
Design MethodologyDesign Methodology
for Implementing afor Implementing a
Micro-controller inMicro-controller in

an FPGA.an FPGA.

Outline

■ Introduction
■ Design Process - From goals to

implementation
■ Results

Inroduction

■ Background Information
■ Microcontrollers VS. Microprocessors
■ Intel 8031 defined
■ Goals of the Design Process

Background Information

■ modeling a microcontroller, the 8031
■ implementing the design in an FPGA

MicroCMicroControllersontrollers versus versus MicroPMicroProcessorsrocessors

■ MicroP’s are a general purpose machine
■ MicroC’s are a true computer on a chip
■ MicroP’s need additional components to

make a complete system
■ MicroC’s have all necessary features

including, ROM,RAM, parallel I/O, etc.

Project focal point, Intel 8031

■ 8-bit CPU
■ Extensive Boolean processing
■ 64K Data & Memory Space
■ 128 bytes of on-chip Data Ram
■ 32 bidirectional/individually addressable I/O lines
■ 2 16-bit timer/counters
■ Full Duplex UART
■ 6-source/5-vector interrupt structure

Intel 8031
Architecture
Overview

Goals of the Design Process

■ To develop an accurate behavioral model of
8031 in VHDL

■ To develop an accurate RTL VHDL model
of the 8031

■ Synthesize the RTL model
■ Successfully implement the synthesized

model in a Xilinx FPGA

The Design Process, Part 1

■ Define the following:
– register structure,
– instruction set,
– addressing modes.

■ Construct a table showing register transfers and State
Machine graph

■ Design the control state machine
■ Write behavioral VHDL code based on the above

completed tasks
■ Simulate execution to verify accurate modeling

The Design Process, Part 2

■ Develop block diagram of major units and
determine control signals

■ Rewrite VHDL based on previous step
■ Again, simulate execution to verify model
■ Make needed changes in code for Synthesis
■ Synthesize the controller from the VHDL code
■ Download bit stream file to FPGA for hardware

verification

Step 1, Define Register Structure, Instruction
Set, & Addressing Modes

A
Register

8 E0
B

Register

8 F0

Math Registers

IP
Register

8
IE

Register

8

TMOD
Register

8 89
TCON

Register

8

TH0
Register

8
TL0

Register

8 8A
TH1

Register

8 8D
TL1

Register

8

Interrupt Registers

Timer Control Registers

Timer/Counter Registers

SCON
Register

8
SBUF

Register

8 99
PCON

Register

8 87
PSW

Register

8

Serial Data Registers Flags

Stack
Pointer

8 81

Port 0
Latch

8 80
Port 1
Latch

8 90
Port 2
Latch

8 A0
Port 3
Latch

8 B0

No Address

Program Counter

16

DPH

8 83

DPL

8 82
Data Pointer

DB A8

8898 D0

8C 8B

General-
Purpose

Area

Bit
Address

Area
Register

Bank
3

Register
Bank

2
Register

Bank
1

R0
R1
R2
R3
R4
R5
R6
R7

00
01
02
03
04
05
06

08
07

0F
10

17
18

1F
20

2F
30

7F

7F

00

Internal
Ram

Register
Bank

0

Number of
Bits

Direct Byte Address
Indicates Bit
Addressable

Step 1- Instruction Set

Arithmetic Instructions

.

Mnemonic Operation Addressing Modes Execution
Dir Ind Reg Imm Time (uS)

ADD A,<byte> A = A + <byte> X X X X 1
ADDC
A,<byte>

A = A + <byte> + C X X X X 1

SUBB A,
<byte>

A = A - <byte> - C X X X X 1

INC A A = A + 1 Accumulator only 1
INC <byte> <byte> = <byte> + 1 X X X 1
INC DPTR DPTR = DPTR + 1 Data Pointer only 2
DEC A A = A - 1 Accumulator only 1
DEC <byte> <byte> = <byte> - 1 X X X 1
MUL AB B:A = BxA ACC and B only 4
DIV AB A = Int [A/B]

B = Mod [A/B]
ACC and B only 4

DA A Decimal Adjust Accumulator only 1

Step 1- Instruction Set

Mnemonic Operation Addressing Modes Execution
Dir Ind Reg Imm Time (uS)

ANL A, <byte> A = A .AND. <byte> X X X X 1
ANL <byte>,A <byte> = <byte> .AND. A X 1
ANL <byte>, #data <byte> = <byte> .AND. # data X 2
ORL A, <byte> A = A . OR. <byte> X X X X 1
ORL <byte>,A <byte> = <byte> .OR. A X 1
ORL <byte>, #data <byte> = <byte> .OR. # data X 2
XRL A, <byte> A = A . XRL. <byte> X X X X 1
XRL <byte>,A <byte> = <byte> .XRL. A X 1
XRL <byte>, #data <byte> = <byte> .XRL. # data X 2
CRL A A = 00H Accumulator only 1
CPL A A = .NOT. A Accumulator only 1
RL A Rotate ACC Left 1 bit Accumulator only 1
RLC A Rotate Left through Carry Accumulator only 1
RR A Rotate ACC Right 1 bit Accumulator only 1
RRC A Rotate Right through Carry Accumulator only 1
SWAP A Swap Nibbles in A Accumulator only 1

Logical Instructions

Step 1- Instruction Set

Mnemonic Operation Addressing Modes Execution
Dir Ind Reg Imm Time (uS)

MOV A, <src> A = <src> X X X X 1
MOV <dest>,A <dest> = A X X X 1
MOV <dest>, <src> <dest> = <src> X X X X 2
MOV DPTR,#data16 DPTR = 16-bit imm constant X 1
PUSH <src> INC SP: MOV “@SP”: DEC SP X 1
POP <dest> MOV <dest>, “@SP”: DEC SP X 2
XCH A,<byte> ACC and <byte> exchange byte X X X 1
XCHD A,@Ri ACC and @Ri exchange low

nibbles
X 1

Internal Data Memory Data Transfer

Step 1- Instruction Set

Address Width Mnemonic Operation Execution
Time (uS)

8 bits MOVX A, @Ri Read external
Ram @Ri

2

8 bits MOVX @RI, A Write external
RAM @Ri

2

16 bits MOVX A,@DPTR Read external
RAM @DPTR

2

16 bits MOVX @DPTR,A Read external
RAM @DPTR

2

External Data Memory Data Transfer

Step 1- Instruction Set

Lookup Table Read Instructions

Mnemonic Operation Execution
Time (uS)

MOVC A,@A + DPTR Read Pgm Memory
at(A + DPTR)

2

MOVC A,@A + PC Read Pgm Memory
at(A + PC)

2

Step 1- Instruction Set

Boolean Instructions
Mnemonic Operation Execution

Time (uS)
ANL C,bit C = C.AND. bit 2
ANL C,/bit C = C.AND. .NOT. bit 2
ORL C,bit C = C .OR. bit 2
ORL C,/bit C = C .OR. .NOT. bit 2
MOV C,bit C = bit 1
MOV bit,C bit = C 2
CLR C C = 0 1
CLR bit bit = 0 1
SETB C C = 1 1
SETB bit bit = 1 1
CPL C C = .NOT.C 1
CPL bit bit = .NOT. bit 1
JC rel Jump if C = 1 2
JNC rel Jump if bit = 0 2
JB bit,rel Jump if bit = 1 2
JNB bit,rel Jump is bit = 0 2
JBC bit,rel Jump if bit = 1; CLR bit 2

Step 1- Instruction Set

Unconditional Jumps

Mnemonic Operation Execution
Time (uS)

JMP addr Jump to addr 2
JMP @A + DPTR Jump to A + DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

Step 1- Instruction Set

Conditional Jumps

Mnemonic Operation Addressing Modes Execution
Dir Ind Reg Imm Time (uS)

JZ rel Jump if A = 0 Accumulator only 2
JNZ rel Jump is A ≠ 0 Accumulator only 2
DJNZ <byte>,rel Decrement and jump

is not zero
X X

CJNE A,<byte>,rel Jump if A ≠ <byte> X X
CJNE <byte>, #data,rel Jump if <byte> ≠ # data X X 2

Step 1 - Addressing Modes

■ Direct Addressing
– Only internal Data Ram and external Ram

and SFR’s can be directly addressed

■ Indirect Addressing
– Both internal and external Ram can be indirectly

addressed
– The address register for 8-bit addresses can be R0 or R1

of the current register bank, or the Stack Pointer
– The address register for 16-bit addresses can be only be

the 16-bit “data pointer” register, DPTR

Step 1 - Addressing Modes

■ Register Addressing
– Opcodes that use register addressing use a single byte

for identifying the instruction and the register
– One of four banks is selected at execution time by the

two bank select bits in the PSW

■ Immediate Addressing
– The value of a constant can follow the opcode in

Program Memory

Step 2 - Register Transfer Table

1st Cycle 2nd Cycle 3 rd Cycle 4th Cycle
Addressing Mode
Immediate Add A, #data {fetch} {addr1}

Tmp1 ←←←← mem(PC)
PC ←←←← PC + 1

(A ←←←← A + Tmp1)

Direct Add A, Direct {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{data}
Tmp1 ←←←← Ram(Rar) (A ←←←← A + Tmp1)

Direct MOV Direct, A {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{RamWrite}
Ram(Rar) ←←←← A

Register Add A, Rn {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{data}
Tmp1 ←←←← Ram(Rar) (A ←←←← A + Tmp1)

Indirect Add A, @Ri {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{data}
Tmp1 ←←←← Ram(Rar) (A ←←←← A + Tmp1)

LJMP {fetch} {addr1}
MarH ←←←← mem(PC)
PC ←←←← PC + 1

{addr2}
PCL ←←←← mem(PC)
PCH ←←←← MarH

Step 2 - State Machine Graph

FETCH

ADDR1

ADDR2

DATA

RamWrite

Cycle 8

Cycle 9

Cycle 10

RESET

Step 3, 4 Design the control state machine and
 Write behavioral VHDL

■ VHDL code was written based on State
Machine Flow Graph and Register Transfer
Table

Step 5 , Simulate model to verify accurate modeling

■ Simulation was performed using Mentor
Graphics Quick VHDL

■ A short program was used to verify
execution

■ Program performs simple addition and data
transfers

Step 5, Behavioral Simulation Results 1

Program
LJMP 0AH
MOV A, #08h
MOV PSW, A
MOV A, #04h
MOV 08h, A
MOV 09h, A
ADD A, R1
ADD A, R0

Step 5, Behavioral Simulation Results 2

Program
LJMP 0AH
MOV A, #08h
MOV PSW, A
MOV A, #04h
MOV 08h, A
MOV 09h, A
ADD A, R1
ADD A, R0

Step 5, Behavioral Simulation Results 3

Program
LJMP 0AH
MOV A, #08h
MOV PSW, A
MOV A, #04h
MOV 08h, A
MOV 09h, A
ADD A, R1
ADD A, R0

Step 5, Behavioral Simulation Results 4

Program
LJMP 0AH
MOV A, #08h
MOV PSW, A
MOV A, #04h
MOV 08h, A
MOV 09h, A
ADD A, R1
ADD A, R0

Step 5, Behavioral Simulation Results 5

■ Program
■ LJMP 0AH
■ MOV A, #08h
■ MOV PSW, A
■ MOV A, #04h
■ MOV 08h, A
■ MOV 09h, A
■ ADD A, R1
■ ADD A, R0

The Design Process, Part 2

■ Develop block diagram of major units and
determine control signals

■ Rewrite VHDL based on previous step
■ Again, simulate execution to verify model
■ Make needed changes in code for Synthesis
■ Synthesize the controller from the VHDL code
■ Download bit stream file to FPGA for hardware

verification

Results

■ The first half of the design process was
demonstrated by using a subset of
instructions from the 8031

■ The behavioral model is accurate for
instructions implemented

Sources

Sarnoff Corporation
Charles H. Roth, Jr., Digital Systems Design

Using VHDL

Phillip Southard
Ohio University / 5 March, 1998
EE 690 Reconfigurable Design

