16B.Ramamurthy

Pipelining the DLX datapath
1) Separate instruction and data caches eliminating a conflict

that would arise between instruction fetch and data memory
access. This is shown in the data path we studied earlier.
This design avoids resource conflict.

2) We need to avoid register file access conflict: it is accessed
once during ID and another time during WB stage.

3) Update PC every cycle. So mux from memory access stage is
to be moved to IF stage.

4) All operations in one stage should complete within a clock
cycle.

5) Values passed from one stage to the next must be placed in
buffers/latches (I use buffers instead of registers to avoid
confusion with regular registers).

17B.Ramamurthy

Pipelining the DLX datapath
� How do arrive at the above list of requirements?

Examine what happens in each pipeline stage depending
on the instruction type. Make a list of all the
possibilities.

� RTL statements of the events on every stage of the DLX
pipeline is given in Fig.3.5.

� To control this pipeline, we only need to determine how
to set the control on the four multiplexers (mux)

– The first one inputs to PC. Lets call it MUX1.

– The next two the input to ALU: MUX2, MUX3

– The fourth one input to register file: MUX4

18B.Ramamurthy

Controlling the pipeline

� Lets refer to interface between stages IF
and ID, IF/ID and the other interfaces
between stages ID/EX, EX/MEM, and
MEM/WB.

� MUX1: is controlled by the condition
checking done at EX/MEM. Based on this
condition EX/MEM.cond, the MUX1
selects the current PC or the branch target
as the instruction address.

19B.Ramamurthy

Controlling the pipeline (contd.)

� MUX2 and MUX3 are controlled by the type of
instruction. MUX2 is set by whether the
instruction is a branch or not. MUX3 is set by
whether the instruction is Register-Register ALU
operation or any other operation.

� MUX4: is controlled by whether the instruction in
the WB stage is a load or an ALU operation.

� In addition there is one MUX which chooses the
correct portion of the IR in the MEM/WB buffer
to specify the register destination field.

20B.Ramamurthy

Pipeline performance - Example1
� General: 40% ALU, 20% branch, 40%

memory.

� Design1: Non- pipelined. 10ns clock cycles.
ALU operations and branches take 4 cycles,
memory operations take 5 cycles..In other
words, ALU operations and branches take
4*10 = 40 ns time.

� Design 2: Pipelined. Clock skew and setup
add 1 ns overhead to clock cycle.

� What is the speedup?

21B.Ramamurthy

Pipeline performance (contd.)

� Design1:

Average instruction execution time = clock cycletime *
CPI

= 10ns * (4 *0.4 + 4 *0.2+ 5*0.4) = 10 *(1.6+0.8+2.0)

= 44ns

� Design 2:

Average instruction time st steady state is clock cycle time:

= 10ns + 1ns (for setup and clock skew) = 11ns

� Speed up = 44/11 = 4

22B.Ramamurthy

Pipeline performance - Example2
� Assume times for each functional unit of a

pipeline to be: 10ns, 8ns, 10ns, 10ns and 7ns.
Overhead 1ns per stage. Compute the speed of the
data path.

� Pipelined: Stage time = MAX(10,8,10,10,10,7) +
overhead

= 10 + 1 = 11ns.

This is the average instruction execution time at
steady state.

� Non-pipelined: 10+8+10+10+7 = 45ns

� Speedup = 45/11= 4.1 times

23B.Ramamurthy

Pipeline hazards
� Hazards reduce the performance from the

ideal speedup gained by pipelines:

� Structural hazard: Resource conflict.
Hardware cannot support all possible
combinations of instructions in
simultaneous overlapped execution.

� Data hazard: When an instruction depends
on the results of the previous instruction.

� Control hazard: Due to branches and other
instructions that affect the PC.

24B.Ramamurthy

Pipeline stalls
� A stall is the delay in cycles caused due to

any of the hazards mentioned above.

� Speedup :

1/(1+pipeline stall per instruction)* Number
of stages

� So what is the speed up for an ideal pipeline
with no stalls?

� Number of cycles needed to initially fill up
the pipeline could be included in
computation of average stall per instruction.

25B.Ramamurthy

Structural hazards
� When more than one instruction in the pipeline

needs to access a resource, the datapath is said to
have a structural hazard.

� Examples of resources: register file, memory,
ALU.

� Solution: Stall the pipeline for one clock cycle
when the conflict is detected. This results in a
pipeline bubble.

� See Fig.3.6, 3.7 that illustrate the memory access
conflict and how it is resolved by stalling an
instruction. Problem: one memory port.

26B.Ramamurthy

Structural Hazard and Stalls -
Conflict

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

LOAD inst.

27B.Ramamurthy

Structural Hazard and Stalls -
Solution

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

Load inst.

28B.Ramamurthy

Structural Hazard and Stalls -
Bubble

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

Load inst.

MEM REG ALU MEM REG

Pipeline bubble

29B.Ramamurthy

Structural hazard: Example3

� Machine with load hazard: Data references
constitute 40% of the mix. Ideal CPI is 1. Clock
rate is 1.05 of the machine without hazard. Which
machine is faster, the one with hazard (machine
A) or without the hazard (machine B)? Prove.

� Solution: Hazard affects 40% of the B’s inst.

� Average inst time for machine A: CPI * clock
cycle time = 1 * x = 1.0x

30B.Ramamurthy

Example 3 - page 144 (contd.)

� Average inst time for machine B:

1) CPI has been extended.

= 40% of the times 1 more cycle

2) Clock rate is faster: 1.05 times: less than
machine A. By how much?

Avg instruction time for machine B: (1 +
40/100*1) * (clock cycle time /1.05)

= 1.4 * x/1..05 = 1.3x

Proved that A is faster.

31B.Ramamurthy

Data hazard

� Consider the inst sequence:

ADD R1,R2,R3 ; result is in R1

SUB R4,R5,R1

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

All instructions use R1 after the first inst.

32B.Ramamurthy

Data hazard - Time-stage
diagram

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

33B.Ramamurthy

Data hazard - solution
� Usually solved by data or register forwarding

(bypassing or short-circuiting).

� How? The data selected is not really used in ID
but in the next stage: ALU.

� Forwarding works as follows:

� ALU result from EX/MEM buffer is always fed
back to ALU input latches.

� If the forwarding hardware detects that its source
operand has a new value, the logic selects the
newer result than the value read from the register
file.

34B.Ramamurthy

Data hazard - solution (contd.)

� The results need to forwarded not only from the
immediately previous instruction but also from
any instruction that started upto three cycles
before.

� The result from EX/MEM (1 cycle before) and
MEM/WB (2 cycles before) are forwarded to the
both ALU inputs.

� Writing into the register file is done in the first
half of the cycle and read is done in the second
half.(3 cycles before)

35B.Ramamurthy

Data hazard classification
� RAW - Read After Write. Most common: solved by data

forwarding.

� WAW - Write After Write : Inst i (load) before inst j (add).
Both write to same register. But inst i does it before inst j. DLX
avoids this by waiting for WB to write to registers. So no WAW
hazard in DLX.

� WAR - Write after Read: inst j tries to write a destination
before it is read by I, so I incorrectly gets its value. This cannot
happen in DLX since all inst read early (ID) but write late
(WB). But WAW happens in complex instruction sets that have
auto-increment mode and require operands to be read late
cycle experience WAW.

36B.Ramamurthy

Data hazard - stalls
� All data hazards cannot be solved by

forwarding:

LW R1,0(R2)

SUB R4,R1, R5

AND R6,R1,R7

OR R8,R1,R9

� Unlike the previous example, data is
available until MEM/WB. So subtract ALU
cycle has to be stalled introducing a
(vertical) bubble.

37B.Ramamurthy

Data Hazard and Stalls

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

LOAD inst.

38B.Ramamurthy

Data Hazard and Stalls

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

MEM REG ALU MEM REG

LOAD inst.

Bubbles

39B.Ramamurthy

Summary

� Concepts in basic pipelining were studied
in details.

� Data hazards and control hazards and
methods for resolving these were also
discussed.

