
Applications Note 116: VHDL Style Guidelines for Performance

Introduction
No matter how fast a simulator gets, the HDL developer can further improve performance by applying a
few simple guidelines to the coding style. The key to higher performance is to avoid code that needlessly
creates additional work for the HDL compiler and simulator. This paper will describe the general code
constructs that have a high performance impact, and how to avoid them. Specifically, this paper shows
how to apply the ModelSim Performance Analyzer to improve simulation performance.

Performance Basics
A simulator is a highly specialized database. For every event, the simulator must quickly find all affected
processes, evaluate these processes, update the state and schedule the resulting new events. As with any
database, the more data managed by the simulator the slower the overall transaction time. The rules below
describe the relative performance cost of different VHDL language elements. The underlying strategy is to
reduce the high cost elements by replacing them with less costly elements or eliminating them entirely.
Obviously, the underlying integrity of the design must be maintained. The rules below merely describe
better ways to implement the same content.

Measuring Performance on UNIX
Accurate performance measurements are necessary when tuning the code. On UNIX machines you can
prefix the vsim invocation using the “time” command. On Solaris this looks like:

/usr/bin/time vsim –do perf_test.do
. . .
real 153.0
user 112.3
sys 4.1

The “real” line shows how much wall clock time passed. The “user” line shows how much CPU time was
used during the run. The “sys” line refers to the amount of time taken by operating system calls. A large
difference between the “real” and “user” time means one of two things:

• The system is heavily loaded with other simultaneous processes

• The simulation exceeds the memory, and is swapping to disk

Changes to VHDL style are of little help in these cases, as limited computational resources are curtailing
simulation performance.

Measuring Performance on NT
On NT machines you can get the same information through the task manager (CTRL-ALT-DEL � Task
Manager or Right-Click on Task Bar > Task Manager). Select the Processes tab and find the entry for
vsim.exe. The data CPU time column is cumulative if you run several tests in the same ModelSim session.

Using Performance Analyzer
Here is a small ModelSim Tcl script that measures wall clock time for a simulation run. This would be
appropriate for a machine that has little running on it besides the simulator. This script also invokes the
ModelSim performance analyzer, opens the report GUI and writes the performance profile results to a file
called “profile.txt”.

profile on # Enable perf analyzer
set before [clock seconds]

run 100 ms # <--- Body of test here

set after [clock seconds]
set total [expr $after - $before]
echo “Total Time “ $total “ Seconds”
view_profile_ranked # View profile GUI
profile report -ranked -file profile.txt # Print out ranked

report

Further description of the use of the performance analyzer can be found in the ModelSim documentation
and the applications note: “ModelSim HDL Simulation Performance Analyzer”.

HDL Style for Performance

Rule 1: Use Optimized Standard Libraries
Customers report up to a 3x performance increase when switching from unoptimized to optimized VHDL
libraries. For ModelSim, all of the most frequently used VHDL libraries have been specifically tuned for
maximum performance within ModelSim. These optimizations can be disabled by using special switches
at compilation (-o0 or –noaccel) or by explicitly mapping in alternate libraries. However, the most
common reason for mistaken use of unoptimized libraries. This occurs if the build environment compiles
standard library source code from a non-Model Tech source. Source code for standard libraries is often
included with synthesis tools or ASIC vendor libraries, and is often compiled by mistake. These
unoptimized libraries will take precedent over the default ones.

Table 1: ModelSim Optimization of VHDL Standard Libraries

Optimized Unoptimized

IEEE/Synopsys
 std_logic_1164
 std_logic_arith
 std_logic_signed
 std_logic_unsigned
 numeric_bit
 numeric_std
 arithmetic

Standard Developers Kit
 std_iopak
 std_mempak
 std_regpak
 synth_regpak
 std_timing

VITAL
 vital_primitives
 vital_timing

Synopsys
 std_logic_textio

Std
 std.standard
 std.textio

The Performance Analyzer can quickly show you when you are using an unoptimized library. If the
performance report implicates a line within a library (outside of user code) then the library has not been

optimized. Optimized libraries do not show up in the performance analyzer report. If the library indicated
is one in the optimized list of Table 1, then review the steps taken to compile the design.

Rule 2: Reduce Process Sensitivity
Avoid inefficient processes like this one:

inefficient : process (A, B) begin
procedure_1(A);
procedure_2(B);

end process inefficient;

Notice that every time B changes, a call is needlessly made to procedure_1. Similarly, events on A will
force the redundant evaluation procedure_2. Note that if you have shared data between the two processes,
you may have difficulty accurately synthesizing the correct behavior. In the example above, the
Performance Analyzer is likely to identify excess time spent in this process.

Two separate processes, each with the correct sensitivity list is the more efficient coding style:

efficient_1 : process (A) begin
procedure_1(A);

end process efficient_1;

efficient_2 : process (B) begin
procedure_2(B);

end process efficient_2;

This is a trivial example, but processes like these appear often in the customer examples. Unnecessarily
sensitive can severely impact performance.

Also, use caution when creating processes sensitive to signals of record type. The record may contain more
information than the process strictly needs, but any change to any element of the record will force a re-
evaluation of the process.

Rule 3: Reducing waits
It is a common practice to use a for loop around a wait on clock to allow a specific amount of time to pass.
This fragment delays 100 clock cycles:

for i in 1 to 100 loop
wait until Clk’Event and Clk = ‘1’;

end loop;
next statement . . .

While this loop is not complicated, the Performance Analyzer may identify the “wait” line as a bottleneck.
The reason for this is the proliferation of processes waiting for signal events, even though the action taken
by each process is minimal.

Although slightly more obscure, the following fragment accomplishes the same behavior:

wait for (CLOCK_PERIOD_T * 100 – 1 ns);
wait until Clk’Event and Clk = ‘1’;
next statement . . .

The first fragment schedules 100 process evaluations, while the second requires only two. The behavior is
the same, but the performance consequence is minimized. The final wait until Clk is needed to ensure
proper synchronization with the clock signal. Without it, the “next statement” is in a unpredictable race
condition with whatever is generating the clock.

Rule 4: Reduce or Delay Calculations
The following fragment repeats the same 64-bit calculations at each evaluation of the process:

driver : process (Clk)
begin

if (Clk’event and Clk = ‘1’) then
. . .
D <= Next_D_val after (CLOCK_PERIOD_T – SETUP_T);
LD <= Next_LD_val after (CLOCK_PERIOD_T – SETUP_T);
. . .

The drive times are repeatedly calculated. With the simple use of a constant, two 64-bit operations per
clock cycle are removed:

driver : process (Clk)
constant DRIVE_T : time := (CLOCK_PERIOD_T – SETUP_T);

begin
if (Clk’event and Clk = ‘1’) then

. . .
D <= Next_D_val after (DRIVE_T);
LD <= Next_LD_val after (DRIVE_T);
. . .

Another good rule of thumb is to delay calculations until they are needed. Here is an example of an
inefficient call to a function:

Wrong Right
. . .
val := to_integer(array);
if (A = B) then

Result <= val;
else

Result <= “00000000”;
endif;
. . .

. . .
if (A = B) then

val := to_integer(array);
Result <= val;

else
Result <= “00000000”;

endif;
. . .

The example on the left makes the “to_integer” call every evaluation, whether the result is used or not.

Rule 5: Limit File I/O
Reading or writing to files during simulation is costly to performance, because the simulator must halt and
wait while the OS completes each transaction with the file system. Furthermore, the VHDL “read”
functions that convert text data to different data types are also costly.

One way to improve performance is to replace ASCII vector files with a constant table in VHDL like this
one:

type vector is record
LD : std_logic;
LL : std_logic;
RST : std_logic;
D : std_logic_vector(7 downto 0);
P : std_logic;

end record;
type vectorArrayType is array (0 to TABLE_SIZE) of vector;
constant vectorTable : vectorArrayType := (
-- LD LL RST D P

(‘0’, ‘0’, ‘0’, “xxxxxxxx” ‘0’),
(‘0’, ‘0’, ‘1’, “xxxxxxxx” ‘0’),
(‘0’, ‘0’, ‘1’, “xxxxxxxx” ‘0’),
(‘1’, ‘0’, ‘0’, “00000101” ‘0’),
(‘0’, ‘1’, ‘0’, “11010100” ‘0’),
(‘0’, ‘0’, ‘0’, “xxxxxxxx” ‘1’),
(‘0’, ‘0’, ‘0’, “xxxxxxxx” ‘1’),
. . .

);

The testbench would then loop through each record in the table and drive or check pins appropriately for
each clock cycle. This approach not only removes the file access overhead, no simulation time is spent
parsing strings or performing data conversion. Although the syntax of the vectors above is more complex
than a straight ASCII file, it should be easy to generate or translate vector data to this format.

One drawback is that the HDL table approach like the example above can cause large compilation times.
Since compilation time grows in a non-linear fashion, at some point the compilation time will exceed the
cost of ASCII vectors. Figure 1 below shows how the number of vectors affects total compilation and
simulation time with the two approaches.

To
ta

l T
im

e

Number of Vectors

HDL Vectors (Sim)

HDL Vectors (S
im + Com)

ASCII V
ectors (S

im + Com)

Figure 1: Vectors in ASCII vs. Vectors in VHDL

For large vector sets, reading and translating the ASCII will edge out HDL vectors when the compilation
time is considered. Simulation performance of HDL vectors will always be better, however. So, if the
HDL vectors are stable, (needing only occasional re-compilation), then HDL vectors will be the better
choice.

If file access cannot be eliminated, perhaps it can be reduced. You could read or write more information
with each file access, to reduce the overall number. For example, you could change the format of the input
file so that several vectors are contained on each line. This would reduce the number of calls to “readline”.
Similarly, when writing out data, pack as much as you can into each “writeline” operation. When using the
vsim log or vcd commands, try not to record more information than you really need.

Rule 6: Integers vs. Vectors
Arithmetic operations on Standard Logic Vectors (SLVs) are expensive compared to integer operations.
Consider converting an SLV to an integer, performing the operations and converting the integer back to an
SLV. Integer conversion costs are small compared to costs of even simple SLV operations. In the example
below the unsigned vector “value” is used in a simple comparison (> 0) and a subtraction.

. . .
if (value > 0) then -- <-- Slow

value <= value – 1; -- <-- Slow
else

value <= startValue;
end if;
. . .

The performance analyzer might identify the two lines as being the slowest part of this process. Suppose
that for the purposes of your design, two states would suffice for “value”. You could then use an integer
instead:

. . .
int_value := to_integer(value);
if (int_value > 0) then -- <-- Fast

int_value := int_value – 1; -- <-- Fast
else

int_value := to_integer(startValue);
end if;
value <= to_unsigned(int_value, 8);
. . .

The performance of the process would be significantly improved. If you have testbench code that generates
only two-state or four-state behavior, it should be relatively straight-forward to write the testbench using
integers instead of std_logic_vectors.

For maximum performance, use ranged integers in entity declarations instead of std_logic_vectors. With
both the interface and internal state represented in integers, the simulator will be able to process the design
much more efficiently. This is a fairly dramatic step, and you should make sure that your synthesis tools
can properly handle ranged integers in your design.

Rule 7: Buffer Clocks Between Mixed HDL
ModelSim is extremely efficient in handling mixed VHDL/Verilog designs. There is only a slight penalty
to move signal events between HDL domains because of the ModelSim single kernel architecture. If there
are hundreds of process in one language domain that are sensitive to a signal in the other domain, the
accumulation of this penalty can eventually get large enough to be noticed. Consider the case where a
clock signal generated in VHDL code is connected to a large gate level Verilog design. In this example,
every flip flop in the Verilog design is sensitive to the VHDL generated clock.

VHDL Verilog

CLK

CLK

CLK

CLK

CLK

CLK

Slow

VHDL Verilog

CLK

CLK

CLK

CLK

CLK

CLK

CLK

Fast
Figure 2 : Speeding up a mixed-HDL clock

Performance can be improved by the addition of a clock signal on the Verilog side. Since the one to many
connection between languages is replaced by a one-to-one, the performance impact is minimized. The
Performance Analyzer can help identify cases like this one.

Rule 8: Avoid Slicing Signals
If a signal is sliced, vector optimizations cannot be applied.

signal A_sig : std_logic_vector (63 downto 0);
. . .
A_sig(3) <= ‘1’;

The signal is probably used in several places in the design. Even a single bit slice propogates an
unoptimized vector to all affected processes. The introduction of a temporary variable can give you the
functionality of a bit slice, without the performance penalty:

Wrong Right
. . .
for i in 0 to 4 loop

A_sig(i) <= mask_calc(i);
end loop
. . .

. . .
for i in 0 to 4 loop

tmp_A(i) <= mask_calc(i);
end loop
A_sig <= tmp_A;
. . .

In the example on the right, A_sig is kept whole, while the bit slicing occurs for the temporary variable
“tmp_A”. The costs of slicing the temporary variable and the additional assignment are small in
comparison to the penalty of an unoptimized signal vector.

Rule 9: Check Optimization of VITAL libraries
During gate level simulation, the profiler may indicate that a small set of primitives are consuming the
majority of execution time. This may be because the design have many instances of these primitives, or
that the primitives were not optimized when they were compiled. Improving a high-use unoptimized cell
can help performance significantly.

Determining VITAL Cell Usage
After the design is loaded, use this the write command at the VSIM prompt:

write report <filename>

This report will include a list of all entities in the design. You will have to post process the report with Perl
or grep to find the number of instances of the key cells identified by the profiler. For example

grep –c <cell name> <report file>

This will count the number of occurances of the cell name in the report.

Checking VITAL Optimization
Use the -debugVA switch when compiling the design, and save the results to a file:

vcom –debugVA MyVitalDesign.vhd > <results file name>

Compile messages and any errors are written to the results_of_compile file. Search for the string
OPT_WHYNOT.

grep OPT_WHYNOT <results file name>

The compiler may not be able to optimize a particular Cell for a variety of reasons.

• The primitive is based on VITAL 0 instead of VITAL 1. Only VITAL 1 code is optimized.

• The Cell contains VITAL non-compliant code

• The cell is based on inefficient (usually auto-generated) code

You can submit a bug report to the library vendor to have the problem fixed. Many customers are willing
to use a copy of the inefficient cell that is hand modified to improve performance. This optimized cell is
used in place of the official one until the final round of validations.

Rule 10: Avoid the “Linear Testbench”
One naïve approach to testbench creation is especially bad for performance. Here is a fragment of a
“linear” testbench:

stimulus : process
begin

in1 <= ‘x’;
RST <= ‘0’;
d <= “XXXXXXXX”
clk <= ‘0’;
wait 20 ns;
clk <= ‘1’;
wait 15 ns;
RST <= ‘1’;
wait 5 ns;
clk <= ‘0’;
check_results(“0XX10XX110”);
wait 6 ns;
rst <= ‘0’;
wait 3 ns;
d <= “01010101”;
in1 <= ‘0’;
wait 11 ns;
clk <= ‘1’;
wait 20 ns;
clk <= ‘0’;
check_results(“0001011110”;
. . .

Stimulus code like this is easy to generate (translating a vector file with a Perl script, for example).
However, for a compiled simulator like ModelSim, the simulator must evaluate and schedule a very large
number of events. This reduces simulation performance in proportion to the size of the stimulus process.
As an alternative, consider using the VHDL table approach seen in rule 6 above.

Rule 11: Optimize Everything 0ver 1%
The ModelSim Performance Analyzer will identify the lines of code that consume the greatest CPU time
and display these lines in ranked order in the performance profile window. Double clicking a line in the
report will bring up the source file window with the file and line displayed.

Figure 3: Performance Analyzer Interface

The lines identified by the profiler may not appear to contribute a significant amount to the overall
execution time. Amdahl’s law would suggest that attempting to make 4% of the design run faster could
improve overall performance by no more than 4%. However, making a trivial fix many times reaps a large
performance benefit. This is because the change may

• Enable further optimization by the compiler
• Reduce the number events
• Reduce the number of processes sensitive to events

Thus, a small improvement to the code can have a non-linear result in the overall execution speed.
Optimize any line responsible for more than 1% whenever possible.

Conclusions
With the ModelSim Performance Analyzer, simulation speed is no longer a black box. Often small
changes to a handful of code lines can yield a large performance benefit. The Performance Analyzer will
direct you to the critical performance bottlenecks, and the nine rules above give a general outline as to how
to deal with them. A design and testbench built from scratch using these rules will have maximum
performance.

