- 1. Brief Review of Cube Calculus
- 2. Simple Combinational Operators
- 3. Complex Combinational Operators
- 4. Sequential Operators
- 5. Multi-valued Operations
- 6. Patterns of Operations
- 7. General Patterns of Operations and Horizontal Microprogramming
- 8 . Why we need CCM?

Overview Of This Lecture

- A Brief Review of Cube Calculus.
- Summary of Cube Calculus operations.
- Positional notation concept for Cube Calculus operations.
- Summary of Positional notation concept for Cube Calculus operations.
- Why we need a Cube Calculus Machine?

Brief Review

Of Cube

Calculus

(Binary logic)

- For the function $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\mathrm{A}+\mathrm{B}=$ $a c^{\prime}+a^{\prime} d$ we have two cubes ($a{ }^{\prime} c^{\prime}$ and ac $\left.{ }^{\prime} \mathrm{d}\right) \Rightarrow$ Cube is a Product of literals.
- In binary logic, they can be represented as $A=a^{[0]} \cdot b^{[1]} \cdot c^{[0]} \cdot d^{[0,1]}$ and $\mathrm{B}=\mathbf{a}^{(1)} \cdot \mathbf{b}^{[0,1]} \cdot \mathbf{c}^{(0)} \cdot \mathbf{d}^{(1)}$

General Representation of

cubes in (n valued logic)

- $\mathrm{A}=\mathrm{X}_{1}{ }^{\mathrm{s}_{1} \mathrm{~A}} \cdot \mathrm{X}_{2}{ }^{\mathrm{s}_{2} \mathrm{~A}} \ldots \ldots \ldots \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{s}_{\mathrm{n}} \mathrm{A}}$
- $B=X_{1}{ }^{s_{1} B} \cdot X_{2}{ }^{s_{2} B} \ldots \ldots \ldots X_{n}{ }^{s_{n} B}$
- where $\mathrm{X}_{1}{ }^{\mathrm{s}_{1} \mathrm{~A}} \ldots . . \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{s}_{\mathrm{n}} \mathrm{A}} ., \mathrm{X}_{1}{ }^{\mathrm{s}_{1} \mathrm{~B}}, \ldots \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{s}_{\mathrm{n}} \mathrm{B}}$ are literals.
- \boldsymbol{n} is the number of variables.
- $\boldsymbol{i}^{\boldsymbol{i}}{ }^{\boldsymbol{A}}, \boldsymbol{s i}^{\boldsymbol{B}}$ are true sets of literal $\boldsymbol{x}_{\boldsymbol{i}}$.
- An example of a ternary logic is:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{X}_{1}\{0\} \cdot \mathrm{X}_{2}{ }^{\{0,2\}} \cdot \mathrm{X}_{3}{ }^{\{1\}} \cdot \mathrm{X}_{4}\{1,2\} \\
& \mathrm{B}=\mathrm{X}_{1}\{1\} \cdot \mathrm{X}_{2}{ }^{\{1\}} \cdot \mathrm{X}_{3}{ }^{\{2\}} \cdot \mathrm{X}_{4}\{0,1\}
\end{aligned}
$$

Cube
 Calculus
 Operations

Cube Calcullus Operations

The cube calculus operations are classified as:

- Simple Combinational operations (e.g. Intersection, SuperCube).
- Complex Combinational operations (e.g. Prime, Consensus, Cofactor).
- Sequential operations (e.g. Crosslink, Sharp(non-disjoint), Sharp (disjoint)).
- Let us discuss these operations..

Simple

Combinational
Cube
Operations

Simple Combinational Operations

- Defined as a SINGLE set operation on all pairs of true sets and produces one resultant cube.
- Intersection and Supercube are simple combinational cube operations.

Example Of Binary Function

Kmap representation of

Intersection

- $\mathrm{B}=\mathrm{ab}$
- $\mathrm{A}=\mathrm{bc}^{\prime}$
- Set theory:
$B=a b=a b x=$ $\mathbf{a}^{\{1\}} \mathbf{b}^{\{1\}} \mathbf{c}^{\{0,1\}}$
- $\mathrm{A}=\mathrm{bc}^{\prime}=\mathrm{xbc}^{\prime}=$ $\mathbf{a}^{\{0,1\}} \mathbf{b}^{\{1\}} \mathbf{c}^{\{0\}}$
- $B \cap A=a^{\{1\} \cap\{0,1\}} \mathbf{b}^{\{1\} \cap\{1\}}$ $c^{\{0,1\}} \cap\{0\}=$ abc $^{\prime}$

Kmap representation of Intersection

$X_{3} X_{4}$ $X_{1} \mathbf{X}_{\mathbf{4}}$	00	01	11	10
00				
01				
11				
10				

- Fig 1: Input Cubes A and B to be Intersected.
- Here

$$
\begin{aligned}
& -\mathrm{A}=\mathrm{x}_{2}{ }^{*} \mathrm{x}_{3} \\
& -\mathrm{B}=\mathrm{x}_{1}{ }^{*} \mathrm{x}_{2}
\end{aligned}
$$

- Fig 2:Resultant Cube

$$
\mathrm{C}=\mathrm{A} \cap \mathrm{~B}=
$$

$$
\mathrm{x}_{1} * \mathrm{x}_{2} * \mathrm{x}_{3}
$$

Kmap representation of

 Supercube- A and B has 3

bc	00	01	11	10
0				
1				

$\mathrm{A}=\mathbf{a b}$

bc	00	01	11	10	
0					
0					
1					

variables.

- $\mathrm{B}=\mathrm{bc}^{\prime}$
- In set theory $\mathrm{A}=\mathrm{abx}$ $\mathrm{B}=\mathrm{xbc}{ }^{\prime}$
- $A \cup B=b$

K-map representation of

Super cube

- Input Cubes A and B to be supercubed.

$\mathrm{A}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{4}$
$B=x_{1} x_{3} x_{4}$
- Resultant Cube
$\mathrm{C}=\mathrm{A} \cup \mathrm{B}=\mathrm{x}_{4}$

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$$
\begin{gathered}
\text { Examples Of } \\
\text { Mrulti-Valued } \\
\text { Functions }
\end{gathered}
$$

K-map representation of

Supercube

b	0	1	2	a(01) ${ }^{\text {(1) }}$
0				
1			(1)	a(12)betz
2			1	

- For 4 valued input logic.
- Input Cubes A and B to be supercubed.
$A=a^{01} b^{1} . B=a^{12} b^{2}$
- Resultant Cube

$$
\mathrm{C}=\mathrm{A} \cup \mathrm{~B}=\mathrm{a}^{012} \mathrm{~b}^{12}
$$

K-map representation of Intersection

$\stackrel{a}{b}^{a}$	0	1	2	a(2)b(912)	
0		1			
1					
2					
$\mathrm{a}(12) \mathrm{b}(12)$					
b^{a}	0	1	2		
0					
1					
2					

- For 4 valued input logic.
- Input Cubes A and B for Intersection.

$$
A=a^{12} b^{12} . \quad B=a^{2} b^{012}
$$

- Resultant Cube

$$
\mathrm{C}=\mathrm{A} \cap \mathrm{~B}=\mathrm{a}^{2} \mathrm{~b}^{12}
$$

$$
\begin{gathered}
\text { Definitions of } \\
\text { Simple } \\
\text { Combinational } \\
\text { Cube Operations }
\end{gathered}
$$

Intersection of two cubes:

Is the largest cube that

 is included in both A and B .Supercube of two cubes:
Is the smallest cube that includes both cubes.

Simple Combinational Operation

- Intersection operation mathematically is defined as
$\mathrm{A} \cap \mathrm{B}=\left\{\begin{array}{cl}\mathrm{x}_{1}{ }_{1}^{\mathrm{s}}{ }_{1}^{\mathrm{A}} \cap \mathrm{s}{ }_{1}^{\mathrm{B}} \ldots \ldots . \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{s}}{ }_{\mathrm{n}}^{\mathrm{A}} \cap{ }_{\mathrm{n}}{ }_{\mathrm{n}}^{\mathrm{B}} & \text { if } \mathrm{s}_{\mathrm{i}}{ }^{\mathrm{A}} \cap \mathrm{s}_{\mathrm{i}}{ }^{\mathrm{B}} \neq \varnothing \\ =\varnothing & \text { otherwise. }\end{array}\right.$
- Union operation mathematically is defined as $\mathrm{A} \cup \mathrm{B}=\mathrm{x}_{1}{ }^{\mathrm{s}}{ }_{1}^{\mathrm{A}} \cup{ }_{1}{ }_{1}^{\mathrm{B}} \ldots \ldots . \mathrm{X}_{\mathrm{n}}{ }_{\mathrm{s}}{ }^{\mathrm{A}} \mathrm{US}_{\mathrm{n}}{ }^{\mathrm{B}}$

$$
\begin{gathered}
\text { Complex } \\
\text { Combinational } \\
\text { Cube } \\
\text { Operations }
\end{gathered}
$$

Complex combinational cube operations

- They have two set operations and one set relation.
- All variables whose pair of true sets satisfy a relation are said to be Special Variables.
- Two set operations are called before $(b e f)$ and active $(a c t)$,the active set operation is applied on true sets of special variables and before set operation to others
- All Combinational cube operations (Complex and Simple) produce one resultant cube, all special variables taken at a time.
- The examples are prime operation, cofactor operation, consensus operation.

$$
\begin{gathered}
\text { Examples of } \\
\text { Complex } \\
\text { Combingtionel } \\
\text { Cube Operaíions }
\end{gathered}
$$

Example Of
 Binary Function

Example of consensus operation

- A \& B have 4 binary variables
$-\mathrm{A}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}{ }^{\prime}$
$-\mathrm{B}=\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\prime}$
- Steps: find the set relation $\operatorname{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}=\varnothing$.
- If satisfied then it is a special variable.
- Active operation $\left(\operatorname{si}^{\mathrm{A}} \cup \mathrm{si}^{\mathrm{B}}\right)$ applied to special variables.
- And to remaining variables (before variables) the set operator $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$ is applied

$X_{9} X_{4}$	∞	01	11	10
$X_{1} X_{2}$				
00				
01				
11		-		
10				

A

$\mathrm{X}_{\mathrm{0}} \mathrm{X}_{4}$	00	01	11	10
$\mathrm{X}_{1} \mathrm{X}_{2}$				
00				
01				
11				
10				

Explanation of

consensus

 operation- In set theory

$$
\begin{aligned}
& \mathrm{A}=\mathrm{X}_{1}{ }^{\{1\}} \mathrm{X}_{2}{ }^{\{1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}} \\
& \mathrm{B}=\mathrm{X}_{1}{ }^{\{1\}} \mathrm{X}_{2}{ }^{\{0\}} \mathrm{X}_{3}{ }^{\{0,1\}} \mathrm{X}_{4}{ }^{\{0,1\}}
\end{aligned}
$$

- Applying the set relation $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}=\varnothing$ on all the true set of variables $\Rightarrow x_{1}$ is a special variable and to X_{1} active operation $\left(\operatorname{si}^{\mathrm{A}} \cup \mathrm{si}^{\mathrm{B}}\right)$ is applied
- and to $\mathrm{X}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ before set operator $\left(\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}\right)$ is applied $\Rightarrow A * B=x_{1}\{1\} x_{3}\{0\}=x_{1} x_{3}{ }^{\prime}$

Example of prime operation

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

prime

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

- A\&B has 4binary variables
- $\mathrm{A}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}$
- $B=x_{1} x_{3}{ }^{\prime}$
- Step 1: Find intersection operation(set relation) on all true sets $\left(\mathrm{s}_{\mathrm{i}}{ }^{\mathrm{A}} \cap \mathrm{s}_{\mathrm{i}}{ }^{\mathrm{B}} \neq \varnothing\right)$
- Step 2: If the set relation is satisfied apply active set operation $\left(s_{i}{ }^{A} \cup s_{i}^{B}\right)$ else before set operation($\mathrm{s}_{\mathrm{i}}{ }^{\mathrm{A}}$).

Explanation of the Example

$X_{0} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

- Using set theory

$$
\begin{array}{r}
\mathrm{B}=\mathrm{X}_{1}\{1\} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}} \\
\mathrm{A}=\mathrm{X}_{1}{ }^{\{0\}} \mathrm{X}_{2}{ }^{\{1]} \mathrm{X}_{3}{ }^{\{1]} \mathrm{X}_{4}{ }^{\{1\}}
\end{array}
$$

Step 1. Find if set relation $\left(s_{i}{ }^{A} \cap s_{i}{ }^{B} \neq \varnothing\right)$ is satisfied or not $\Rightarrow \mathrm{x}_{2}$ and x_{4} are special variables.
Step 2. As the given set relation is satisfied.for the variables x_{2} and x_{4} to these variables active set operation $\left(s_{i}^{A} \cup s_{i}^{B}\right)$ is applied and to the others $\left(x_{1}, x_{3}\right)$ before set operation $\left(s_{i}{ }^{A}\right)$ is applied $\Rightarrow \mathrm{A}^{\prime} \mathrm{B}=\mathrm{x}_{1}{ }^{\{0\}} \mathrm{X}_{3}{ }^{\{1\}}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{3}$

Example of cofactor operation

- A and B have 4 binary variables.
$-\mathrm{A}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}$
$-\mathrm{B}=\mathrm{x}_{1}$
- Steps: Find $\mathrm{si}^{\mathrm{A}} \supseteq \mathrm{si}^{\mathrm{B}}$ (If satisfied \Rightarrow special variable)
- Apply U(Universal set $(0,1))$ for special variables and
$\operatorname{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$ for others

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

Explanation

Set theory:

$$
\begin{aligned}
& A=X_{1}{ }^{\{1\}} X_{2}{ }^{\{1\}} X_{3}{ }^{\{1\}} X_{4}{ }^{\{0,1\}} \\
& B= \\
& X_{1}{ }^{\{1\}} X_{2}{ }^{\{0,1\}} X_{3}{ }^{\{0,1\}} X_{4}{ }^{\{0,1\}}
\end{aligned}
$$

- Testing the relation $\mathrm{si}^{\mathrm{A}} \supseteq \mathrm{si}^{\mathrm{B}}$ for the variables. $\Rightarrow \mathrm{x}_{1}$ and x_{4} are special variables. \Rightarrow Universal set operator applied to these variables.
- To the rest of the variables the intersection operation is applied. \Rightarrow The result is $x_{2} x_{3}$.
- In K-map apply the intersection operator and remove the special variables.

$$
\begin{gathered}
\text { Exomple Oi } \\
\text { MIulti-Vslued } \\
\text { Function }
\end{gathered}
$$

K-map representation of Consensus

- $A=X^{01234} Y^{01}$
- $B=X^{012} Y^{23}$
- $\mathrm{A} * \mathrm{~B}=$
$\mathrm{X}^{01234} \mathrm{Y}^{01 *} \mathrm{X}^{012} \mathrm{Y}^{23}$
$=X^{012} Y^{0123}$

> Definitions of Complex
> Combinational
> Cube Operations

General Description of Consensus Cube Operation

Complex combinational cube

 operation

 operation}

- The consensus operation on cubes A and B is defined as

$$
A * B= \begin{cases}A \cap B & \text { when distance }(A, B)=0 \\ \varnothing & \text { when distance }(A, B)>1 \\ A{ }_{\text {basic }} & B \text { when distance }(A, B)=1\end{cases}
$$

- where A * ${ }_{\text {basic }} \mathrm{B}=$

$$
\mathrm{x}_{\mathrm{k}+1}{ }^{\mathrm{sk}+1^{\mathrm{A}} \cap \mathrm{sk+1}} \mathrm{~B}^{\mathrm{B}} \ldots \ldots \mathrm{x}_{\mathrm{n}}{ }^{\text {sn } \mathrm{A}^{\mathrm{A}}} \cap \mathrm{sn}^{\mathrm{B}} .
$$

- Set relation: $\mathbf{s i}^{\mathbf{A}} \cap \mathbf{s i}^{\mathbf{B}}=\varnothing$, if satisfied, a special variable
- Active set operation : $\mathbf{s i}^{\mathbf{A}} \cup \mathbf{s i}^{\mathbf{B}}$
- Before set operation : $\mathbf{s i}^{\mathbf{A}} \cap \mathbf{s i}^{\mathbf{B}}$

Complex combinational

cube operation

- Applications of consensus operator:
- For finding prime implicants (Used for twolevel logic minimization),
- three level,
- multilevel minimization,
- and machine learning.

$$
\begin{gathered}
\text { General } \\
\text { Description of } \\
\text { Cofrctor Cube } \\
\text { Operation }
\end{gathered}
$$

Complex combinational cube operation

Cofactor operation of two cubes A and B is

$$
A \left\lvert\, B=\left\{\begin{aligned}
\left.A\right|_{\text {basic }} B \text { when } A \cap B & \neq \varnothing \\
& =\varnothing \text { otherwise }
\end{aligned}\right.\right.
$$

- Set relation for cofactor operation $=\mathbf{s i}^{\mathbf{A}} \supseteq \mathbf{s i}^{\mathbf{B}}$ Active set operator $=\mathrm{U}($ Universal set $(0,1))$ Before set operator $=\mathbf{s i}^{\mathbf{A}} \cap \mathbf{~ s i}^{\mathbf{B}}$
- Application: Used in functional decomposition.

review

Applications of Crosslink

Assume the we have a function that is expressed in SOP form and we need to have it in the ESOP form, then we need to perform a sequential operation on this function which is the so called Crosslink operation.
Suppose it is a function with two cubes:

$$
\mathrm{f}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4)=\overline{\mathrm{X}} \cdot \overline{\mathrm{X} 3}+\mathrm{X} 1 \mathrm{X} 3
$$

first cube (cube A for reference) is $\overline{\mathrm{X}} 1 . \overline{\mathrm{X} 3}$ second cube (cube B for reference) is $\mathrm{X} 1 . \mathrm{X} 3$

Let us see these two cubes on K-map

And we all know that the answer is that we are looking for two cubes as shown down here,
so that our function is to be expressed in the ESOP form as follows: $f=E \odot D$

Cube D

General

$$
\begin{gathered}
\text { Description of } \\
\text { Prime } \\
\text { Operation }
\end{gathered}
$$

Complex combinational cube
 operations

- Prime operation of two cubes A and B is defined as

$$
\mathrm{A}^{\prime} \mathrm{B}=\mathrm{x}_{1}{ }^{\mathrm{s} 1^{\mathrm{A}}} \ldots \mathrm{x}_{\mathrm{k}-1}{ }^{\mathrm{sk}-1^{\mathrm{A}}} \mathrm{x}_{\mathrm{k}} \mathrm{sk}^{\mathrm{A}} \cup \mathrm{sk}^{\mathrm{B}} \mathrm{X}_{\mathrm{k}+1}{ }^{\mathrm{sk}+1^{\mathrm{A}}} \ldots . \mathrm{x}_{\mathrm{n}}^{\mathrm{snA}}
$$

where set relation : $\mathrm{s}_{\mathrm{i}}^{\mathrm{A}} \cap \mathrm{s}_{\mathrm{i}}^{\mathrm{B}} \neq \varnothing$ is applied to true sets and if satisfied active set operation is applied else before set operation is applied.

- Active set operation(act): $\mathrm{s}_{\mathrm{i}}^{\mathrm{A}} \cup \mathrm{s}_{\mathrm{i}}{ }^{\mathrm{B}}$
- Before set operation(bef): $\mathrm{s}_{\mathrm{i}}^{\mathrm{A}}$
- Application: Used in ESOP minimization .

$$
\begin{gathered}
\text { SequIentigl } \\
\text { CDIE } \\
\text { OPEPGiLOLS }
\end{gathered}
$$

Sequential cube operations

- They have three set operations and one set relation.
- All variables whose pair of true sets satisfy a relation are said to be Special Variables.
- Three set operations are called before $(b e f)$,active $(a c t)$ and $\operatorname{after}(a f t)$
- The active set operation is applied on true sets of special variable
- The before set operation to variables before the special variable
- The after set operation to variables after the special variable.
- Every special variable is taken once at a time.

Sequential cube operations

- All sequential cube operations produce \boldsymbol{n} 'resultant cubes, where \boldsymbol{n} is the number of special variables.
- The examples are:
- sharp operation,
-cross link operation.

$$
\begin{gathered}
\text { Examples of } \\
\text { Sequential } \\
\text { Cube } \\
\text { Operations }
\end{gathered}
$$

Example Of
 Binary Function

Let us consider the following example, where the relation operation is $S^{\mathrm{A}} \cap S^{\mathrm{B}}=\varphi$

Cube $A=a^{\{0,1\}} \mathbf{b}^{\{0\}} \mathbf{c}^{\{0\}}$
Cube $B=\mathbf{a}^{\{0,1\}} \mathbf{b}^{\{1\}} \mathbf{c}^{\{0\}}$

$$
\begin{aligned}
& \prod_{\mathbf{a}^{\{0,1\}}} \mathbf{b}^{\{0\}} \quad c^{\{0\}} \\
& \mathbf{a}^{\{0,1\}} \quad b^{\{1\}} \quad c^{\{0\}} \\
& \mathrm{a} \text { is not a special } \\
& \text { variable. }
\end{aligned}
$$

Cubes A and B are of 4 variables

Let us consider the following two cubes,

Cube $\mathrm{A}=\mathrm{x} 1 \times 2 \times 3^{\prime}=$

$$
\mathrm{X}_{1}\{1\} * \mathrm{X}_{2}\{1\} * \mathrm{X}_{3}\{0\} * \mathrm{X}_{4}\{0,1\}
$$

Cube $B=x 1 \times 2^{\prime}=$

$$
\mathrm{X} 1^{\{1\}} \mathrm{X}_{2} 2^{\{0\}} \mathrm{X}^{2}{ }^{\{0,1\}} * \mathrm{X} 4^{\{0,1\}}
$$

These two variables (x_{1} and x_{3}) are the so called special variables, and we find them out by checking the relation between every literal in both cubes for a relation which is for the crosslink (is the intersection between these two variables is empty?).

$$
\begin{aligned}
& \| \quad| | \quad| | \\
& \text { Cube B } \quad \text { x1 } 1^{[1]} \quad x_{2} 2^{[0,1]} \quad x_{3} 3^{[1]} \quad x^{[0,1]}
\end{aligned}
$$

We can see that the intersection is empty for only X1 and X3
therefore they are special variables.

Example of crosslink operation

- A and B has 4 binary variables.
- $\mathrm{A}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime}=$
$\mathrm{X}_{1}{ }^{\{0\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1}$
- $B=x_{1} x_{3}=$
$\mathrm{X}_{1}{ }^{\{1\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{1\}} \mathrm{X}_{4}{ }^{\{0,1\}}$

$X_{3} X_{4}$ $X_{1} X_{2}$	00	01	11	10
00				
01				
11				
10				\cdots

- $\mathrm{A} c \mathrm{~B}=\mathrm{x}_{1} \mathrm{X}_{3}{ }^{\prime} \oplus \mathrm{x}_{1} \mathrm{X}_{3}=$ $\mathrm{X}_{3}{ }^{\oplus} \mathrm{X}_{1}$

Example

- Cubes:
$\mathrm{X}_{1}{ }^{\{0\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}}$
$\mathrm{X}_{1}{ }^{\{1\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{1\}} \mathrm{X}_{4}{ }^{\{0,1\}}$
Set Relation: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}=\varphi$

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$\Rightarrow \mathrm{x}_{1}$ and x_{3} are special variables*
\Rightarrow Act: $\mathrm{si}^{\mathrm{A}} \cup \mathrm{si}^{\mathrm{B}}$, Bef: $\mathrm{si}^{\mathrm{A}}, \mathbf{A f t}: \mathrm{si}^{\mathrm{B}}$
$\Rightarrow X_{1}{ }^{\{0\}} \cup{ }^{\{1\}} X_{2}{ }^{\{0,1\}} X_{3}{ }^{\{0\}} X_{4}{ }^{\{0,1\}}$ and
$X_{1}{ }^{\{1\}} X_{2}{ }^{\{0,1\}} X_{3}{ }^{\{0\}} \cup{ }^{\{1\}} X_{4}{ }^{\{0,1\}}$

- \Rightarrow Two resultant cubes one for each special variable.

$$
\Rightarrow \mathrm{AB}=\mathrm{x}_{3}+\mathrm{x}_{1}
$$

Complex crosslink example

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$X_{2} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01				
11				
10				

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00				
01			+	
11				
10				

- A,B,C,D are 4 cubes
- $\mathrm{F}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C} \oplus \mathrm{D}$
- $\mathrm{F}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{E} \oplus \mathrm{F}$
- $\mathrm{F}=\mathrm{G} \oplus \mathrm{H}$

Example of nondisjoint
 sharp

$\mathrm{X}_{3} X_{4}$	00	01	11	10
$\mathrm{X}_{1} X_{2}$				
00				
01				
11	A		B	
10				

$X_{3} X_{4}$	00	01	11	10
$X_{1} X_{2}$				
00		2		
01				
11				
10		$\times 2$		

- A and B has 4 binary variables.
- $A=X_{3}=x_{1}{ }^{\{0,1\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}}$
- $B=X_{2} X_{4} X_{1}{ }^{\{0,1\}} X_{2}{ }^{\{1\}} X_{3}{ }^{\{0,1\}} X_{4}{ }^{\{1\}}$
- Set relation: $\rceil\left(\mathrm{si}^{\mathrm{A}} \subseteq \mathrm{si}^{\mathrm{B}}\right)$
$-1 . \mathrm{X}_{1}{ }^{\{0,1\}} \mathrm{X}_{2}{ }^{\{0,1\} \mathrm{n}(\rceil\{1\}\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}}$
Act: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$, Bef: si^{A}, Aft: si $^{\mathrm{A}}$
$-2 . \mathrm{x}_{1}{ }^{\{0,1\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\} \mathrm{n}(7\{1\}\}}$
Act: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$, Bef: si^{A},
Aft: si^{A}
- $\mathrm{A} \# \mathrm{~B}=\mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime}+\mathrm{x}_{3}{ }^{\prime} \mathrm{x}_{4}{ }^{\prime}$

Example of disjoint sharp

- A and B has 4 binary variables.
- $\mathrm{A}=\mathrm{x}_{3}=$

$$
\mathrm{X}_{1}{ }^{\{0,1\}} \mathrm{X}_{2}{ }^{\{0,1\}} \mathrm{X}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}}
$$

- $\mathrm{B}=\mathrm{x}_{2} \mathrm{X}_{4}$ $\mathrm{X}_{1}{ }^{\{0,1\}} \mathrm{X}_{2}{ }^{\{1\}} \mathrm{X}_{3}{ }^{\{0,1\}} \mathrm{X}_{4}{ }^{\{1\}}$
- Set relation: $7\left(\mathrm{si}^{\mathrm{A}} \subseteq \mathrm{si}^{\mathrm{B}}\right)$
- $\mathrm{X}_{1}{ }^{\{0,1\} \mathrm{n}\{0,1\}} \mathrm{X}_{2}{ }^{\{0,1\} \mathrm{n}(\{1\}\}}$ $\left.\mathrm{x}_{3}{ }^{\{0\}} \mathrm{X}_{4}{ }^{\{0,1\}} \mathbf{A c t}: \mathrm{si}^{\mathrm{A}} \cap(\rceil \mathrm{si}^{\mathrm{B}}\right)$, Bef: $\mathrm{si}^{\mathrm{A}}, \mathbf{A f t}: \mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$
- $\mathrm{X}_{1}\{0,1\} \mathrm{n}\{0,1\} \mathrm{X}_{2}{ }^{\{0,1\} \mathrm{n}\{1\}}$ $\mathrm{X}_{3}{ }^{\{0\} \mathrm{n}\{0,1\}} \mathrm{X}_{4}{ }^{\{0,1\} \mathrm{n}(\{1\}\}}$
- Act: $\left.\operatorname{si}^{\mathrm{A}} \cap(\rceil \mathrm{si}^{\mathrm{B}}\right)$, Bef: si^{A}, Aft: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$
- $\mathrm{A} \# \mathrm{~dB}=\mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime}+\mathrm{x}_{2} \mathrm{x}_{3}{ }^{\prime} \mathrm{x}_{4}^{\prime}$

$$
\begin{gathered}
\text { Example Oi } \\
\text { MIului-Valued } \\
\text { Functions }
\end{gathered}
$$

Example of crosslink operation

Definitions of

Sequential Cube Operations

General Description of Nondisjoint sharp Operation

Sequential cube operations.

- The nondisjoint sharp operation on cubes A and B $\mathrm{A} \# \mathrm{~B}=\mathrm{A} \quad$ when $\mathrm{A} \cap \mathrm{B} \neq \varnothing$

$$
=\varnothing \quad \text { when } \mathrm{A} \subseteq \mathrm{~B}
$$

$=\mathrm{A} \#_{\text {basic }} \mathrm{B}$ otherwise

- A \# basic $\mathrm{B}=\mathrm{x}_{1}{ }^{\text {s1 }}{ }^{\mathrm{A}} \ldots \mathrm{X}_{\mathrm{k}-1}{ }^{\text {sk-1 }}{ }^{\mathrm{A}} \mathrm{X}_{\mathrm{k}}{ }^{\text {sk }}{ }^{\mathrm{A}} \cap\left(7 \mathrm{sk}^{\mathrm{B}}\right)_{\mathrm{X}_{\mathrm{k}+1}}{ }^{\text {sk+1 }}{ }^{\mathrm{A}} \ldots . \mathrm{X}_{\mathrm{n}}{ }^{\text {sn }}{ }^{\mathrm{A}}$ for such that $\mathrm{k}=1, \ldots . \mathrm{n}$ for which the set relation is true.
- Set relation: $\rceil\left(\mathbf{s i}^{\mathbf{A}} \subseteq \mathbf{s i}^{\mathbf{B}}\right)$.

Active set operation: $\left.\mathbf{s i}^{\mathbf{A}} \cap(\rceil \mathbf{s i}^{\mathbf{B}}\right)$,
After set operation: $\mathbf{s i}^{\mathbf{A}}$,
Before set operation: $\mathbf{s i}^{\mathbf{A}}$

- Used in tautology problem.

General

Description of disjoint sharp operation

Sequential cube operations.

- The disjoint sharp operation on cubes A and B
$\mathrm{A} \# \mathrm{~dB}=\mathrm{A} \quad$ when $\mathrm{A} \cap \mathrm{B} \neq \varnothing$
$=\varnothing \quad$ when $\mathrm{A} \subseteq \mathrm{B}$
$=\mathrm{A} \#_{\text {basic }} \mathrm{B}$ otherwise
- A \#d basic $\mathrm{B}=\mathrm{x}_{1}{ }^{\text {s1 }}{ }^{\mathrm{A}} \ldots \mathrm{X}_{\mathrm{k}-1}{ }^{\text {sk-1 }}{ }^{\mathrm{A}} \mathrm{X}_{\mathrm{k}}{ }^{\text {sk }}{ }^{\mathrm{A}} \cap\left(7 \mathrm{sk}{ }^{\mathrm{B}}{ }^{2} \mathrm{X}_{\mathrm{k}+1}{ }^{\mathrm{sk}+1^{\mathrm{A}}} \ldots . \mathrm{x}_{\mathrm{n}}{ }^{\text {sn }}{ }^{\mathrm{A}}\right.$ for such that $\mathrm{k}=1, \ldots . \mathrm{n}$ for which the set relation is true.
- Set relation: $7\left(\mathrm{si}^{\mathrm{A}} \subseteq \mathrm{si}^{\mathrm{B}}\right)$

Active set operation: $\left.\mathrm{si}^{\mathrm{A}} \cap(\rceil \mathrm{si}^{\mathrm{B}}\right)$,
After set operation: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}$,
Before set operation: si $^{\mathrm{A}}$

- Used in tautology problem, conversions between SOP and ESOP representations

General Description of Crosslink

 Operation
Sequential cube operations.

- Generalized equation of Crosslink operation:

A $\mathrm{B}=\mathrm{X}_{1}{ }^{\mathrm{s} 1}{ }^{\mathrm{B}} \ldots \mathrm{X}_{\mathrm{k}-1}{ }^{\mathrm{sk}-1^{\mathrm{B}}} \mathrm{X}_{\mathrm{k}}{ }^{\mathrm{sk}}{ }^{\mathrm{A}} \cup \mathrm{sk}^{\mathrm{B}} \mathrm{X}_{\mathrm{k}+1}{ }^{\mathrm{sk}+1^{\mathrm{A}}} \ldots . \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{sn}}{ }^{\mathrm{A}}$ where $\mathrm{k}=1, \ldots . \mathrm{n}$ for which the set relation is true.

- Set relation: $\mathrm{si}^{\mathrm{A}} \cap \mathrm{si}^{\mathrm{B}}=\varnothing$,
- Active set operation : $\mathrm{si}^{\mathrm{A}} \cup \mathrm{si}^{\mathrm{B}}$,
- After set operation : si ${ }^{\text {B }}$,
- Before set operation : si ${ }^{\mathrm{A}}$.
- Used in the minimization of logic function on EXOR logic, Generalized Reed-Muller form.

So the solution is to find these two cubes out (Cubes E, D). Let us see how the crosslink operation does that!!!

Here is the K map for the original function again
Here if we think about it, we are looking for literals, in which the intersection of these literals in both cubes is empty, that is

X1 and X3,
Because in the first cube we have $\overline{\mathrm{X} 1}$ and $\overline{\mathrm{X} 3}$ in the 2 nd cube we have X1 \& X3

$$
\begin{gathered}
\text { Summery } \\
\text { of the } \\
\text { Cube Calculus } \\
\text { Operations }
\end{gathered}
$$

Summary of cube

calculus operations

Operation	Notation	Relation	Before	Active	After
Intersection	$A \cap B$	1	$s_{i}^{A} \cap s_{i}^{B}$	-	-
Supercube	$A \cup B$	1	$S_{i}^{A} \cup S_{i}^{B}$	-	-
Prime	A'B	$s_{i}^{A} \cap s_{i}^{\mathrm{B}}+\emptyset$	$\mathrm{g}^{\text {H }}$	$s_{i}^{A} \cup S_{i}^{B}$	-
Consensus		1	$s_{i}^{A} \cap s_{1}^{B}$	$s_{1}^{A} \cup 8_{1}^{B}$	$s_{i}^{A} \cap s_{i}^{B}$
Cofactor	$A b_{\text {bax }} \mathrm{B}$	$\mathrm{si}^{\text {in }}$ S $\mathrm{s}^{\text {B }}$	$S_{i} \cap S_{i}^{\text {B }}$	U	-
Crosslink	AB	$S_{i}^{A} \cap S_{i}^{B}=\emptyset$	$\mathrm{g}^{\text {h }}$	$s_{i}^{A} \cup S_{i}^{\text {B }}$	$\mathrm{S}_{i}^{\text {B }}$
Sharp	$A_{\text {maxi }}{ }^{\text {m }}$	$7\left(\sin ^{\text {A }}\right.$ - $\mathrm{sil}^{\text {i }}$)	$\mathrm{g}^{\text {A }}$		$\mathrm{s}_{1}^{\text {A }}$
Disjoint Sharp	$\mathrm{A} \#_{\text {daxi }}$ B	$7\left(\mathrm{sin}^{\text {A }}\right.$ - $\mathrm{sic}^{\text {i }}$)	$\mathrm{g}_{1}^{\text {A }}$	$\mathrm{s}_{1}^{\mathrm{A}} \mathrm{C}\left(\mathrm{s}_{1}^{\mathrm{B}}\right)$	$s_{i}^{A} \cap s_{i}^{B}$

POSIULODBl
 NOtBtiOn

Positional notation

- Cube operations were broken into several set relations and set operations. \Rightarrow Easy to carry out by hand.
- To Process set operations efficiently by computers, we use positional notation.
- Positional notation : Possible value of a variable is 0 or 1 .
- P valued variable \Rightarrow a string of p bit
- Positional notation of binary literals: $x^{\prime} \Rightarrow x^{\{0\}} \Rightarrow x^{10} \Rightarrow$ $10 \mathrm{x} \Rightarrow \mathrm{x}^{\{1\}} \Rightarrow \mathrm{x}^{01} \Rightarrow 01$, don \uparrow care $\mathrm{x} \Rightarrow \mathrm{x}^{\{0,1\}} \Rightarrow \mathrm{x}^{11} \Rightarrow$ 11 , contradiction $\in \Rightarrow x^{\{\varnothing\}} \Rightarrow x^{00} \Rightarrow 00$

Set operations in positional

notation

- Three basic set operations are executed using bit wise operations in positional notation.
- Set intersection \Rightarrow bitwise AND
- Example $\mathrm{A}=\mathrm{ab} \mathrm{B}=\mathrm{bc}^{\prime} \mathrm{A} \cap \mathrm{B}=\mathrm{abc} c^{\prime}$
- In positional notation: $\mathrm{A}=01-01-11 \mathrm{~B}=11-01-10$

$$
A \cap B=(01 / 11)-(01 / 01)-(11 / 10) \Rightarrow 01-01-10\left(\mathrm{abc}^{\prime}\right)
$$

- Set union \Rightarrow bitwise OR
- Example $\mathrm{A}=\mathrm{ab} \mathrm{B}=\mathrm{bc}^{\prime} \mathrm{A} \cup \mathrm{B}=\mathrm{b}$
- In positional notation: $\mathrm{A}=01-01-11 \mathrm{~B}=11-01-10$

$$
A \cup B=(01 / 11)-(01 / 01)-(11 / 10) \Rightarrow 11-01-11(b)
$$

Positional notation

- Set complement operation \Rightarrow bitwise NOT
- Example: $\mathrm{A}=\mathrm{ab}$ then $\mathrm{A}^{\prime}=(\mathrm{ab})^{\prime}$
- In positional notation: $A=01-01 \Rightarrow A^{\prime}=10-10$
- Example of multi valued variable: $\mathrm{A}=\mathrm{x}\{0,1,2\} \mathrm{B}=\mathrm{x}\{0,2,3\}$ $A \cap B=\{0,2\}, A \cup B=\{0,1,2,3\}$
- In positional notation: $\mathrm{A}=1110, \mathrm{~B}=1011 \mathrm{~A} \cap \mathrm{~B}$
$=1110 / 1011=1010\{0,2\}, A \cup B=1110 / 1011=1111\{0,1,2,3\}$ $A^{\prime}=0001\{3\}, B^{\prime}=0100\{1\}$

Set relations in positional notation

- $1 \Rightarrow$ True and $0 \Rightarrow$ False
- Set relation cannot be done by bit wise operation as it is a function of all bits of operands.
- Set relation is broken into Partial relation and Relation type.
- The partial relation determine whether or not the two literals satisfy the relation locally.
- The relation type determines the method of combining partial relations.
- Relation $(A, B)=\left(\mathrm{a}_{0}{ }^{\prime}+\mathrm{b}_{0}{ }^{\prime}\right) \cdot\left(\mathrm{a}_{1}{ }^{\prime}+\mathrm{b}_{1}{ }^{\prime}\right) \ldots \ldots \ldots \ldots .\left(\mathrm{a}_{\mathrm{n}-1}^{\prime}+\mathrm{b}_{\mathrm{n}-1}^{\prime}\right)$ for crosslink operation \Rightarrow Partial relation $\mathrm{a}_{\mathrm{i}}{ }^{\prime}+\mathrm{b}_{\mathrm{i}}$ 'and relation type is AND.

Table of partial relation

t_{i}	b_{i}	${ }_{\text {A }} \mathrm{C}_{1} \mathrm{~B}_{1}$	TA, c_{i}	$\mathrm{a}_{\mathrm{i}} \mathrm{b}^{\prime}$	${ }_{\text {A }}^{\sim} \mathrm{B}_{i}$	$a_{i}+b_{i}^{\prime}$	$A_{n} B_{i} B^{\prime} D$	$a_{i}+{ }_{1}^{\prime} b_{1}^{\prime}$	$A_{\sim} B_{+}+1$	9, ${ }^{\text {b }}$
0	0	1	0	0	1	1	1	1	0	0
0	1	1	0	0	0	0	1	1	0	0
1	0	0	1	1	1	1	1	1	0	0
1	1	1	0	0	0	0	0	0	1	1

Summary of cube operations in positional notation

Operation	Notation	Relation Relation(Type)	Before	Active	After
Intersection	$A \cap B$	-	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$	-	-
Supercube	$A \cup B$	-	$\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}$	-	-
Prime	A^{\prime} ' ${ }^{\text {a }}$	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}(\mathrm{Or})$	a_{i}	$\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}$	-
Consensus	$\mathrm{A}^{*} \mathrm{baxix}^{\text {B }}$	1	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{i}$	$\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}$	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{i}$
Cofactor	$\mathrm{A} \mathrm{l}_{\text {basix }} \mathrm{B}$	$\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}{ }^{\prime}$ (And)	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{i}$	1	-
Crosslink	AB	$\mathrm{a}_{\mathrm{i}}{ }^{\prime} \mathrm{b}_{\mathrm{i}}{ }^{\prime}($ And $)$	a_{i}	$\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}$	b_{i}
Sharp	A ${ }_{\text {\# }}^{\text {basi }}$ B	$\mathrm{a}_{\mathrm{i}} \mathrm{b}^{\prime}{ }^{\prime}$ (Or)	a_{i}	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}{ }^{\prime}$	a_{i}
Disjoint Sharp	A. $\#_{\text {dbasi }}$ B	$\mathrm{a}_{\mathrm{i}} \mathrm{b}^{\prime}{ }^{\prime}(\mathrm{Or})$	a_{i}	$\mathrm{a}_{\mathrm{i},}{ }^{\prime}{ }^{\prime}$	$\mathrm{a}_{\mathrm{i}} \mathrm{b}_{i}$

Why We Need a
 Cube Calculus Machine?

Why Using Cube Calculus Machine?

- The cube calculus Operations can be implemented on general-purpose computers,
- But in general-purpose computers, the control is located in the program that is stored in the memory.
- This results in a considerable control overhead.
- Since the instructions have to be fetched from the memory, if an algorithm contains loops, the same instruction will be read many times.

Why Using Cube Calculus Machine?

That makes the memory interface the bottleneck of these architectures.

The cube calculus operations involve nested loops, it leads to poor performance on these general-purpose computers.

Sources

Nouraddin Alhagi
Syeda Mohsina
Qihong Chen

