
• 1. What is Evolvable Hardware?

• 2. History and Motivation of Cube Calculus
Machines and Logic Machines

• 3. Evolving in Hardware or Learning in
Hardware?

• 4. Variants of Cube Calculus

• 5. Cube Calculus Machines

• 6. Evaluation of previous Cube Calculus
Machines



Learning in HardwareLearning in Hardware
using Symbolic Methodsusing Symbolic Methods

based on Multiple-Valuedbased on Multiple-Valued
LogicLogic

•This set of slides includes a general information
about learning in hardware and motivation for
building Cube Calculus Machines

•It is not necessary to successfully complete the
project



Real time symbolic learningReal time symbolic learning

• SAT, graph coloring, covering, equation solving in
MV algebras

• Image processing, pattern recognition, speech
processing, language understanding, sensor
integration, WWW technologies, anti-terrorist
biometric technologies, military and aerospace
(Ulug/Bowen, GE - extended cube algebra), DNF
minimization for real time learning, Ventura
Quantum DNF minimization, morphological and
relational algebras, data base algebras.



PlanPlan
• 1. What is evolvable hardware?

• 2. Learning in Hardware not Evolutionary Hardware

• 3. Symbolic Learning in Hardware using MVL

• 4. Cube Calculus (binary, mv, generalized mv, simplified
binary, rough sets)

• 5. Cube Calculus in Hardware (CCM, Decomposition
Machine, Rough Set Machine)

• 6. Cube Calculus in Reconfigurable Hardware
– arbitrary word length

– pipelining and parallelism, scalable

– selecting subset of operation from a repertoire



WHAT ISWHAT IS
EVOLVABLEEVOLVABLE
HARDWARE?HARDWARE?



Demonstration of LearningDemonstration of Learning
Hardware in RoboticsHardware in Robotics

• Learning is done with the human as the feedback loop.

•  The set of sequences is incomplete, so the machine
performs the generalization automatically. Adding or
removing new rules, by the human supervisor or
automatically/randomly, will change the behavior.

•  Mimique the human's behaviors seen by the camera

•  Like the Furby toy, but with real learning.

•  Capable of building its own "world model" and internal
model with unlimited behaviors.



WHAT IS EVOLVABLEWHAT IS EVOLVABLE
HARDWARE?HARDWARE?

• This talk reviews the in the domain of EHW in years 1989 - 1999 and
points out some fundamental open research issues.

•  What Is Evolvable Hardware (EHW)

•  EHW as an Alternative to Electronic Circuit Design

•  EHW as an Adaptive System

•  Other EHW-Related Work

•  Evolvable Hardware versus Learning Hardware

•  Learning Multi-Valued Functions

•  Universal Logic Machine - Current PSU approach to Learning
Hardware

•  Our Proposed Extensions: Learning Finite State Machines.

•  Concluding Remarks



WHAT IS EVOLVABLEWHAT IS EVOLVABLE
HARDWARE ? (HARDWARE ? (contcont))

• There are different views on what EHW is, depending on the purpose
of EHW.

•  EHW can be regarded as “applications of evolutionary techniques to
circuit synthesis." (A. Hirst)

•  EHW is hardware which is capable of on-line adaptation through
reconfiguring its architecture dynamically and autonomously. (T.
Higuchi et al.).

•  EHW is Genetic Algorithm realized in hardware (DeGaris). (Intrinsic
Evolvable Hardware).



LEARNING IS MORE GENERALLEARNING IS MORE GENERAL
THAN EVOLVINGTHAN EVOLVING

• Learning is more general than evolving.

•  Evolving is learning by Nature: blind, random, chaotic.

•  Learning is any kind of behavior that improves something.

•  Learning Hardware is any kind of hardware system that can change
itself and its future behavior dynamically and autonomously by
interacting with its environment.

•  EHW is a child of the marriage between evolutionary computation
techniques and electronic hardware.

•  LH is a child of the marriage of Machine Learning and hardware (so
far, electronic, but see Hanyu et al for DNA and molecular
computing).



EHW AS AN ALTERNATIVE TOEHW AS AN ALTERNATIVE TO
ELECTRONIC CIRCUIT DESIGNELECTRONIC CIRCUIT DESIGN

• Using EAs to design VLSI chips and boards has a 12 year long
history.

•  Used in Digital and Analog design; (mixed?).

•  Few examples:
–  Evolving Hardware Description Language (HDL) programs.

–  Evolving Electronically Programmable Logic Devices (EPLDs).

–  Evolving analog circuits.

–  Unconstrained evolution of an electronic oscillator (Adrian Thompson).

–  Generalized Reed-Muller Logic using GA (Karen Dill).

–  Arbitrary Tree logic networks using GP (Karen Dill).



TWO MAJOR APPROACHESTWO MAJOR APPROACHES

• Early and some of the recent work related to EHW only
dealt with optimization of VLSI circuits, such as cell
placement, logic minimization and compaction of symbolic
layout.

•  Circuit functions were not designed/evolved by EAs.

•  Recent work concentrates on evolving circuit architectures
and thus functions.

• Two major approaches have been used:
–  Indirect Approach,

–  Direct Approach.



INDIRECT APPROACH TO EHWINDIRECT APPROACH TO EHW
CIRCUIT DESIGNCIRCUIT DESIGN

• The indirect approach does not evolve hardware directly, but evolves
an intermediate representation (such as trees) which species hardware
circuits.

•  Evolving digital circuits.
• For example, SFL (Structured Function Description Language)

programs (represented by production trees) can be evolved by a
genetic algorithm. A binary adder which considers all 4-bit numbers
was evolved successfully.

•  Evolving analog circuits.
• For example, Koza ’ s work on evolving a low-pass “brick wall" filter,

an asymmetric bandpass filter, an amplifier, etc. Trees were used to
represent circuits. The results were competitive with human designs.

• href="http://www-cs-faculty.stanford.edu/ koza/#anchor5384423"



DIRECT APPROACH TO EHWDIRECT APPROACH TO EHW
CIRCUIT DESIGN - GATE LEVELCIRCUIT DESIGN - GATE LEVEL

• The direct approach evolves hardware circuit's architecture bits
directly. It works well only with reconfigurable hardware, such as

• FPGA (field programmable gate array) from "http://www.xilinx.com/"
(Xilinx).

•  The gate level evolution implies that the “atomic" hardware
functional units are logical gates like AND , OR , and NOT . The
evolution is used to search for different combinations of these gates.

•  Typical examples include XOR, counters, FSMs (Finite State
Machines), multiplexors, and an electronic oscillator.

•  One argument for the direct approach is to exploit hardware resources
by unconstrained hardware evolution.



DIRECT APPROACH TO EHWDIRECT APPROACH TO EHW
CIRCUIT DESIGN -CIRCUIT DESIGN -

FUNCTIONAL LEVELFUNCTIONAL LEVEL

• The gate level evolution runs into the scalability problem
quickly.

•  The function level evolution uses high-level functions such
as addition, multiplication, sine, cosine, etc., and thus is
much more powerful.

•  Typical examples: two-spiral, Iris, FSMs, image rotation.

•  The work is better viewed as an attempt towards adaptive
hardware , rather than as a design alternative.



ADVANTAGES OFADVANTAGES OF
EVOLUTIONARY DESIGNEVOLUTIONARY DESIGN

• Explores a larger design space and thus may be able to discover novel
designs.

•  Does not assume a priori knowledge and thus can be applied to
various domains.

•  Does not require exact specification and thus can design complex
systems which cannot be handled by conventional specification-based
design approach.

•  However, constraints and special requirements could be imposed on
the evolution if necessary through the fitness function and
chromosome representation.

•  Some analog circuits might be too difficult (or costly) to design by
human experts.



SCALABILITY OF EHWSCALABILITY OF EHW

• Scalability of the algorithm: Time complexity
of the EA for EHW?

•  Scalability of the representation: Size of
chromosomes vs. Size of EHW?

•  Time is more crucial since the size of
chromosome (space) is usually polynomial in
the size of EHW circuits.



WILL ELECTRONIC SPEED SOLVEWILL ELECTRONIC SPEED SOLVE
THE SCALABILITY PROBLEM?THE SCALABILITY PROBLEM?

•  There have been some expectations that the speed of simulated
evolution would not be a problem in a few years as faster VLSI chips
come out.

•  This statement can be misleading. Electronic speed is not a solution
to the scalability problem. The scalability problem has to be addressed
at the fundamental level.

•  The importance of the time complexity issue can be illustrated by an
artificial example. If the time complexity of simulated evolution is O
(2 n ) , where n is the size of EHW, then an EHW with 10 components
would need 2 10 = 1024 nanoseconds ( ¡ 10



CIRCUIT VERIFICATION/TESTCIRCUIT VERIFICATION/TEST
AND FITNESS FUNCTIONAND FITNESS FUNCTION

• How to verify the correctness of EHW? How to find a fitness function
which guarantee the correctness of EHW?

•  For example, if all 4-bit numbers have been correctly added, would
all 5-bit, 6-bit, etc., numbers be added correctly by the same circuit?

•  Exploiting hardware resources is attractive. Has an EHW exploit
something totally irrelevant, such as room temperature or minor Earth
movement?

•  Is it practical to test all possible situations in which an EHW might be
used?

•  How robust is EHW to minor environmental changes? Does it
degrade gracefully?

•  When to stop simulated evolution? How to know whether a correct
circuit has been evolved?



EHW AS AN ADAPTIVE SYSTEMEHW AS AN ADAPTIVE SYSTEM

•  Current work on adaptive EHW can be classified
into two major categories:
–  EHW controllers.

–  EHW recognizers and classifiers.



EHW CONTROLLERSEHW CONTROLLERS
• A number of control tasks can be performed by

EHW, e.g., ATM control and robot control among
others.

• Some examples:
–  Evolving an artificial ant to follow the John Muir Trail

in simulation.

–  Evolving a wall following robot in a simulated
environment, “virtual reality".
"http://www.cogs.susx.ac.uk/users/adrianth/" .

–  Evolving an ATM traffic shaper.

–  Evolving an adaptive equalizer.



EHW RECOGNIZERS ANDEHW RECOGNIZERS AND
CLASSIFIERSCLASSIFIERS

• Evolving FPGA to perform learning tasks, such as
letter recognition, the comparator in a V-shape ditch
tracer, two-spiral, Iris, FSMs, etc.

•  Unlike most other studies, generalization is
explicitly emphasized here.

•  A complexity (regularization) term was included in
the fitness evaluation function.



OTHER EHW-RELATED WORKOTHER EHW-RELATED WORK

• Self-reproduction and self-repair hardware at Logic Systems
Laboratory (LSL), Computer Science Department, Swiss
Federal Institute of Technology - Lausanne. http://lslsun5.ep
.ch/" .

•  Artificial brains.

•  CAM-BRAIN (CBM) from ATR's Department 6
(Evolutionary Systems) "http://www.hip.atr.co.jp/
x/ATRCAM8" .

•  Artificial Brain Systems at RIKEN. (No hardware
implementation.)
"http://www.bip.riken.go.jp/absl/Welcome.html" .



SOME CHALLENGES TOSOME CHALLENGES TO
ADAPTIVE EHWADAPTIVE EHW

• Scalability: Efficiency of simulated evolution.

•  Generalization: Dealing with new environments.

•  Disaster prevention in fitness evaluation during on-
line adaptation.

•  On-line adaptation: incremental evolution/learning.



A BEHAVIORAL VIEWA BEHAVIORAL VIEW
TOWARDS EHWTOWARDS EHW

• What is being evolved? A circuit or the circuit's behaviors?
In other words, what is actually being evaluated by a fitness
function?

•  Is it genetic evolution or behavioral evolution?

•  Claim: It is EHW behavior, not its circuitry, that is being
evolved.

• Some consequences of taking the behavioral view towards
EHW:
– 1. The environment is crucial. Generalization should be discussed

with respect to environments.

– 2. The role of crossover needs to be re-evaluated.



CONCLUDING REMARKS ONCONCLUDING REMARKS ON
EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• Population-based learning (simulated evolution) is good at following
slow environmental changes, but not at real-time on-line adaptation.

• Individual learning should be introduced.

•  There is some existing work on EANNs and GP which may be useful
for function-level EHW, e.g., mutations and other techniques for
maintaining behavioral links between parents and their offspring.

•  Co-evolution is a very promising approach to deal with the problem
of fitness evaluation. That is, co-evolution can be used to generate
changing and challenging environments.



FURTHER REMARKSFURTHER REMARKS
• Evolutionary design of digital circuits would not be

able to compete with the conventional approach.

•  Evolutionary design of analog circuits needs to
address the issues of circuit verification and
robustness.

•  Adaptive EHW has most potentials, but would need
individual learning to implement on-line learning.

•  The most profitable application domains for EHW
would be those which are very complex but highly
specialized.



WWW RESOURCESWWW RESOURCES

• The following papers are available on-line.

• X. Yao and T. Higuchi, “Promises and
Challenges of Evolvable Hardware,"
Submitted to ICES'96. (Available as
"ftp://www.cs.adfa.oz.au/pub/xin/ices96-
challenge.ps.gz" .



History andHistory and
Motivation for CubeMotivation for Cube

Calculus Machines andCalculus Machines and
Logic MachinesLogic Machines



History and MotivationHistory and Motivation
• ICCAD 85 - our paper about hardware Logic Design

Machine that was solving the following problems:
– satisfiability

– graph coloring

– set covering

– tautology

• ISMVL 1992 - our paper that generalized cube
calculus for MVL and showed many other
operations and applications as well. Reconfigurable

• ISCAS 92 and about 6 other conferences - variants

• ULSI 97 - ESOP and SAT - reconfigurable



Tabu Tabu search for learning insearch for learning in
reconfigurable reconfigurable hardwarehardware



Student of Abu-Student of Abu-MostafaMostafa



• We compare use of a genetic algorithm and the reactive tabu search for fitness

• optimization. On a 2-bit adder design problem, the reactive tabu search performs significantly better for a similar execution time.

• 1 Introduction

• The process of designing and implementing an ASIC

• is typically a long and expensive one. Field Pro-

• grammable Gate Arrays (FPGAs) are available as an

• alternative to reduce the concept-to-product time and

• the cost of making modications. Recent FPGAs have

• It is this unrestricted model that interests us. Part

• of the advantage of EH is the removal of conventional

• digital design constraints. We do not wish to arbi-

• trarily add new ones by imposing our own structure

• on the hardware device. Unfortunately this presents

• problems for a genetic representation of the model.

• Without some such structure, genetic operators have

• little meaning. We are therefore interested in other

• optimization techniques for maximizing a tness crite-

• rion.

• Taking a cue from Perkowski et al. [10], we refer to this

• hardware adaptation as learning hardware, withEHas

• a special case. We compare a genetic algorithm with

• a non-genetic discrete optimization algorithm (the re-

• active tabu search) on adaptive arithmetic circuit de-

• sign. Section 2 introduces the problem and the two

• optimization algorithms. The physical system imple-

• mentation is described in section 3, and experimental

• results are given in section 4.





Cube Algebra in softwareCube Algebra in software



Mapping switch-level simulation onto gate-level hardware acceleratorsMapping switch-level simulation onto gate-level hardware accelerators
Alok JainAlok Jain

Dept of ECEDept of ECE
Carnegie MelCarnegie Mel l on l on

Pittsburgh, PA15213Pittsburgh, PA15213

RandalRandal E. Bryant E. Bryant

School of ComputerSchool of Computer Sci ence Sci ence
CarCar negi negi e e Mel Mel l on l on

Pittsburgh, PA15213Pittsburgh, PA15213

Cube algebra in hardwareCube algebra in hardware
acceleratoraccelerator



Generalized Cube Calculus forGeneralized Cube Calculus for
Data Bases and Data MiningData Bases and Data Mining



Data miningData mining

Cubical model but still for
software applications



Cube Calculus for Data MiningCube Calculus for Data Mining

This is still software engine, not hardware….



D algorithm D algorithm reconfigurable reconfigurable hardwarehardware



Tautology and Tautology and Binate Binate CoveringCovering



Satisfiability ReconfigurableSatisfiability Reconfigurable



MV cubes used in MVSIS of MV cubes used in MVSIS of BraytonBrayton

MVSIS group

     Minxi Gao

     Yinghua Li

     Jie-Hong Jiang

     Yunjian Jiang

     Alan Mishchenko, (PSU, Portland OR)

     Subarnareka Sinha

     Tiziano Villa

     Robert K. Brayton

    Publications on MVSIS



EVOLVABLEEVOLVABLE
HARDWARE ORHARDWARE OR

LEARNINGLEARNING
HARDWARE?HARDWARE?

• Evolvable Hardware is Genetic Algorithm (GA) plus
reconfigurable hardware.

• One may ask: "Why Genetic Algorithm"?

• We question the usefulness of GA as a sole learning method
to reconfigure binary FPGAs.



EVOLVABLE HARDWARE OREVOLVABLE HARDWARE OR
LEARNING HARDWARE?LEARNING HARDWARE?

• We propose the "Learning Hardware" approach.

• Creating a sequential/combinational network
based on feedback from the environment (for
instance, positive and negative examples from the
trainer), and realizing this network in an array of
Field Programmable Gate Arrays (FPGAs).



Symbolic Learning fromSymbolic Learning from
binary and MVL databinary and MVL data

• DNF minimization

• Problems reducible to exorlink (ESOP, etc)

• Factorization, problems reducible to covering and binate covering

• Problems reducible to graph coloring

• Problems reducible to maximum clique (robotics, image
processing)

• Constraints solving.

• Finite State Machine (FSM) minimization.

• FSM assignment and encoding

• Functional decomposition of multi-valued logic functions and
relations



LEARNING ON ALEARNING ON A
HIGHER LEVELHIGHER LEVEL

•  Learning on the level of constraints acquisition and functional
decomposition rather than on the low level of programming
binary switches.

•  Occam's Razor learning that allows for generalization and
discovery.

•  Fast operations on complex logic expressions and solving NP-
complete problems such as satisfiability .

•  Algorithms realized in hardware to obtain the necessary speed-
ups.

•  Fast prototyping tool, the DEC-PERLE-1 board based on an
array of Xilinx FPGAs.

• Now we have better boards - Dr. Greenwood



SOFT COMPUTING AND MACHINESOFT COMPUTING AND MACHINE
LEARNING VERSUSLEARNING VERSUS

HARDWARE DESIGNHARDWARE DESIGN
• Artificial Neural Nets (ANNs), Cellular Neural Nets (CNN), Fuzzy

Logic, Rough Sets, Genetic Algorithms (GA), Genetic and
Evolutionary Programming, Artificial Life, solving problems by
analogy to Nature, decision making, knowledge acquisition, new
approaches to intelligent robotics.

•  Learning, adapting, modifying, evolving or emerging.

•  Mixed approaches.

•  The computer is taught on examples rather than completely
programmed (instructed) what to do.

•  Machine Learning becomes a new and most general system design
paradigm unifying these previously disconnected research areas.

•  It starts to become a new hardware construction paradigm as well.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• DeGaris - Evolvable Hardware is realization of genetic
algorithm (GA) in reconfigurable hardware.

•  Brain Builder CBM (DeGaris), ROBOKONEKO.

•  Neural Nets PLUS Genetic Algorithm.

•  The Genetic Algorithm is a simple and practically blind
mechanism of Nature.

•  It is easily realizable in hardware.

•  Although it is relatively easy to do crossover and mutation
in hardware, the fitness function evaluation is difficult.



UNIVERSAL LOGIC MACHINEUNIVERSAL LOGIC MACHINE

• Started in Poland, 1977. Logic Design Machine. (TTL logic
model):

• Satisfiability, Petrick Function (ICCAD'85).
•  Tsutomu Sasao, 1985: Tautology Engine in EPLDs

(ICCD'85).
•  Cube Calculus Machine, since 1990. (realization in

FPGAs). (Sendai'92).
•  Decomposition Machine, since 1997, (DEC-PERLE-1),

(Lousanne'98, ICCD'98, Sendai'99).
•  Temporal Constraints Machine - new ideas presented here

for the rst time (reduce to Satisfiability, Tautology, Decision
Functions, and Boolean/Multi-Valued Logic Equations.



LOGIC ALGORITHMS INLOGIC ALGORITHMS IN
HARDWAREHARDWARE

• Logic algorithms draw upon human knowledge.

•  Logic algorithms are optimal and mathematically sophisticated.

•  Logic algorithms lead to high quality learning results:
– knowledge generalization,

– discovery,

– no overfitting,

– small learning errors (Ross, Abu Mostafa, DFC, COLT).

•  Their software realizations use very complex data structures and
controls.

•  It is difficult to realize them in hardware.



LEARNING HARDWARELEARNING HARDWARE
• Learning understood very broadly, as any mechanism that

leads to the improvement of operation.

•  Evolution-based learning is thus included in it.

•  Combinational or sequential network is constructed that
stores the knowledge acquired in the learning phase.

•  The learned network is next run on old or new data.

•  The responses may be correct or erroneous. The network's
behavior is then evaluated by some fitness (cost) functions
and the learning and running phases are alternating.



WHY TO USE HARDWAREWHY TO USE HARDWARE
INSTEAD OF SOFTWARE?INSTEAD OF SOFTWARE?

• Supervised inductive learning algorithms require fast operations on
complex logic expressions and solving some NP-complete problems.

•  Satisfiability, Tautology, Solving Boolean Equations, Graph
Coloring, Set Covering, Maximum Cliques.

•  These algorithms should be realized in hardware to obtain the
necessary speed-ups.

•  Fast prototyping tool, DEC-PERLE-1 board is based on an array of
Xilinx FPGAs.

•  We are developing virtual processors that accelerate the design and
optimization of decomposed networks of arbitrary logic blocks.



EVOLVING IN HARDWARE VERSUSEVOLVING IN HARDWARE VERSUS
LEARNING IN HARDWARELEARNING IN HARDWARE

• Soft Computing: Artificial Neural Nets (ANNs), Cellular
Neural Nets (CNN), Fuzzy Logic, Rough Sets, Genetic
Algorithms (GA), Genetic and Evolutionary Programming,
Artificial Life, Solving Problems by Analogy to Nature,
decision making, knowledge acquisition, new approaches to
intelligent robotics (Brooks).

•  Learning, adapting, modifying, evolving or emerging.

•  Mixed approaches combine elements of these areas with
the goal of solving very complex and poorly defined
problems that could not be tackled by previous, analytic
models.



EVOLVING IN HARDWARE VERSUSEVOLVING IN HARDWARE VERSUS
LEARNING INLEARNING IN

HARDWARE (HARDWARE (contcont))

• What is common to all these approaches is that they
propose a way of automatic learning by the system.

•  The computer is taught on examples rather
completely programmed (instructed) what to do.

•  Machine Learning (ML) becomes then now a new
and most general system design paradigm unifying
many previously disconnected research areas.

•  ML starts to become a new hardware construction
paradigm as well.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE
VERSUS LOGIC METHODS.VERSUS LOGIC METHODS.

• Evolvable Hardware (EHW) (De Garis, Higuchi) is a realization of
genetic algorithm (GA) in reconfigurable hardware.

•  Our approach of Universal Logic Machine (ICCAD '85, Sendai '92,
Jozwiak'98), proposes to build a learning machine based on logic
principles .

•  Constructive Induction (Michalski) and Rough Set Theory (Pawlak).

•  Genetic Algorithm is a very simple and practically blind mechanism
of Nature, it can be easily realizable in hardware.

•  We do not believe that this mechanism alone cannot produce good
results.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE
VERSUS LOGIC METHODS.VERSUS LOGIC METHODS.

• TRADE-OFFS

•  The logic algorithms that use previous human knowledge are optimal
and mathematically sophisticated. They lead to high quality learning
results.

•  Their software realizations use so complex data structures and
controls that it is very difficult to realize them in hardware.

•  Software/hardware realizations may suffer from the consequences of
the Amdahl's Law.

•  Interesting software-hardware design trade-offs must be resolved to
realize optimally the learning algorithms based on logic.



LEARNING HARDWARELEARNING HARDWARE

• "Learning Hardware" is any mechanism that leads to the improvement
of operation, evolution-based learning is thus included.

•  The process of learning some kind of network. It stores the
knowledge acquired in the learning phase (the network can become
equivalent to a state machine or fuzzy automaton by adding some
discrete or continuous memory elements).

•  The learned network is next run (executed, evaluated, etc.) for old or
new data given to it, thus producing its responses - expected
behaviors(decisions, controls) in unfamiliar situations (new data sets).

•  The responses may be correct or erroneous, the network's behavior is
then evaluated by some fitness (cost) functions and the learning and
running phases are interspersed.



TWO PHASES OF LEARNING INTWO PHASES OF LEARNING IN
HARDWAREHARDWARE

• The phase of learning , which is, constructing and tuning the
network.

•  The phase of acting . Using knowledge, running the network for
data sets.

•  The first stage could be compared to the entire process of
conceptualizing, designing, and optimizing a computer, and the
second stage to using this computer to perform calculations.

•  You cannot redesign standard computer hardware, however, when it
cannot solve the problem correctly.

•  The Learning Hardware will redesign itself automatically using
new learning examples given to it.



Logic Logic rather than evolutionaryrather than evolutionary
methods for learningmethods for learning

• Michie makes distinction between black-box and knowledge-oriented
concept learning systems by introducing concepts of weak and strong
criteria.

•  The system satisfies a weak criterium if it uses sample data to
generate an updated basis for improved performance on subsequent
data.

•  A strong criterion is satisfied if the system communicates concepts
learned in symbolic form.

•  ANNs satisfy only the weak criterium while our approach satisfies
the strong criterium. Our approach operates on higher and more
natural symbolic representation levels.



Logic rather thanLogic rather than
evolutionary methods forevolutionary methods for

learning. IIlearning. II

• The built-in mathematical optimization techniques
(such as graph coloring or satisfiability) support the
Occam's Razor Principle.

•  Solutions are provably good in the sense of
Computational Learning Theory (COLT).



Importance of FunctionalImportance of Functional
DecompositionDecomposition

• Functional Decomposition is used in many applications:
FPGA mapping, custom VLSI design, regular arrays,
Machine Learning, Data Mining and Knowledge Discovery
in Data Bases (KDD).

•  Exact decomposition programs are slow.

•  Approximate programs may give inferior quality solutions.

•  How to create a decomposer that will be both effective and
efficient ?.

•  ANSWER: Software/Hardware Co-Design.

Learning in real time!



We do not like GeneticWe do not like Genetic
Algorithms. Any Discussions?Algorithms. Any Discussions?

• In our experience, especially poor results on
logic approaches are obtained using the
genetic algorithms.

•  The same was true based on literature.

•  In our approach we want to make use of this
accumulated human experience, rather than to
"reinvent" algorithms using GA.



The Input Language toThe Input Language to
Represent the Learning DataRepresent the Learning Data

• Table 1: Multi-Valued multi-output (combinational)
relation in tabular form.



DATA MINING BYDATA MINING BY
CONSTRUCTIVE INDUCTIONCONSTRUCTIVE INDUCTION

MACHINESMACHINES

• "Learning Hardware" approach involves creating a computational network based on
feedback from the environment and realizing this network in an array of Field
Programmable Gate Arrays (FPGAs).

•  Feedback, is for instance by positive and negative examples from the trainer.

•  Environment can be the trainer.

•  Computational networks can be built based on incremental supervised learning
(Neural Net training) or global construction (Decision Tree design).

•  Here we advocate the approach to Learning Hardware based on Constructive
Induction methods of Machine Learning (ML) using multi-valued functions.

•  This is contrasted with the Evolvable Hardware (EHW) approach in which
learning/evolution is based on the genetic algorithm only .



Project “Logic Machine”Project “Logic Machine”

� All these projects require logic design

� Systolic or pipelined or cellular machines

� FPGA realization (Xilinx, Altera,Cypress)

� VHDL or high-level tools (Summit or Renoir)

� Cube Calculus Machine

� Decomposition Machine

� Satisfiability-ESOP minimization Machine

� Rough Set Machine



Project 1:Project 1:
Universal Logic MachineUniversal Logic Machine

!Combinational problems reduced to simple combinational
problems such as graph coloring, set covering, binate
covering, clique partitioning, satisfiability or multi-valued
relation/function manipulation

! Cube Calculus Machine (CCM) operates on multiple-
valued cubes (terms of MV literals).

!First variant uses two FPGA 3090 chips and second the
DEC-PERLE-1 board with 23 chips

!General Special-Purpose computer for Cube Calculus



Universal Logic MachineUniversal Logic Machine

!Combinational problems reduced to simple combinational
problems such as graph coloring, set covering, binate
covering, clique partitioning, satisfiability or multi-valued
relation/function manipulation

! Cube Calculus Machine (CCM) operates on multiple-
valued cubes (terms of MV literals).

!First variant uses two FPGA 3090 chips and second the
DEC-PERLE-1 board with 23 chips

!General Special-Purpose computer for Cube Calculus

! Synthesis and Decision problems reduced to NP-hard
combinational problems



Universal Logic MachineUniversal Logic Machine

!Michie makes distinction between black-box and
knowledge-oriented learning systems

!Concepts of  “weak” and “strong” criteria

!“The system satisfies a weak criterium if it uses data to
generate an updated basis for improved performance on
subsequent data” (Neural, Genetic)

! Phase of learning (construction, synthesis)

! Phase of acting (function evaluation, state machine
operation)

!You cannot redesign standard computer hardware when it
cannot solve the problem correctly.

!The Learning Hardware redesigns itself using new learning
examples given to it



Universal Logic MachineUniversal Logic Machine
!A strong criterium is satisfied if the system communicates in

symbolic form concepts that it learned

!Learning on symbolic level is the first main point of our approach,
learning on the level of logic gates is the second

!Our approach is based on decomposition of relations and functions
and on synthesis of non-deterministic machines from declarative
specifications

!“Do-not-knows” become “don’t-cares” for logic synthesis

!Constructive Induction (Michalski), Rough Set Theory (Pawlak),
Decision Trees (Quinlan), Decision Diagrams, Disjunctive Normal
Forms.

!Occam’s Razor Principle



!The high quality of decompositional techniques in
Machine Learning, Data Mining and Knowledge
Discovery areas was demonstrated by several authors;
Ross (Wright Labs),Bohanec, Bratko/Zupan,
Perkowski/Grygiel,Perkowski/Luba/Sadowska, Jozwiak,
Luba, Goldman, Axtel.

!Small learning errors. Natural problem representation

!We compared the same problems using several methods:
decomposition, decision trees, neural nets, and genetic
algorithms

!Decomposition is clearly the winner but it is slow because
the NP-complete problem of graph creation and coloring is
repeated very many times.



PLAN OF EVOLVABLE ANDPLAN OF EVOLVABLE AND
LEARNING HARDWARE  LECTURESLEARNING HARDWARE  LECTURES

• Our hardware : the DEC-PERLE-1 board.
– Programming/designing environment for DEC-PERLE/XILINX.

– Two different concepts of designing Learning Hardware using the
DEC-PERLE-1 board.

• Compare logic versus ANN and GA approaches to learning.

• Introduce the concept of Learning Hardware

• Methods of   knowledge representation  in the Universal Logic
Machine (ULM):

– variants of Cube Calculus.

• A general-purpose computer with instructions specialized to operate
on logic data: Cube Calculus Machine.

– Variants of cube calculus - arithmetics for combinatorial problems

– Our approach to Cube Calculus Machine

• A processor for only one application: Curtis Decomposition
Machine.

We are
here



   CUBE CUBE
CALCULUS CALCULUS andand

otherother
representationsrepresentations



STANDARD BINARY CUBESTANDARD BINARY CUBE
CALCULUSCALCULUS

• Represents product terms as cubes where the state of each input
variable is specified by a symbol:
– positive (1),

–  negative (0),

–  non-existing (a don't care) (X),

–  or contradictory (epsilon).

• Each of these symbols is encoded in   positional notation  with two
bits as follows: 1 = 01, 0 = 10, X = 11, epsilon = 00.

• Positional notation for cube 0X1 is 10-11-01.

• Each position represents a state of the variable by the presence of
"one" in it: left bit - value 0, right bit - value 1.

• This encoding presents simple reduction to   set-theoretical
representations



STANDARD BINARY CUBESTANDARD BINARY CUBE
CALCULUSCALCULUS

• A cube can represent :
– a product, a sum,

– a set of symmetry coefficients of a symmetric function,

– a spectrum of the function,

–  or another piece of data on which some symbol-manipulation (usually set-theoretical)
operations are executed.

• Usually the cube corresponds to a product term of literals.

• For instance, assume the following order of binary variables:  age ,  sex  and
color_of_hair. Assume also that the discretization of variable age is:age = 0 for
person's age < 18 and age = 1 otherwise

• Men are encoded by value 0 of attribute sex and women by value 1.

• color_of_hair is 0 for black and 1 for blond.

• A blond woman of age 19 is denoted by 110  and a black-hair seven-years old
person of unknown sex is described by cube 0X1.

• Cube XXX is the set of all possible people for the selected set of attribute variables
and their discretized values.



STANDARD BINARY CUBESTANDARD BINARY CUBE
CALCULUS (3)CALCULUS (3)

• Two-dimensional representation is just a set of cubes where the
connecting operator is implicitly understood as:
– OR for SOP;

– EXOR for ESOP;

– concatenation for a spectrum,

– or other.

• For instance, assuming each cube corresponding to AND operator and
the OR being the connecting operator;
–  the list  {0X1,110} is the SOP which represents the above mentioned two

people (or a set of all people with these properties).

• Multi-valued and integer data can be encoded with binary strings in
this representation,
– so that next all operations are executed in binary (we use this model in the

decomposition machine)



STANDARD BINARY CUBESTANDARD BINARY CUBE
CALCULUS (4)CALCULUS (4)

• For instance, if there were three age categories, young,
medium and old, they can be encoded as values 0, 1 and 2
of the ternary variable age, respectively.

• Variable age could be next represented in hardware as pair
of variables age_1 and age_2, where

              0 = 00, 1 = 01, 2 = 10,

• thus encoding:
young  =  NOT{age_1}  NOT{age_2},

medium  = NOT{age_1} {age_2},

old = age_1 NOT{age_2}.



MULTI-VALUED CUBEMULTI-VALUED CUBE
CALCULUS (MVCC)CALCULUS (MVCC)

• A superset of CC.

• It represents product terms as cubes where each input
variable can have a  subset  of a finite set of all possible
values that this variable can take.

• Each element of the set is represented by a single bit,  which
makes this representation not efficient for large sets of
values.

• In the above example we could have for instance a 5-valued
variable  age  for five age categories, and a quaternary
variable  color_of_hair

• Each position of a variable corresponds to its possible value.



MULTI-VALUED CUBE CALCULUS (MVCC)MULTI-VALUED CUBE CALCULUS (MVCC)

• For instance, 10000-10-0100 describes a 7-year old boy with black
hair

• This is an example of a minterm cube, i.e. with single values in each
variable.

• 01100-11-1100 describes group G_1 of people, men and women, that
are either in second or in third age category and have either blond or
black hair.

• This is an example of a cube that is not a minterm.

• 100000-00-1000 describes a first-category-of-age person with blond
hair who has some conflicting information in  sex  attribute, for
instance a missing value (this is also how contradictions are signalized
during cube calculus calculations).

• The hardware operations in MVCC are done directly on such MV
variable cubes so that the separate encoding to binary variables is not
necessary.



GENERALIZED MV CUBEGENERALIZED MV CUBE
CALCULUSCALCULUS

• A superset of MVCC.
– Each  output  variable  can be also a subset of values.

– Such cubes can be directly used to represent MV
relations, as in Table 2

• Its operations are more general than MVCC,
because more interpretations can be given to cubes

• This calculus has more descriptive power, but the
respective hardware processors are much more
complicated.



SIMPLIFIED BINARY CUBESIMPLIFIED BINARY CUBE
CALCULUSCALCULUS

• A subset of CC. It operates only on  minterms .

• It has application in decomposition of functions.
Minterms can be of different dimensions.

• The hardware is much simplified: operations are
only set-theoretical.

• This is  the simpliest virtual machine  realized by
us, so larger data can be processed by it because
more of a machine can be fit to the limited FPGA
Array resources of DEC-PERLE-1.



SIMPLIFIED MV CUBESIMPLIFIED MV CUBE
CALCULUSCALCULUS

• Cubes where for every input variable either
–   only a single value  of its possible values is selected (which is denoted by a binary

code (such as a byte) of a symbol corresponding to this value),

– the variable is missing (which is denoted by a selected symbol, X),

– or the variable is contradictory (another symbol, emptyset).

• Used for Rough Sets (Pawlak) and variable-valued logic (Michalski).

• For instance, assuming 10 age categories,
– 0 = 0 - 10 years,

– 1 = 10 - 19 years,

– 2 = 20 - 29 years, etc,

– and 3 hair categories: 0 = blond, 1 = black, 2 = red,

– the 7-year old boy with black hair is described as 0-0-1,

–  the 18-year old girl with black hair is described as 1-1-1,

– the 28-year old woman with red hair is described as 2-1-2, and

– a set of all people with red hair is X-X-2



SIMPLIFIED MV CUBESIMPLIFIED MV CUBE
CALCULUSCALCULUS

• There is no way now to describe in one cube people
below 19 with red or black hair, which was possible in
MVCC or GMVCC.

• This simplification of the language brings however big
speedup of algorithms and storage reduction when
applied for data with many values of attributes.

• The control of algorithms becomes more complicated,
while the data path is simplified.



SPECTRALSPECTRAL
REPRESENTATIONSREPRESENTATIONS

• Examples: Reed-Muller FPRM and GRM spectra, Walsh spectrum,
various orthogonal spectra.

• These representations represent function as a sequence of spectral
coefficients or selected coefficient values with their numbers.

• Some spectral representations are useful to represent data for genetic
algorithms: the sequence of spectral coefficients is a chromosome.

• For instance, in the Fixed-Polarity Reed-Muller (FPRM) canonical
AND/EXOR forms for n variables, every variable can have two
polarities, 0 and 1.

• Thus there are 2n different polarities for a function and the GA
algorithm has to search for the polarity that has the minimum number
of ones in the chromosome.



SPECTRALSPECTRAL
REPRESENTATIONSREPRESENTATIONS

• This way, every solution is correct, and the fitness function is used
only to evaluate the cost of the design (100% correctness of the circuit
is in general very difficult to achieve in GA.

• Therefore our approaches to logic synthesis based on GA are to  have
a representation that provides you with 100% correctness  and
have the GA search only for net minimization.

• This approach involves however a more difficult fitness function to be
calculated in hardware than the pure GA or Genetic Programming
approaches.

• Similarly, the other AND/EXOR canonical form called the
Generalized Reed-Muller form (GRM) has n 2{n-1}  binary
coefficients, so there are  2{n  2^{n-1}  various GRM forms.



SPECTRALSPECTRAL
REPRESENTATIONSREPRESENTATIONS

• Because there are more GRM forms, it is more
probable to find a shorter form among them than
among the FPRM forms.

• But the chromosomes are much longer and the
evaluation is more difficult.

• This kind of trade-offs is quite common in spectral
representations.

• Spectral methods allow for high degree of
parallelism.



ROUGH PARTITIONS ANDROUGH PARTITIONS AND
LABELED ROUGH PARTITIONSLABELED ROUGH PARTITIONS

• Rough Partitions (RP) represented as Bit Sets (Luba).
• This representation stores the two-dimensional table column-wise,

and not row-wise as MVCC does.
• In r-partition every variable  (a column of a table) induces a partition

of the set of rows (cubes)  to blocks, one block for each value the
variable can take  (there are two blocks for a binary variable, and  k
blocks for  a  k-valued variable).

• Rough Partitions are a good  idea but they don't really form a
representation of a function.

• Since the values of a variable are not stored together with partition
blocks, the essential information on the function is lost and the
original data can not be recovered from it.

• This is kind of an abstraction of a function, useful for instance in
various decomposition algorithms.



LABELED ROUGHLABELED ROUGH
PARTITIONSPARTITIONS

• A generalization of RS which has very interesting properties
and allows to find different kind of patterns in data.

• It is useful for decomposition of MV relations and it
preserves all information about the relation or function.
– It can be also made canonical, when created for special cubes.

• Most of its operations are reduced to set-theoretical
operations, so hardware realization is relatively easy.

• Relations happen in tables created from real data-base and
features from images,for instance, MV relations are
benchmarks hayes, flare1, flare2 from Irvine



LABELED ROUGHLABELED ROUGH
PARTITIONS (2)PARTITIONS (2)

• An example of application of relation in logic synthesis area
is a modulo-3 counter (a non-deterministic state machine is
a special case of multiple-valued, multi-output, relation)
that counts in sequence  s0 -> s1  -> s2 ->  s0  and if the
state s3 happens to be the initial state of the counter, counter
should transit to any of the states s0,s1,s2, but not to the
state  s3  itself.

• Generalized values for input variables are already known
from cube calculus but generalized values for output
variables are a new concept which allows for representation
and manipulation of relations in LRP.



CubeCube
CalculusCalculus
MachinesMachines



••In our design, the Cube Calculus Machine is a coprocessor to the host computerIn our design, the Cube Calculus Machine is a coprocessor to the host computer
and is realized as a virtual processor in DEC-PERLE-1.and is realized as a virtual processor in DEC-PERLE-1.

the CCM  communicates with the host computer through the input and the outputthe CCM  communicates with the host computer through the input and the output
FIFO.FIFO.

The Iterative Logic Unit (ILU) is realized using a one-dimensional iterativeThe Iterative Logic Unit (ILU) is realized using a one-dimensional iterative
network ofnetwork of combinational combinational modules and cellular automata. modules and cellular automata.

ILU is composed fromILU is composed from ITs ITs, each of them processes a single binary variable or two, each of them processes a single binary variable or two
values of a multi-valued variable.values of a multi-valued variable.

Any even number of variables can be processed, and only size of the board  as wellAny even number of variables can be processed, and only size of the board  as well
as bus limitations are the limits (it is the total of 32 values now, which is at most 16as bus limitations are the limits (it is the total of 32 values now, which is at most 16
binary variables, 8 quaternary variables, or 4 8-valued variables, or any mixturebinary variables, 8 quaternary variables, or 4 8-valued variables, or any mixture
of even-valued variables).of even-valued variables).

CUBE CALCULUSCUBE CALCULUS
MACHINEMACHINE



The ILU can take the input from register fileThe ILU can take the input from register file
and memory, and can write output to theand memory, and can write output to the
register file, the memory, and the outputregister file, the memory, and the output
FIFO.FIFO.

The ILU executes the cube operation underThe ILU executes the cube operation under
the control of the control of Operation Control UnitOperation Control Unit (OCU). (OCU).

The   The   Global Control UnitGlobal Control Unit (GCU) controls all (GCU) controls all
parts of the CCM and let them workparts of the CCM and let them work
together.together.



•The machine realizes the set of operations from Table 3.

• The Table shows also their programming information. Each
row of Table describes one cube operation.
• Each operation is specified in terms of:

• rel - the elementary relation type between input values,
• and/or  - the global relation type, and the internal   state
of the elementary cellular automaton -  before,active  and
after .

• The operation name, notation, the output value of   rel
(partial relation) function in every IT,   and\_or  (relation
type), the output values of   before , active and   after
functions are listed from left to right.



•Partial relation   rel is an elementary relation on
elementary piece of data (pair of bits).

•These set theoretical relations such as inclusion,
equality, etc.

•The value of and\_or equals to 1 means that the
relation type is of   AND type; otherwise, the relation
type is of  OR  type.

•  This relation is created by composing elementary
relations from ITs and variables.



horizontal data-pathhorizontal data-path microprogramming microprogramming



••The machine isThe machine is microprogrammable microprogrammable both in its OCU control unit both in its OCU control unit
part (by use of CCM Assembly Language) and in Data Path, aspart (by use of CCM Assembly Language) and in Data Path, as
achieved by ILU operations programmability.achieved by ILU operations programmability.

For instance, each operation is described by the binary patternFor instance, each operation is described by the binary pattern
corresponding to it in the respective row of Table 3.corresponding to it in the respective row of Table 3.

By creating other binary patterns in the  fields of Table 3, newBy creating other binary patterns in the  fields of Table 3, new
operations can be programmed to be executed by ILU.operations can be programmed to be executed by ILU.

As the reader can appreciate, there are very many suchAs the reader can appreciate, there are very many such
combinations, and thus CCM micro-operations.combinations, and thus CCM micro-operations.

horizontal data-pathhorizontal data-path microprogramming microprogramming



••We call this   We call this   horizontal data-path horizontal data-path microprogrammingmicroprogramming . .

Higher order CCM operations are created by sequencingHigher order CCM operations are created by sequencing
low-level operations.low-level operations.

This is called   This is called   vertical controlvertical control microprogramming microprogramming   and is and is
executed by OCU (within ILU) and GCU (for operationsexecuted by OCU (within ILU) and GCU (for operations
with memories and I/O).with memories and I/O).

Thus, the user has many ways toThus, the user has many ways to (micro) program(micro) program
sequences of elementary instructions.sequences of elementary instructions.

This is done in CCM Assembly language.This is done in CCM Assembly language.

horizontal data-pathhorizontal data-path microprogramming microprogramming





CCM as a SIMD machineCCM as a SIMD machine



CCM as a ProgrammableCCM as a Programmable
Cellular AutomatonCellular Automaton



Details of the single cell ofDetails of the single cell of
Iterative   Logic Unit of CCMIterative   Logic Unit of CCM



Propagation of information inPropagation of information in
Cellular structureCellular structure



     General Architecture of CCM, new     General Architecture of CCM, new
versionversion



Evaluation ofEvaluation of
some previoussome previous
Cube CalculusCube Calculus

MachinesMachines



Evaluation.Evaluation.
• For comparing the performance of the CCM and that of the

software  approach, a program to execute the disjoint sharp
operation on two arrays of cubes was created using C
language.

• Then this program and the CCM are used to solve the
following problems:
– (1) Three variables problem: $1 \#$ (all minterm with 3 binary

variables).

– (2) Four variables problem: $1 \#$ (all minterm with 4 binary
variables).

– (3) Five variables problem: $1 \#$ (all minterm with 5 binary
variables).

• The C program is compiled by GNU C compiler version 2.7.2, and is
run on Sun Ultra5 workstation with 64MB real memory.



Evaluation.Evaluation.
• The CCM is simulated using QuickHDL software from

Mentor Graphics.

•  We simulated the VHDL model of  CCM, got the number
of clocks used to solve the problem, then calculated the time
used by CCM using formula: clock *$ clock-period.

• A clock of 1.33 MHz (clock period: 750 ns) is used as the
clock of the CCM.





EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• It can be seen from Table that our CCM is about 4
times slower than the software approach.

• But, the clock of the CPU of Sun Ultra5 workstation
is 270 MHz, which is 206 times faster than the clock
of the CCM.

• Therefore, we still can say that the design of the
CCM is very efficient for cube calculus operations.

Evaluation.Evaluation.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• It also can be seen from Table   that the more
variables the input cubes have, the more efficient the
CCM is.

• This is due to the  software approach need to iterate
through one loop for each  variable that is presented
in the input cubes.

Evaluation.Evaluation.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• However, the clock period of 750ns is too slow.

• From the state diagram of the GCU, it can be found that the
delays of   empty carry path  and   counter carry path
only occur in a few states.

• Thus, if we can just give more time to these states, then we
can speedup the clock of the whole CCM.

• This is very easy to achieve: for example, the state P2 of
GCU needs more time for the delay of  counter carry path,
so add two more states in series between states P2 and P3.

Evaluation.Evaluation.



EVOLVABLE HARDWAREEVOLVABLE HARDWARE

• These two extra states do nothing but give the CCM
two more clock periods to evaluate the signal
prel_res, which means that the CCM has 3 clock
periods to evaluate signal prel_res in state P2 after
adding two more ``delay" states.

• After making similar modifications to all these  kind
of states, the CCM can run against a clock of 4 Mhz
(clock period of  250 ns).

Evaluation.Evaluation.





• It is very hard to increase the clock
frequency again with this mapping
because some other paths like
memory path  have delays greater
than 150 ns.

Evaluation.Evaluation.



• Speedup on 3 variables is 0.72, 4 variables - 0.72, 5
variables - 0.8

• Frequency of FPGA 3090 was 4MHz

• Frequency of Sun Ultra was 270MHz

• If we map the entire CCM into one chip delay would be
reduced

• New chips are faster and denser.

• The delay of CLB of 3090 is 4.5 nS, the delay for CLB of
4085XL is 1.2 nS.

• 4085 has array 56 * 56 and 448 user I/O pins.



• We can map entire CCM into one 4085

• Clock of 4085 is 20 MHz

• CCM will run 4 times faster than software
approach

• Clock of CCM is five times slower than Sun



RESULTS OF COMPARISONRESULTS OF COMPARISON

• A design like CCM with a complex control unit and complex data
path is not good for the architecture of the DEC-PERLE-1 board.

• It can be seen from our CCM mapping that  since a lot of signals must
go through multiple FPGA chips, this leads to greater signal delays.

• For instance, if we can connect the memory banks and the registers
directly, then the memory path has a delay of only 35 ns. But our
current memory path has a delay of 160 ns.

• Another issue is that XC3090 FPGA is kind of ``old" now (8 years old
technology).

• The latest FPGAs from Xilinx or other vendors have more  powerful
CLBs and more routing resource, and they are made using deep  sub-
micron process technology.



POSSIBLEPOSSIBLE
IMPROVEMENTSIMPROVEMENTS

• Mapping the entire CCM inside one FPGA chip would speedup the
CCM:

• If we map entire CCM into one FPGA chip, the signals do not need to
go through multiple chips again, which means the routing delay is
reduced.

• Since the new FPGA chip has more powerful CLBs and routing
resource, we can map the CCM denser. This also reduces the routing
delays.

• Since new FPGA chips are made using deep sub-micron technology,
the delay of CLB and routing wires are both reduced.

• For example, the delay of  the CLB of XC3090A is 4.5 ns while the
delay of CLB of XC4085XL (0.35 micron technology) is only 1.2 ns.
This means that it is very  easy to achieve 3 times faster mapping.



NEW FPGA CHIPS FOR NEWNEW FPGA CHIPS FOR NEW
VERSIONVERSION

• XC4085XL FPGA from Xilinx has a CLB matrix of
56 * 56 and up to 448 user I/O pins.

• The CCM should be able to map into one
XC4085XL FPGA.

• It should not be difficult to run the  CCM against a
clock of 20 MHz (clock period: 50 ns).

• This means that our CCM will be about 4 times
faster than the software approach while the system
clock of the CCM is still 5 times slower than that of
the workstation.



CONCLUSIONSCONCLUSIONS
• Principles of Learning Hardware as a competing approach

to Evolvable Hardware, and also as its generalization.

• Data Mining machines.

• Universal Logic Machine with several virtual processors.

• DEC-PERLE-1 is a good medium to prototype such
machines, its XC3090A chip is now obsolete.

• This can be much improved by using XC4085XL FPGA
and redesigning the board.

• Massively parallel architectures such as CBM based on
Xilinx series 6000 chips will allow even higher speedups.



Thank you


