
■ Schematics

■ Documentation

■ PLD, PLA etc.

■ Logic Blocks

■ Kmaps and circuits

■ History of Hardware Description
Languates

■ First Steps in VHDL

■ VHDL Structural Modeling

■ Hello,
Please distribute this user and pasword information to your registered students.
User and Password for ECE 510dsd video stream at: www.ocate.edu

User: perkowski
Password: vhdl
Thank you.
Have a good Spring
D.

■ --
■ Doug Harksel
■ Chief Video & TV Technician
■ OCATE
■ Television & Media Services
■ Office: 503.725.2226
■ Wireless: 503.970.6985
■ Fax: 503.725.2201
■ doug@ocate.edu
■ www.ocate.edu

■ On 3 Apr 02, at 16:27, XXX wrote:

> I am taking ECE 510 OC7 under Prof. Perkowski. I need a computer
> account to be setup. Thanks
Hi,
If the last four digits of your ID are: 8963, you are already in our
database.

Our records indicate:
- your username is ”xxxx"
- you have an active ECE UNIX account
- you have a pending Windows account

Take photo ID to one of our front-desks to have your Windows
account validated. Look at http://www.cat.pdx.edu/users/labs.html
to determine the place and time most convenient for you. ("XXXXX"
indicates when an attendant is on duty to help you.)

If the numbers above are NOT the last four digits of your ID, you'll
need to verify that you're registered for the class. (Logging onto
PSU Banner and bringing up your class schedule will be acceptable.)
Then, either Peter Phelps, John Jendro, or Kim Howard can add you
to the database.

I'm happy to help you, but I may not always be immediately available.
For future reference: e-mail to support@cat.pdx.edu reaches a team
of people.

Kathy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kathy McCauley Damtawe (KatMama) damtawek@cat.pdx.edu
User Services Manager, CECS Computing Support
College of Engineering and Computer Science
Portland State University, Portland, Oregon
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


■ >Professor Perkowski,
>
>I have a question regarding the week of April 15th. I will be unable to
>attend class on Monday 4/15/2002. I really don't want to miss out on the class
>opportunity. Are/can classes be made available on video tape.
Yes, the classes are videotaped and also available as streamed video.
>
> I am interested in using Veribest Design Capture integrated with
>ModelSim for class projects. This would be beneficial for my work
>interest and interesting since I don't have any practical usage with
>either of these tools. Does this seem acceptible to you?

Yes, this is fine with me, but what project you want to work on? Please
think about it and write me a proposal.

Friday’s meetings will be perhaps streamed as well.

You are not restricted to the projects that I specified

Projects will be better explained, but you can start reading now

■ >However, the projects listed in your class
>seem very challenging,
Remember that I will be explaining them in detail in the class. I just wanted to list
them now so interested people can start reading on their own.
The projects are not trivial but based on my 12 years of teaching this class they are
doable
Also, you can propose your own project and create group of students to work with
you. We have so many students that in any case I want to have more projects
> I am not sure that I can understand everything there.
It will be explained and more slides will be added. Students will make
presentations on these topics using PPT in class
>Are you assigning teams for each project?
No, you create teams and inform me. But there is no hurry now, the projects will
start in about 2 -3 weeks from now.
> also, what are subject of the two homeworks listed in your web?
On the web you have examples of previous homeworks. HOmeworks for this year
will be announced in the class.
Sincerely
Marek

Last question and answer…..Last question and answer…..
Dear Dr.Perkowski,

On your webpage,the grading of the VHDL Class stipulates 2 HWS and a Project.
But when I look at the 'slides from the lectures' on the webpage,its has
some five homeworks.
Nelson

You can choose any of the homeworks that are posted or do something similar.or do something similar.

If you choose one of previous homeworks, you have to solve the problem from
scratch rather than copy from previous students. Changing symbol names is not
enough.

Project must be explained, all your ideas and methodology, Kmaps, schematics,
etc.

Every student will have to do two homeworks. In these homeworks
he or she will have to prove ability to simulate and synthesize logic

circuits using VHDL or Verilog.

Copyrighted MaterialCopyrighted Material
■ Some of the materials used in this course come from

ARPA RASSP Program and are copyright
– Rapid Prototyping of Application Specific Signal

Processors Program

– http://rassp.scra.org

■ Some other of materials are copyright K. J. Hintz

■ Some other from J. Wakerly.

■ All sources will be acknowledged.

ReviewReview
■ Please review the following material from Lecture 1:

– 1. D, T, and JK flip-flops

– 2. Shift operations using flip-flops and muxes

– 3. Design of a generalized register with arbitrary set of
operations

– 4. Register transfer statements that involve several
generalized registers and simple control.

– 5. Karnaugh Maps.

– 6. Sorter versions as examples of combinational,
pipelined and sequential circuits.

All this material will be reviewed again on Friday.

Lecture 2Lecture 2

DocumentationDocumentation
and Timingand Timing
DiagramsDiagrams

Lecture GoalsLecture Goals

■ Introduce documentation
standards.

■ Explain basic logic gates

■ Explain basic logic blocks.

■ Explain basic technologies.

Documentation StandardsDocumentation Standards

■ Block diagrams
– first step in hierarchical design

■ Schematic diagrams

■ HDL programs (ABEL, Verilog, VHDL)

■ Timing diagrams

■ Circuit descriptions

Block DiagramBlock Diagram
In homeworks and
projects you need
to give a complete

documentation,
not only VHDL or

Verilog code.

Your ideas must
be also clearly

explained together
with design goals.

Schematic diagramsSchematic diagrams
■ Details of component inputs, outputs, and

interconnections

■ Reference designators

■ Pin numbers

■ Title blocks

■ Names for all signals

■ Page-to-page connectors
Use names that have
some meaning, like

addr4

Example schematicExample schematic

Flat Schematic StructureFlat Schematic Structure

Hierarchical Schematic StructureHierarchical Schematic Structure

Other DocumentationOther Documentation
■ Timing diagrams

– Output from simulator

– Specialized timing-diagram drawing tools

■ Circuit descriptions
– Text (word processing)

– Can be as big as a book (e.g., typical Cisco ASIC
descriptions)

– Typically incorporate other elements (block
diagrams, timing diagrams, etc.)

Gate symbolsGate symbols
You must be able to

write a truth table and a
Kmap for every gate

that you are using

DeMorgan DeMorgan Equivalent SymbolsEquivalent Symbols

Which symbol to use?

Answer depends on
signal names and active
levels.

Please review these
equivalencies using truth tables

and formulas

Signal Names and Active LevelsSignal Names and Active Levels

» Signal names are chosen to be descriptive.

» Active levels -- HIGH or LOW
• named condition or action occurs in either the HIGH or

the LOW state, according to the active-level designation in
the name.

Active lowActive low

Examples of BusesExamples of Buses

Timing DiagramsTiming Diagrams

This is taken from
Wakerly, page

331

Timing DiagramsTiming Diagrams
b) causality and

propagation delay

c) minimum and
maximum delays

Bus Timing DiagramBus Timing Diagram

Timing diagrams
for “data”
signals, (a)
certain and
uncertain

transitions, (b)
sequence of

values on an 8-
bit bus

MultiplexersMultiplexers

4-to-1
MUX

I0
I1
I2
I3

A B

Z

A B Z
0 0 I0
0 1 I1
1 0 I2
1 1 I3

+

A
B
I3

A
B’
I2

A’
B
I1

A’
B’
I0

Z

Data inputs
versus

control inputs

Use of
muxes in

control and
data path

A typical use of a MUX in aA typical use of a MUX in a
processor control pathprocessor control path

Consider the following sequence of instructions:
0x7F800 add $16, $18, $15 # reg16 ← reg18 + reg15
0x7F804 beq $8, $0, target # if reg16 == 0 goto target
0x7F808 sub $17, $17 $15 # reg17 ← reg17 - reg15

PC
Add

4
0

1
Branch
Target

Unit
Branch taken

Mux

Recall our
example about
systematically
designing data
path for a set of

register-
transfer

operations

A 4-to-1 MUX can implement anyA 4-to-1 MUX can implement any
3-variable function3-variable function

I0
I1
I2
I3

A B Z
0 0 1
0 1 0
1 0 T
1 1 T

+

A B

Z

Example: Implement the function
 F(R, S, T) = R’S’ + RT

F(R,S,T) = R’S’•1 + RT•(S+S’)

= R’S’•1 + RST + RS’TR S

F(R,S,T)

T

T

1

0

Functions of how many input variables
can be implemented by an 8-t0-1 MUX?

Use an 8-t0-1 MUX to implement the
function:
F(X,Y,Z,T) = XY’ + Z’T

Drawing Drawing Kmaps Kmaps is useful for such problemsis useful for such problems

DecodersDecoders
– General decoder structure

– Typically n inputs, 2n outputs
– 2-to-4, 3-to-8, 4-to-16, etc.

DecodersDecoders

3-to-8
Line

Decoder

y0 = a’b’c’

y1 = a’b’c

y2 = a’bc’

y3 = a’bc

y4 = ab’c’

y5 = ab’c

y6 = abc’

y7 = abc

a

b

c

a b c y0 y1 y2 y3 y4 y5 y6 y7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

+

Binary 2-to-4 decoderBinary 2-to-4 decoder

Note “x” (don’t care) notation.

You have to understand various interpretations of don’t care

2-to-4-decoder logic diagram2-to-4-decoder logic diagram

MSI 2-to-4 decoderMSI 2-to-4 decoder

■ Input buffering (less load)

■ NAND gates (faster)

Decoder SymbolDecoder Symbol

Complete 74x139 DecoderComplete 74x139 Decoder

More decoder symbolsMore decoder symbols

3-to-8 decoder3-to-8 decoder

74x138 3-to-8-decoder symbol74x138 3-to-8-decoder symbol

Decoder CascadingDecoder Cascading

4-to-16 decoder

MoreMore
CascadingCascading

5-to-32 decoder

Decoder applicationsDecoder applications
– Microprocessor memory systems

» selecting different banks of memory

– Microprocessor input/output systems
» selecting different devices

– Microprocessor instruction decoding
» enabling different functional units

– Memory chips
» enabling different rows of memory depending on

address

– Lots of other applications

Programmable LogicProgrammable Logic
Array StructureArray Structure

AND
Array

OR
Array••

••
••

••••••

•••

n Input
Lines

m Output Lines
K Word
Lines

PLA

Internal Structure of aInternal Structure of a
PLAPLA

R+V

R+V

R+V

R+V

R+V

A

A’

B

B’

C

C’

R

F0

R

F1

R

F2

R

F3

Inputs

Outputs

diode

Internal Structure of aInternal Structure of a
PLAPLA

a

a’

b

b’

c

c’

d

d’
a’bd

abd
ab’c’

c
b’c

bc

Word
Lines

F1 F2 F3

Outputs

Inputs

Internal Structure of a PLAInternal Structure of a PLA

A

A’

Inputs

B

B’

C

C’

AND ARRAY

OR ARRAY

F0 F1 F2 F3

Outputs

A’B’

AC’

B

BC’

AC

Programmable Logic ArraysProgrammable Logic Arrays
((PLAsPLAs))

– Idea: Build a large AND-OR array with lots of
inputs and product terms, and programmable
connections.
» n inputs

• AND gates have 2n inputs -- true and complement of each
variable.

» m outputs, driven by large OR gates
• Each AND gate is programmably connected to each

output’s OR gate.

» p AND gates (p<<2n)

Example: 4x3 PLA, 6 product termsExample: 4x3 PLA, 6 product terms

Denotes
programmability

Compact RepresentationCompact Representation

PLA Electrical DesignPLA Electrical Design
■ See Section 5.3.5 -- wired-AND logic

Programmable Array Logic (Programmable Array Logic (PALsPALs))
– How beneficial is product sharing?

» Not enough to justify the extra AND array

– PALs ==> fixed OR array
» Each AND gate is permanently connected to a

certain OR gate.

– Example: PAL16L8

Programmable Array Logic (PAL)Programmable Array Logic (PAL)

A PAL is a special case of a PLA in which the AND
array is programmable but the OR array is fixed.

I1

I2

F1

F4

F5

F8

Outputs

An unprogrammed
PAL

Programmable Array Logic (PAL)Programmable Array Logic (PAL)

A PAL is a special case of a PLA in which the AND
array is programmable but the OR array is fixed.

I1

I2

F1

F4

F5

F8

A programmed
PAL

I1I2’ + I1’I2

– 10 primary inputs
– 8 outputs, with 7 ANDs

per output
– 1 AND for 3-state

enable
– 6 outputs available as

inputs
» more inputs, at expense

of outputs
» two-pass logic, helper

terms
– Note inversion on

outputs
» output is complement of

sum-of-products
– newer PALs have

selectable inversion

Designing with Designing with PALsPALs
– Compare number of inputs and outputs of the

problem with available resources in the PAL.

– Write equations for each output using VHDL.

– Compile the VHDL program, determine whether
minimized equations fit in the available AND
terms.

– If they do not fit, try to modify the equations or to
provide “helper” terms.

Some QuestionsSome Questions
Is the criterion to minimize a set of
functions to implement in a PAL the
same that we used for the
implementation with individual gates?

What is the problem formulation for the
implementation of a set of logic functions
in a PAL?

First Steps inFirst Steps in
VHDLVHDL

Lecture GoalsLecture Goals
■ Introduce VHDL Concept and

Motivation for VHDL

■ Introduce the VHDL Hierarchy and
Alternative Architectures Model

■ Start Defining VHDL Syntax

Motivation for VHDLMotivation for VHDL
■ Digital System Complexity Continues to

Increase
– No longer able to breadboard systems

» Number of chips

» Number of components

» Length of interconnects

– Need to simulate before committing to hardware
» Not just logic, but timing

MotivationMotivation
■ Different Types of Models are

Required at Various Development
Stages
–Logic models

–Performance models

–Timing models

–System Models

MotivationMotivation
■ Non-Proprietary Lingua Franca

– Need a universal language for various levels of
system design

– Replacement for schematics

– Unambiguous, formal language

– Partitions problem
» Design

» Simulation and Verification

» Implementation

MotivationMotivation
■ Standard for Development of

Upgrades
–Testbenches and results

–System modifications must still pass
original testbench

–Testbench can (and should) be writtenwritten
by people other than designersby people other than designers

VHDLVHDL
Very High Speed Integrated Circuit (VHSIC)

Hardware

Description

Language

Need for VHDLNeed for VHDL
■ Leads to Automatic Implementation--

Synthesis
– Routing tools

– Standard cell libraries

– FPGA

– CPLD

– Formal Language description is independent of
physical implementation

Need for VHDLNeed for VHDL
■ Need a Unified Development Environment

– Errors occur at translations from one stage of
design to another

– VHDL language the same at all levels

– All people involved speak the same HDL

– Testing and verification

■ Performance, Reliability, and Behavioral
Modeling Available at All Design Levels

Need for VHDLNeed for VHDL
■ Need to Have Power and Flexibility to Model

Digital Systems at Many Different Levels of
Description
– Support “mixed” simulation at different levels of

abstraction, representation, and interpretation with
an ability for step-wise refinement

– Can model to high or low levels of detail, but still
simulate

VHDLVHDL
■ International IEEE Standard Specification

Language (IEEE 1076-1993) for
Describing Digital Hardware

■ A Formal Language
– Specification of designs

– Simulation of performance

– Interface to hardware detail design tools

Why VHDL?Why VHDL?
■ The Complexity and Size of Digital Systems

leads to
– Breadboards and prototypes which are too costly

– Software and hardware interactions which are
difficult to analyze without prototypes or
simulations

– Difficulty in communicating accurate design
information

VHDL Model ComponentsVHDL Model Components
■ Complete VHDL Component Description

Requires
– Entity

» Defines a component’s interface

– Architecture
» Defines a component’s function

■ Several Alternative Architectures May Be
Developed for Use With the Same Entity

Languages Other Than VHDLLanguages Other Than VHDL

■ VHDL: VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language
– Not the only hardware description language

■ Most others are proprietary

ABELABEL
■ ABEL

–Simplified HDL

–PLD language

–Dataflow primitives, e.g., registers

–Can use to Program XILINX FPGA

ALTERAALTERA
■ ALTERA

– Created by Altera Corporation

– Simplified dialect of HDL
»AHDL

AHPLAHPL
■ AHPL: A Hardware Programming

Language
– Dataflow language

– Implicit clock

– Does not support asynchronous circuits

– Fixed data types

– Non-hierarchical

CDLCDL
■ CDL: Computer Design Language

– Academic language for teaching digital
systems

– Dataflow language

– Non-hierarchical

– Contains conditional statements

CONLANCONLAN
■ CONLAN: CONsensus LANguage

– Family of languages for describing various
levels of abstraction

– Concurrent

– Hierarchical

IDLIDL
■ IDL: Interactive Design Language

– Internal IBM language

– Originally for automatic generation of PLA
structures

– Generalized to cover other circuits

– Concurrent

– Hierarchical

ISPSISPS
■ ISPS: Instruction Set Processor

Specification
– Behavioral language

– Used to design software based on specific
hardware

– Statement level timing control, but no gate
level control

TEGASTEGAS
■ TEGAS: TEst Generation And

Simulation
– Structural with behavioral extensions

– Hierarchical

– Allows detailed timing specifications

TI-HDLTI-HDL
■ TI-HDL: Texas Instruments Hardware

Description Language
– Created at Texas Instruments

– Hierarchical

– Models synchronous and asynchronous
circuits

– Non-extendable fixed data types

VERILOGVERILOG
■ Verilog

– Essentially identical in function to VHDL

– Simpler and syntactically different

– Gateway Design Automation Co., 1983

– Early de facto standard for ASIC programming

– Open Verilog International standard

– Programming language interface to allow
connection to non-Verilog code - PLIPLI

ZEUSZEUS
■ ZEUS

– Created at GTE

– Hierarchical

– Functional Descriptions

– Structural Descriptions

– Clock timing, but no gate delays

– No asynchronous circuits

Different Representation ModelsDifferent Representation Models

■ Some, Not Mutually Exclusive,
Models
– Functional

– Behavioral

– Dataflow

– Structural

– Physical

Functional ModelFunctional Model
■ Describes the logical Function of

Hardware

■ Independent of Any Specific
Implementation or Timing Information
– Can exist at multiple levels of abstraction,

depending on the granularity and the data
types that are used in the behavioral
description

Behavioral ModelBehavioral Model
■ Describes the Function and Timing of

Hardware Independent of Any Specific
Implementation
– Can exist at multiple levels of abstraction,

depending on the granularity of the timing
that are used in the functional description

Functional & BehavioralFunctional & Behavioral
DescriptionsDescriptions

■ Functional & Behavioral Models May Bear
Little Resemblance to System Implementation
– Structure not necessarily implied

InputInputInputInput OutputOutputOutputOutputBehavioralBehavioralBehavioralBehavioral
DescriptionDescriptionDescriptionDescription

Dataflow ModelDataflow Model
■ Describes How Data Moves Through the

System and the Various Processing Steps
– Register Transfer Level (RTL)

– No registers are native to VHDL

– Hides details of underlying combinational
circuitry and functional implementation

Structural ModelStructural Model
■ Represents a System in Terms of the

Interconnections of a Set of
Components
– Components are interconnected in a

hierarchical manner

– Components themselves are described
structurally, behaviorally, or functionally
»with interfaces between structural and their

behavioral-level implementations

Structural DescriptionsStructural Descriptions

■ Pre-Defined VHDL Components Are
‘Instantiated’ and Connected Together

■ Structural Descriptions May Connect
Simple Gates or Complex, Abstract
Components

Structural DescriptionsStructural Descriptions

■ Mechanisms for Supporting Hierarchical
Description

■ Mechanisms for Describing Highly Repetitive
Structures Easily

BehavioralBehavioralBehavioralBehavioral
EntityEntityEntityEntity

InputInputInputInput OutputOutputOutputOutput

Physical ModelPhysical Model
■ Specifies the Relationship Between the

Component Model and the Physical Packaging
of the Component.
– Contains all the timing and performance details to

allow for an accurate simulation of physical
reality

– Back annotation allows precise simulations

RASSP RoadmapRASSP Roadmap

 VHDL VHDL VHDL VHDL VHDL VHDL VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

RASSP RoadmapRASSP Roadmap

 VHDL VHDL VHDL VHDL VHDL VHDL VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

Copyright 1995, 1996 RASSP E&F

OutlineOutline
■ VHDL Background/History

■ VHDL Design Example

■ VHDL Model Components

–Entity Declarations

–Architecture Descriptions

■ Basic Syntax and Lexicographical
Conventions

Reasons for Using VHDLReasons for Using VHDL
■ VHDL Is an International IEEE Standard

Specification Language (IEEE 1076-1993) for
Describing Digital Hardware Used by Industry
Worldwide

–VHDL is an acronym for VHSIC (Very High

Speed Integrated Circuit) Hardware Description

Language

Reasons for Using VHDLReasons for Using VHDL
■ VHDL enables hardware modeling from the

gate to system level

■ VHDL provides a mechanism for digital
design and reusable design documentation

■ VHDL Provides a Common Communications
Medium

A Brief History of VHDLA Brief History of VHDL
■ Very High Speed Integrated Circuit

(VHSIC) Program
–Launched in 1980

–Object was to achieve significant gains in
VLSI technology by shortening the time from
concept to implementation (18 months to 6
months)

–Need for common descriptive language

A Brief History of VHDLA Brief History of VHDL

■ Woods Hole Workshop
– Held in June 1981 in Massachusetts

– Discussion of VHSIC goals

– Comprised of members of industry,
government, and academia

A Brief History of VHDLA Brief History of VHDL

■ July 1983: contract awarded to develop
VHDL
–Intermetrics

–IBM

–Texas Instruments

■ August 1985: VHDL Version 7.2 released

A Brief History of VHDLA Brief History of VHDL
■ December 1987: VHDL became IEEE

Standard 1076-1987 and in 1988 an ANSI
standard

■ September 1993: VHDL was restandardized to
clarify and enhance the language

■ VHDL has been accepted as a Draft
International Standard by the IEC

GajskiGajski and Kuhn’s Y Chart and Kuhn’s Y Chart
ArchitecturalArchitecturalArchitecturalArchitectural

Physical/GeometryPhysical/GeometryPhysical/GeometryPhysical/Geometry

StructuralStructuralStructuralStructuralBehavioralBehavioralBehavioralBehavioral

ProcessorProcessorProcessorProcessor

Hardware ModulesHardware ModulesHardware ModulesHardware Modules

ALUsALUsALUsALUs, Registers, Registers, Registers, Registers

Gates,Gates,Gates,Gates, FFs FFs FFs FFs

TransistorsTransistorsTransistorsTransistors

SystemsSystemsSystemsSystems

AlgorithmsAlgorithmsAlgorithmsAlgorithms

Register TransferRegister TransferRegister TransferRegister Transfer

LogicLogicLogicLogic

Transfer FunctionsTransfer FunctionsTransfer FunctionsTransfer Functions

AlgorithmicAlgorithmicAlgorithmicAlgorithmic

Functional BlockFunctional BlockFunctional BlockFunctional Block

LogicLogicLogicLogic

CircuitCircuitCircuitCircuit

RectanglesRectanglesRectanglesRectangles

Cell, Module PlansCell, Module PlansCell, Module PlansCell, Module Plans

Floor PlansFloor PlansFloor PlansFloor Plans

ClustersClustersClustersClusters

Physical PartitionsPhysical PartitionsPhysical PartitionsPhysical Partitions

Copyright 1995, 1996 RASSP E&F

VHDL ModelVHDL Model

Behavioral

Architecture

Dataflow

Architecture

Structural

Architecture

Package

Entity

Generic Ports

Functional

Architecture

VHDL Design ExampleVHDL Design Example
■ Problem: Design a single bit half adder with carry and

enable

■ Specifications

– Inputs and outputs are each one bit

– When enable is high, result gets x plus y

– When enable is high, carry gets any carry of x plus y

– Outputs are zero when enable input is low
xxxx
yyyy

enableenableenableenable

carrycarrycarrycarry

resultresultresultresult
Half AdderHalf AdderHalf AdderHalf Adder

Copyright 1995, 1996 RASSP E&F

VHDL Design ExampleVHDL Design Example
Entity DeclarationEntity Declaration

■ As a first step, the entity declaration
describes the interface of the component
– input and output ports are declared

xxxx

yyyy

enableenableenableenable

carrycarrycarrycarry

resultresultresultresult
HalfHalfHalfHalf

AdderAdderAdderAdder

ENTITY half_adder IS

PORT(x, y, enable: IN BIT;
 carry, result: OUT BIT);

END half_adder;

Copyright 1995, 1996 RASSP E&F

We will, at least at first, useWe will, at least at first, use
capitals and colors to denotecapitals and colors to denote
VHDL language componentsVHDL language components

VHDL Design ExampleVHDL Design Example
Functional Functional SpecificationSpecification

■ A high level description can be used to
describe the function of the adder

■ The model can then be simulated to verify
correct functionality of the component

ARCHITECTURE half_adder_a OF half_adder IS

BEGIN

PROCESS (x, y, enable)

BEGIN

IF enable = ‘1’ THEN

result <= x XOR y;

carry <= x AND y;

ELSE

carry <= ‘0’;

result <= ‘0’;

END IF;

END PROCESS;

END half_adder_a;

Copyright 1995, 1996 RASSP E&F

VHDL Design ExampleVHDL Design Example
Behavioral Behavioral SpecificationSpecification

■ A high level description can be used to
describe the function of the adder

■ The model can then be simulated to verify
correct timing of the entity

ARCHITECTURE half_adder_b OF half_adder IS

 BEGIN

 PROCESS (x, y, enable)

 BEGIN

 IF enable = ‘1’ THEN

result <= x XOR y after 10ns;

 carry <= x AND y after 12 ns;

 ELSE

 carry <= ‘0’ after 10ns;

 result <= ‘0’ after 12ns;

 END IF;

END PROCESS;

END half_adder_b;

Copyright 1995, 1996 RASSP E&F

timing

VHDL Design ExampleVHDL Design Example
Data FlowData Flow Specification Specification

■ A Third Method Is to Use Logic Equations
to Develop a Data Flow Description

● Again, the model can be simulated at this level to
confirm the logic equations

ARCHITECTURE half_adder_c OF half_adder
IS

BEGIN

carry <= enable AND (x AND y);

result <= enable AND (x XOR y);

END half_adder_c;

Copyright 1995, 1996 RASSP E&F

VHDL Design ExampleVHDL Design Example
StructuralStructural Specification Specification

■ As a Fourth Method, a Structural
Description Can Be Created From
Previously Described Components

■ These gates can be taken from a library of
parts

xxxx
yyyy

enableenableenableenable
carrycarrycarrycarry

resultresultresultresult

Copyright 1995, 1996 RASSP E&F

VHDL Design ExampleVHDL Design Example
Structural Specification (Structural Specification (ContCont.).)

ARCHITECTURE half_adder_d OF half_adder IS

COMPONENT and2
PORT (in0, in1 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

COMPONENT and3
PORT (in0, in1, in2 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

COMPONENT xor2
PORT (in0, in1 : IN BIT;

 out0 : OUT BIT);
END COMPONENT;

FOR ALL : and2 USE ENTITY gate_lib.and2_Nty(and2_a);
FOR ALL : and3 USE ENTITY gate_lib.and3_Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate_lib.xor2_Nty(xor2_a);

-- description is continued on next slide

Copyright 1995, 1996 RASSP E&F

VHDL Design ExampleVHDL Design Example
Structural Specification (Structural Specification (ContCont.).)

-- continuing half_adder_d description

SIGNAL xor_res : BIT; -- internal signal

-- Note that other signals are already declared in entity

BEGIN

A0 : and2 PORT MAP (enable, xor_res, result);

A1 : and3 PORT MAP (x, y, enable, carry);

X0 : xor2 PORT MAP (x, y, xor_res);

END half_adder_d;

Copyright 1995, 1996 RASSP E&F

VHDL Model ComponentsVHDL Model Components
■ A Complete VHDL Component Description

Requires a VHDL Entity and a VHDL
Architecture
–The entity defines a component’s interface

–The architecture defines a component’s
function

■ Several Alternative Architectures May Be
Developed for Use With the Same Entity

VHDL Model ComponentsVHDL Model Components

■ Three Areas of Description for a VHDL
Component:
– Structural descriptions

– Functional descriptions

– Timing and delay descriptions (Behavioral)

ProcessProcess
■ Fundamental Unit for Component

Behavior Description Is the Process
– Processes may be explicitly or implicitly

defined

– They are packaged in architectures

VHDL Model ComponentsVHDL Model Components
■ Primary Communication Mechanism Is

the Signal (distinct from a variable)
– Process executions result in new values being

assigned to signals which are then accessible
to other processes

– Similarly, a signal may be accessed by a
process in another architecture by connecting
the signal to ports in the the entities
associated with the two architectures

Output <= My_id + 10;Output <= My_id + 10;

Note symbol
used for signals

VHDL EntityVHDL Entity
■ The Primary Purpose of an Entity Is to Declare

the Input and Output Signals Which
Communicate With It.
– Interface signals are listed in the PORT clause

which has 3 parts:

»Name

»Mode

»Data type

VHDL Entity ExampleVHDL Entity Example
ENTITY OR3 IS

PORT (A, B, C : IN BIT;

 D : OUT BIT);

END OR3;

Entity DeclarationsEntity Declarations
■ The Primary Purpose of the Entity Is to

Declare the Signals in the
Component’s Interface
–The interface signals are listed in the
PORT clause

»In this respect, the entity is akin to the
schematic symbol for the component

Copyright 1995, 1996 RASSP E&F

Entity versus Schematic SymbolEntity versus Schematic Symbol

Entity Example
xxxx

yyyy

enableenableenableenable

carrycarrycarrycarry
resultresultresultresult

HalfHalfHalfHalf
AdderAdderAdderAdder

ENTITY half_adder IS

GENERIC(prop_delay : TIME := 10 ns);

PORT(x, y, enable : IN BIT;
 carry, result : OUT BIT);

END half_adder;

Entity DeclarationsEntity Declarations
Port ClausePort Clause

■ PORT clause declares the interface signals of the object to the outside
world

■ Three parts of the PORT clause
– Name

– Mode

– Data type

– Note port signals (i.e. ‘ports’) of the same mode and type or subtype may be
declared on the same line

PORT (signal_name : mode data_type);PORT (signal_name : mode data_type);

PORT (input : IN BIT_VECTOR(3 DOWNTO 0);
 ready, output : OUT BIT);

PORT (input : IN BIT_VECTOR(3 DOWNTO 0);
 ready, output : OUT BIT);

Copyright 1995, 1996 RASSP E&F

name mode Data type

Entity DeclarationsEntity Declarations
Port Clause (Port Clause (ContCont.).)

■ The Port Mode of the Interface Describes
the Direction in Which Data Travels With
Respect to the Component

■ Five Port Modes
1. IN: data comes in this port and can only be

read

2. OUT: data travels out this port

Entity DeclarationsEntity Declarations
Port Clause (Port Clause (ContCont.).)

3. BUFFER: bidirectional data, but only one
signal driver may be enabled at any one time

4. INOUT: bidirectional data with any number
of active drivers allowed but requires a Bus
Resolution Function

5. LINKAGE: direction of data is unknown

Entity DeclarationsEntity Declarations
Generic ClauseGeneric Clause

■ Generics May Be Used for:
– Readability,

– Maintenance,

– Configuration.

■ Generic Clause Syntax :

– If optional default_value is missing in generic
clause declaration, it must be present when
component is to be used (i.e. instantiated)

GENERIC (generic_name : type [:= default_value]);GENERIC (generic_name : type [:= default_value]);

Copyright 1995, 1996 RASSP E&F

Behavioral DescriptionsBehavioral Descriptions
■ VHDL Provides Two Styles of Describing

Component Behavior
–Data Flow: concurrent signal assignment

statements

–Behavioral: processes used to describe complex
behavior by means of high-level language
constructs

» variables, loops, if-then-else statements, etc.

Copyright 1995, 1996 RASSP E&F

Generic ClauseGeneric Clause
■ Generic Clause Example :

– The generic My_ID, with a default value of 37, can be
referenced by any architecture of the entity with this
generic clause

– The default can be overridden at component instantiation

GENERIC (My_ID : INTEGER := 37);GENERIC (My_ID : INTEGER := 37);

GENERIC can be
time, current,

voltage, signal…..

Architecture BodiesArchitecture Bodies

■ Describes the Operation of the
Component, Not Just Its Interface

■ More Than One Architecture Can (and
Usually Is) Associated With Each
Entity

Architecture BodiesArchitecture Bodies

■ Architecture Body consists of Two Parts:
1. Declarative part -- includes necessary

declarations, e.g. :
»type declarations

»signal declarations

»component declarations

»subprogram declarations

Architecture BodiesArchitecture Bodies
2. Statement part -- includes statements that

describe organization and/or functional
operation of component, e.g. :

»» concurrent signal assignment concurrent signal assignment
statementsstatements

»» process statements process statements

»» component instantiation statements component instantiation statements

Architecture Body ExampleArchitecture Body Example

ARCHITECTURE half_adder_d OF half_adder
IS

-- architecture declarative part

 SIGNAL xor_res : BIT ;

-- architecture statement part

BEGIN

 carry <= enable AND (x AND y) ;

 result <= enable AND xor_res ;

 xor_res <= x XOR y ;

END half_adder_d ;

Lexical Elements of VHDLLexical Elements of VHDL

■ Comments
– two dashes to end of line is a comment, e.g.,

--this is a comment

Copyright 1997, KJH

Lexical Elements of VHDLLexical Elements of VHDL
■ Basic Identifiers

– Can Only Use
» alphabetic letters (A-Z, a-z), or

» Decimal digits (0-9), or

» Underline character (_)

– Must Start With Alphabetic Letter (MyVal)

Copyright 1997, KJH

Lexical Elements of VHDLLexical Elements of VHDL
■ Basic Identifiers

– Not case sensitive
(LastValue = = lAsTvALue)

– May NOT end with underline (MyVal_)

– May NOT contain sequential underlines (My__Val)

Copyright 1997, KJH

Not case sensitive, but recommended to use
always the same way. It is also

recommended to use capitals for language
components

Lexical Elements of VHDLLexical Elements of VHDL
■ Extended Identifiers

– Any character(s) enclosed by \ \

– Case IS significant in Extended Identifiers

– Extended identifiers are distinct from basic identifiers

– If “ \ ” is needed in extended identifier, use

“ \\ “

Copyright 1997, KJH

Lexical Elements of VHDLLexical Elements of VHDL
■ Reserved Words

– Do not use as identifiers

■ Special Symbols
– Single characters

& ‘ () * + , - . / : ; < = > |

– Double characters (no intervening space)

=> ** := /= >= <= <>

Lexical Elements of VHDLLexical Elements of VHDL
■ Numbers

– Underlines are NOT significant

(10#8_192)

– Exponential notation allowed

(46e5 , 98.6E+12)

– Integer Literals (12)
» Only positive numbers; negative numbers are

preceded by unary negation operator

» No radix point
Copyright 1997, KJH

Lexical Elements of VHDLLexical Elements of VHDL
– Real Literals (23.1)

»Always include decimal point

»Radix point must be preceded and followed by
at least one digit.

– Radix (radix # number expressed in radix)
»Any radix from binary (2) to hexadecimal (
16)

»Numbers in radices > 10 use letters a-f for
10-15.

Lexical Elements of VHDLLexical Elements of VHDL
■ String

– A sequence of any printable characters enclosed
in double quotes

(“a string”)

– Quote uses double quote
(“ he said ““no!”” ”)

– Strings longer than one line use the concatenation
operator (&) at beginning of continuation line.

Copyright 1997, KJH

Lexical Elements of VHDLLexical Elements of VHDL

■ Characters
– Any printable character including space enclosed

in single quotes (‘x‘)

■ Bit Strings
– B for binary (b”0100_1001”)

– O for Octal (o”76443”)

– X for hexadecimal (x”FFFE_F138”)

Characters, bits strings and strings are not the
same thing!

VHDL SyntaxVHDL Syntax
■ Extended Backus-Naur Form (EBNF)

– Language divided into syntactic categories

– Each category has a rule describing how to build a
rule of that category

– Syntactic category <= pattern
– “<=“ is read as “...is defined to be...”

Copyright 1997, KJH

VHDL SyntaxVHDL Syntax
– e.g.,

variable_assignment <= target :=
expression;

– Above, a clause of the category
variable_assignment is defined to be a clause
from the category target followed by the symbol “
:= “ followed by a clause from the expression
category followed by a terminating “ ; ”

VHDL SyntaxVHDL Syntax
– syntax between outline brackets [] is optional

– syntax between outline braces { } can be
repeated none or more times, a.k.a. “Kleene Star”

Copyright 1997, KJH

VHDL SyntaxVHDL Syntax
– A preceding lexical element can be repeated an

arbitrary number of times if ellipses are present,
e.g.,

case-statement <=

CASE expression IS

case_statement_alternative

{ . . . }

END CASE ;

Copyright 1997, KJH

repeated

VHDL SyntaxVHDL Syntax
– If a delimiter is needed, it is included with the

ellipses as

identifier_list <=

identifier { , . . . }

Copyright 1997, KJH

VHDL SyntaxVHDL Syntax
■ “OR” operator, “ | | | ”, in a list of alternatives,

e.g.,
mode <= IN | OUT | INOUT

■ When grouping is ambiguous, parenthesis
are used, e.g.,

term <=

factor { (* | / | MOD | REM) FACTOR }

Copyright 1997, KJH

Do not bother to remember operator
precedence rules, just use parentheses

VHDL SyntaxVHDL Syntax
■ e.g. an identifier may be defined in EBNF as

identifier <=

 letter { [underline] letter_or_digit }

A_b_4 is OK A_b__4 is
NOT OK

_b_4 is NOT
OK

You can start working on Homework OneYou can start working on Homework One

■ For those who look for easy projects:
– 1. Big Decoder and timing optimization.

– 2. Generalized register with any set of operations,
your choice but not only trivial.

– 3. Robot control state machine

– 4. Counter of large capacity without spikes

– 5. Your choice, must be approved by me.

■ For those who look for medium projects:
– 1. Sorter but different from those on my www page

– 2. Any circuit that has a state machine control unit
and a register-transfer data path, for instance, GCD,
Fibonacci, etc.

You can start working onYou can start working on
Homework OneHomework One

■ For those who look for challenging projects:
– 1. Any component of CCM or DSP processor.

– 2. ALU using reversible logic

– 3. Counters using reversible logic

– 4. Controlling state machines in reversible
logic.

– 5. Any other component of your future final
project, must be approved by me.

Homework ToolsHomework Tools
■ Mentor Graphics QuickVHDL

– Covered in ECE 271

– Look to my WWW page and link to ECE 271.

■ Other Mentor tools on Unix

■ IEEE VHDL Tutorial and VHDL Language
Standard On-line

■ send email to damtawek@ece.pdx.edu if you still
have no account.

Optional Homework ToolOptional Homework Tool
■ Cypress Semiconductor (Warp release 6.x)

– PC-based, Windows 3.1 with win32s extension

– ~$99 with textbook

– Oriented towards Cypress PLD & FPGA devices

– Partial VHDL simulator

– It is good to have Skahill’s book

■ Any other tool that you have and wish to use.

Additional ReadingAdditional Reading
•Sections 5.1, 5.2, 5.3, 5.4, 5.5 (Wakerly Textbook)

•Note, this book has Xilinx tools in it.
•You can do most of your project at home if you have a PC
and this book.

• First 4 chapters from Wakerly as a review.
• First three chapters from Mano/Kime.

John F. Wakerly, Digital Design. Principles and Practices, Third
Edition, Prentice Hall

Includes the XILINX Student Edition Foundation Series
Software

Morris Mano and Charles Kime, Logic and Computer Design
Fundamentals, 2nd edition. Includes the same software as

Wakerly

This is not
mandatory

Both these
books were

highly
recommended

by my
students and
professors
from other
universities

■ Entities

■ Architectures

■ Packages

VHDL-II
Structural
Modeling

VariablesVariables
■ Variables Exist Only Within an

Architecture
– Values of variables cannot be passed to other

entities except through signals

■ Variables Change Value When They Are
Evaluated.
– Signals change at a “later” time

SignalsSignals
■ Entities are Interconnected by Signals

– Process executions result in new values being assigned to
signals which are then accessible to other processes

– A signal may be accessed by a process in anotherby a process in another
architecturearchitecture by connecting the signal to ports in the
entities associated with the two architectures

SignalsSignals
■ Signals Can Be Declared Internal to an

Architecture to Connect Internal Entities

■ Variables Are Not Appropriate Since They Do Not
Have the Temporal Characteristics of Hardware

■ Signals Declared Within an Entity Are Not
Available to Other Entities Unless Specified in the
Port Clause of the Entity Declaration.

Entity SyntaxEntity Syntax
ENTITY identifier IS

[PORT (port_interface_list);]

{ entity_declarative_item }

END [ENTITY] [identifier] ;

Entity SyntaxEntity Syntax
port_interface_list <=

(identifier { , . . . } :

 [mode] subtype_indication

[:= expression])

 { ; . . . }

 mode <= IN | OUT | INOUT

Entity ExampleEntity Example
ENTITY NiCadCharger IS

 PORT (

 Voltage, Current : IN REAL := 0.0 ;

 AC : IN BIT := ‘1’ ;

 Charged, Recharge: OUT BIT);

END ENTITY NiCadCharger ;

mode

Architecture SyntaxArchitecture Syntax
ARCHITECTURE identifier OF

 entity_name IS

 { block_declarative_item }

BEGIN

 { concurrent_statement }

END [ARCHITECTURE][identifier];

Structural ModelStructural Model
■ A Representation of a System in

Terms of the Interconnections of a Set
of Defined Components.
– Components can be described either

structurally or behaviorally

– Smallest components are behavioral
entities

– Components usually stored in libraries

Structural ModelsStructural Models
■ Components Can Be Instantiated As

Concurrent Statements in Architectures
– If architecture not specified in statement

»Must be specified later, or

»Most recently analyzed architecture used

– Ports can be specified two ways
»Positional association

»Named association

Internal Signals in aInternal Signals in a
Structural ModelStructural Model

■ Entity Ports Which are Declared within
an Architecture Body Are Local Signals
– These signals are not available outside the

architecture unless connected to one of the
architecture’s ports

Odd Parity GeneratorOdd Parity Generator
ExampleExample

ParityParity
EntityEntity

ENTITY Odd_Parity IS

 PORT(

 IN_1, IN_2, IN_3 : IN BIT ;

 Out_1 : OUT BIT);

END ENTITY Odd_Parity ;

Odd Parity Behavior ArchitectureOdd Parity Behavior Architecture
ARCHITECTURE Odd_Parity_B OF

 Odd_Parity IS

BEGIN

 Out_1 <= (IN_1 AND NOT IN_2 AND IN_3)

 OR (NOT IN_1 AND NOT IN_2 AND NOT IN_3)

 OR (NOT IN_1 AND IN_2 AND IN_3)

 OR (IN_1 AND IN_2 AND NOT IN_3)

END ARCHITECTURE Odd_Parity_B ;

()f A B C ABC ABC ABC ABCodd , , = + + +

INVERTER Entity andINVERTER Entity and
ArchitectureArchitecture

ENTITY INV IS

 PORT(

 In_1 : IN BIT ;

 In_1_Bar : OUT BIT);

 END ENTITY INV ;

ARCHITECTURE INV_B OF INV IS

 BEGIN

 In_1_Bar <= NOT IN_1 ;

 END ARCHITECTURE INV_B ;

AND_3 Entity/ArchitectureAND_3 Entity/Architecture
ENTITY AND_3 IS

 PORT(

 IN_1, IN_2, IN_3 : IN BIT ;

 Out_1 : OUT BIT);

 END ENTITY AND_3 ;

ARCHITECTURE AND_3_B OF AND_3 IS

 BEGIN

 Out_1 <= IN_1 AND IN_2 AND IN_3 ;

 END ARCHITECTURE AND_3_B ;

OR_4 Entity/ArchitectureOR_4 Entity/Architecture
ENTITY OR_4 IS

 PORT(

 IN_1, IN_2, IN_3, IN_4 : IN BIT ;

 Out_1 : OUT BIT);

 END ENTITY OR_4 ;

ARCHITECTURE OR_4_B OF OR_4 IS

 BEGIN

 Out_1 <= IN_1 OR IN_2 OR IN_3 OR IN_4 ;

 END ARCHITECTURE OR_4_B ;

Odd Parity Structural ArchitectureOdd Parity Structural Architecture

ARCHITECTURE Odd_Parity_S OF

 Odd_Parity IS

--block_declarative_items

--components

 COMPONENT INV IS

 PORT(

 In_1 : IN BIT ;

 In_1_Bar : OUT BIT);

 END COMPONENT INV ;

Odd Parity Structural ArchitectureOdd Parity Structural Architecture

 COMPONENT AND_3 IS

 PORT(IN_1, IN_2, IN_3 : IN BIT ;

 Out_1 : OUT BIT);

 END COMPONENT AND_3 ;

 COMPONENT OR_4 IS

 PORT(IN_1, IN_2, IN_3, IN_4 : IN BIT ;

 Out_1 : OUT BIT);

 END COMPONENT OR_4 ;

Structural MappingStructural Mapping

inv_1

MT_5

inv_2

inv_3

in_2

in_1

in_3

MT_0

MT_3

MT_6

Out_1

For single-output gates the name of
the signal is the same as the name of

the gate These names
are necessary

to connect
components

Odd Parity Structural ArchitectureOdd Parity Structural Architecture

--block_declarative_items

--internal signals

 SIGNAL MT_0, MT_3, MT_5, MT_6 : BIT ;

 SIGNAL INV_1, INV_2, INV_3 : BIT ;

 BEGIN --parity structural architecture

--connect gates

 G1: INV PORT MAP (In_1, INV_1);

 G2: INV PORT MAP (In_2, INV_2);

 G3: INV PORT MAP (In_3, INV_3);

Odd Parity Structural ArchitectureOdd Parity Structural Architecture

 G4: AND_3 PORT MAP

 (IN_1, INV_2, IN_3, MT_5);

 G5: AND_3 PORT MAP

 (INV_1, INV_2, INV_3, MT_0);

 G6: AND_3 PORT MAP

 (INV_1, IN_2, IN_3, MT_3);

 G7: AND_3 PORT MAP

 (IN_1, IN_2, INV_3, MT_6);

Odd Parity Structural ArchitectureOdd Parity Structural Architecture

 G8: OR_4 PORT MAP

 (MT_0, MT_3, MT_5, MT_6, Out_1);

 END ARCHITECTURE Odd_Parity_S ;

PackagesPackages
■ Packages are a method for Grouping

Related Declarations

■ Usually these declarations Serve a
Common Purpose:
– 1. Set of subprograms to operate on

particular data type

– 2. Set of declarations for particular model

– 3. “global” signals, such as clocks.

PackagesPackages
■ Design Unit Similar to Entity Declarations and

Architecture Bodies
– Can be put in library and made accessible to

other units

– Access to items declared in the package is
through using its Selected Name
» library name . package name . item name

– Aliases can be used to allow shorter names for
accessing declared items

PackagesPackages
■ Two Components to Packages:

– Package declaration

– Package body
»Not necessary if package declaration does not

declare subprograms

Package DeclarationPackage Declaration
■ Declares:

– Subprograms using header, implementation is
hidden

– Constants, do not need to be initialized in
declaration

– Types, must be completely specified
» Can have variable size arrays

– Signals must be completely specified

Package Declaration SyntaxPackage Declaration Syntax
PACKAGE identifier IS

 { package_declarative_item }

 END [PACKAGE] [identifier] ;

Package Declaration ExamplePackage Declaration Example
PACKAGE dp32_types IS

 CONSTANT unit_delay : Time := 1 NS;

 TYPE bool_to_bit_table IS ARRAY
(BOOLEAN) OF BIT;

 END dp32_types ;

Package BodyPackage Body
■ Declared Subprograms Must Include the Full

Declaration As Used in Package Declaration
– Numeric literals can be written differently if

they have the same value

– Simple name may be replaced by a selected
name provided it refers to the same item

??

Package BodyPackage Body
■ Package Body may Contain Additional

Declarations Which Are Local to the Package
Body
– Cannot declare signals in body

Package BodyPackage Body
PACKAGE BODY identifier IS

 { package_ body_declarative_item }

 END [PACKAGE BODY] [identifier] ;

SourcesSources

■ Prof. K. J. Hintz, Department of Electrical and
Computer Engineering, George Mason University

■ Prof. John Wakerly, CISCO Systems and Stanford
University.

■ Dr. Jose Nelson Amaral, University of Alberta

■ More information on ECE 271 class of Marek
Perkowski.

