
➤➤ VariableVariable
assignmentassignment
statementstatement

➤➤ Signal assignmentSignal assignment

➤➤ waitwait



  Sequential Statements   Sequential Statements Sequential Statements

➤➤ Variable assignmentVariable assignment
statementstatement

➤➤ Signal assignmentSignal assignment

➤➤ If statementIf statement

➤➤ Case statementCase statement

➤➤ Loop statementLoop statement

➤➤ Next statementNext statement

➤➤ Exit statementExit statement

➤➤ Null statementNull statement

➤➤ Procedure callProcedure call
statementstatement

➤➤ Return statementReturn statement

➤➤ AssertionAssertion
statementstatement



Variable assignment
statement

Variable assignmentVariable assignment
statementstatement

Variable_assignment_statementVariable_assignment_statement ::= target:=expression;

architecture RTL of VASSIGN is
      signal A, B, J  : bit_vector(1 downto 0);
      signal E, F, G  : bit;
      begin
           p0 : process (A, B, E, F, G, J)
               variable C, D, H, Y : bit_vector(1 downto 0);
               variable W, Q          : bit_vector(3 downto 0);
               variable Z                : bit_vector(0 to 7);
               variable X               : bit;
               variable DATA       : bit_vector(31 downto 0);
            begin  ...
            end process
        end RTL;



Variable assignment statementVariableVariable assignment statement assignment statement

➤➤  p0 : process (A, B, E, F, G, J) p0 : process (A, B, E, F, G, J)

➤➤ -- A, B, J, D, H  : bit_vector                -- E, F, G  : bit-- A, B, J, D, H  : bit_vector                -- E, F, G  : bit

➤➤    begin   begin

➤➤       C                C          :=:=  "01";"01";

➤➤       X                  X            := E:= E nand nand F; F;

➤➤       Y               Y         := H or J;:= H or J;

➤➤       Z(0 to 3)       Z(0 to 3) := C & D;:= C & D;

➤➤       Z(4 to 7)       Z(4 to 7) := (not A) & (A nor B);:= (not A) & (A nor B);

➤➤       D               D         := ('1', '0');:= ('1', '0');

➤➤       W               W         := (2:= (2 downto downto 1  1 =>=> G, 3 => '1', others => '0'); G, 3 => '1', others => '0');

➤➤       DATA      := (others => '0');      DATA      := (others => '0');

➤➤    end process;   end process;

The same signal
G (a bit)  goes to

two bits

Make note of mapping notation again

signal A, B, J  : bit_vector(1 downto 0);
signal E, F, G  : bit;

Variable assigned to a signal



Formal Syntax of a signal
assignment statement

Formal Syntax of a signalFormal Syntax of a signal
assignment statementassignment statement

Signal_assignment_statementSignal_assignment_statement  ::=::=

  targettarget<=<=[[transporttransport]]waveform_elementwaveform_element{,waveform_element};{,waveform_element};

waveform_element::=waveform_element::=

  value_expression[value_expression[afterafter  time_expression]|time_expression]|nullnull[[after after time_expression]time_expression]

VHDL syntax description in
metalanguage



Signal assignment
statements and wait for

Signal assignmentSignal assignment
statements and wait forstatements and wait for

p0 : process (A, B)

   begin

      Y <= A nand B after 10 ns;

      X <= transport A nand B
after 10 ns;

   end process;

p1 : process

   begin

      A <= '0', '1' after 20 ns, '0'
after 40 ns,  '1' after 60 ns;

      B <= '0', '1' after 30 ns, '0'
after 35 ns, '1' after 50 ns;

      wait for 80 ns;

   end process;

 A

 B

 X

 Y

80nS

Recall waveforms , transport
and inertial delay

Recall waveforms , transportRecall waveforms , transport
and inertial delayand inertial delay

A pulse with a duration
shorter than the switching
time of the circuit will not

be transmitted in transport.



Inertial and TransportInertial and Transport
DelaysDelays

Signal assignment statementSignal assignment statementSignal assignment statement



 p1 : process p1 : process

   begin   begin

      A <= '0', '1' after 20 ns,      A <= '0', '1' after 20 ns,

'0' after 40 ns, '1' after 60 ns;'0' after 40 ns, '1' after 60 ns;

      B <= '0', '1' after 30 ns,      B <= '0', '1' after 30 ns,

'0' after 35 ns, '1' after 50 ns;'0' after 35 ns, '1' after 50 ns;

      wait for 80 ns;      wait for 80 ns;

   end process;   end process;

end RTL;end RTL;

entity DELAY isentity DELAY is

end DELAY;end DELAY;

architecture RTL of DELAY isarchitecture RTL of DELAY is

   signal A, B, X, Y : bit;   signal A, B, X, Y : bit;

beginbegin

   p0 : process (A, B)   p0 : process (A, B)

   begin   begin

      Y <= A      Y <= A nand nand B after 10 ns; B after 10 ns;

      X <= transport A      X <= transport A nand nand B after B after
10 ns;10 ns;

   end process;   end process;



Role of wait for in discardingRole of wait for in discardingRole of wait for in discarding

entity DRIVER isentity DRIVER is

end DRIVER;end DRIVER;

architecture RTL of DRIVER isarchitecture RTL of DRIVER is

   signal A : integer;   signal A : integer;

beginbegin

   pa : process   pa : process

beginbegin

A <= 3, 5 after 20 ns,A <= 3, 5 after 20 ns,  7 after 407 after 40
ns, 9 after 60 ns;ns, 9 after 60 ns;

            wait for 30 ns;wait for 30 ns;

      A <= 2, 4 after 20 ns, 6 after      A <= 2, 4 after 20 ns, 6 after
40 ns,40 ns,  8 after 60 ns;8 after 60 ns;

            wait for 50 ns;wait for 50 ns;

   end process;   end process;

end RTL;end RTL;

discarded

discarded

This slide explains the role of wait for to discard
part of assignment statement

30ns



Differences between variables and
signals

Differences between Differences between variablesvariables and and
signalssignals

➤ 1. Where declared
➤ Local variables are declared and only visible inside a

process or a subprogram.
➤ Signals cannot be declared inside a process or a

subprogram.

➤      2. When updated
➤ A local variable is immediately updated when the

variable assignment statement is executed.
➤ A signal assignment statement updates the signal

driver.  The new value of the signal is updated when the
process is suspended.



Signal assignment statementSignal assignment statementSignal assignment statement

3. Variables are cheaper to implement in VHDL
simulation since the evaluation of drivers is not
needed. They require less memory.

4. Signals communicate among concurrent statements.
Ports declared in the entity are signals.  Subprogram
arguments can be signals or variables.

5. A signal is used to indicate an interconnect (net in a
schematic).  A local variable is used as a temporary
value in a function description.

Differences between variables and
signals

Differences between Differences between variablesvariables and and
signalssignals



Signals versus variablesSignals versus variablesSignals versus variables

6.A local variable is very useful to factor out
common parts of complex equations to
reduce the mathematical calculation.

7. Right-hand sides:
➤ The right-hand side of a variable assignment

statement is an expressionexpression.
➤ There is no associated time expression.
➤ The right-hand side of a signal assignment

statement is a sequence of waveform elements with
associated time expressions.



Signals and variables in
timing diagrams

Signals and variables inSignals and variables in
timing diagramstiming diagrams

entity SIGVAL isentity SIGVAL is

   port (   port (

      CLK, D   : in  bit;      CLK, D   : in  bit;

      FF2, FF3 : out bit;      FF2, FF3 : out bit;

      Y   : out bit_vector(7      Y   : out bit_vector(7 downto downto 0)); 0));

end SIGVAL;end SIGVAL;

architecture RTL of SIGVAL isarchitecture RTL of SIGVAL is

      signal FF1, SIG0, SIG1    : bit;signal FF1, SIG0, SIG1    : bit;

beginbegin

   p0 : process (D, SIG1, SIG0)   p0 : process (D, SIG1, SIG0)

            variable VAR0, VAR1 : bit;variable VAR0, VAR1 : bit;

beginbegin
            VAR0 := D;VAR0 := D;
      VAR1 := D;      VAR1 := D;
      SIG0 <= VAR0;      SIG0 <= VAR0;
      SIG1 <= VAR1;      SIG1 <= VAR1;
      Y(1      Y(1 downto downto 0) <= VAR1 & VAR0; 0) <= VAR1 & VAR0;
      Y(3      Y(3 downto downto 2) <= SIG1 & SIG0; 2) <= SIG1 & SIG0;
      VAR0 := not VAR0;      VAR0 := not VAR0;
      VAR1 := not VAR1;      VAR1 := not VAR1;
      SIG0 <= not VAR0;      SIG0 <= not VAR0;
      SIG1 <= not D;      SIG1 <= not D;
      Y(5      Y(5 downto downto 4) <= VAR1 & VAR0; 4) <= VAR1 & VAR0;
      Y(7      Y(7 downto downto 6) <= SIG1 & SIG0; 6) <= SIG1 & SIG0;
end process;end process;

Variables on
right

Variables on left



C
D
V0
V1
S0
S1
Y

Y <= (S1, S0, ~D, ~D, S1, S0, D, D)

beginbegin
            VAR0 := D;VAR0 := D;
      VAR1 := D;      VAR1 := D;
      SIG0 <= VAR0;      SIG0 <= VAR0;
      SIG1 <= VAR1;      SIG1 <= VAR1;
      Y(1      Y(1 downto downto 0) <= VAR1 & VAR0; 0) <= VAR1 & VAR0;
      Y(3      Y(3 downto downto 2) <= SIG1 & SIG0; 2) <= SIG1 & SIG0;
      VAR0 := not VAR0;      VAR0 := not VAR0;
      VAR1 := not VAR1;      VAR1 := not VAR1;
      SIG0 <= not VAR0;      SIG0 <= not VAR0;
      SIG1 <= not D;      SIG1 <= not D;
      Y(5      Y(5 downto downto 4) <= VAR1 & VAR0; 4) <= VAR1 & VAR0;
      Y(7      Y(7 downto downto 6) <= SIG1 & SIG0; 6) <= SIG1 & SIG0;
end process;end process;

Simulation
waveform for
variables and
signals

SimulationSimulation
waveform forwaveform for
variables andvariables and
signalssignals clk

d

C
D
V0
V1
S0
S1
Y
F1
F2
V3
F3



Timing of variables versus
timing of signals

Timing of variables versusTiming of variables versus
timing of signalstiming of signals

  p1 : processp1 : process

   begin   begin

      wait until      wait until CLK'event CLK'event and CLK = '1'; and CLK = '1';

      FF1 <= D;  FF2 <= FF1;      FF1 <= D;  FF2 <= FF1;

   end process;   end process;

      p2 : processp2 : process

      variable V3 : bit;      variable V3 : bit;

   begin   begin

      wait until      wait until CLK'event CLK'event and CLK = '1'; and CLK = '1';

      V3  := D;  FF3 <= V3;      V3  := D;  FF3 <= V3;

   end process;   end process;

end RTL;end RTL;

CLK
D
VAR0
VAR1

SIG0
SIG1
Y

FF1
FF2
V3
FF3

•Variable V3 changes at the same time as FF1, and so FF3

• FF3 unlike FF2

FF2 is old value of
FF1 according to
signal semantics

MORAL: Signals are scheduled, variables
change immediately



Three
architectures
ThreeThree
architecturesarchitectures
entity TEMP isentity TEMP is

end TEMP;end TEMP;

architecture RTL of TEMP isarchitecture RTL of TEMP is

   signal A, B, C, D, E, F, G, Y, Z : integer;   signal A, B, C, D, E, F, G, Y, Z : integer;

beginbegin

   p0 : process (A, B, C, D, E, F, G)   p0 : process (A, B, C, D, E, F, G)

   begin   begin

      Y <= A + (B*C + D*E*F + G);      Y <= A + (B*C + D*E*F + G);

      Z <= A - (B*C + D*E*F + G);      Z <= A - (B*C + D*E*F + G);

   end process;   end process;

end RTL;end RTL;

architecture RTL1 of TEMP isarchitecture RTL1 of TEMP is

signal A, B, C, D, E, F, G, Y, Z : integer;signal A, B, C, D, E, F, G, Y, Z : integer;

beginbegin

   p0 : process (A, B, C, D, E, F, G)   p0 : process (A, B, C, D, E, F, G)

variable variable VV  : integer;: integer;

beginbegin

    V := (B*C + D*E*F + G);    V := (B*C + D*E*F + G);

        Y <= A + V; Z <= A - V;Y <= A + V; Z <= A - V;

end process;end process;

end RTL1;end RTL1;

architecture RTL2 of TEMP isarchitecture RTL2 of TEMP is

    signal A, B, C, D, E, F, G, Y, Z : integer;    signal A, B, C, D, E, F, G, Y, Z : integer;

        signal V : integer;signal V : integer;

beginbegin

    p0 : process (A, B, C, D, E, F, G)    p0 : process (A, B, C, D, E, F, G)

    begin    begin

              V <= (B*C + D*E*F + G);  V <= (B*C + D*E*F + G);

        Y <= A + V; Z <= A - V;        Y <= A + V; Z <= A - V;

    end process;    end process;

end RTL2;end RTL2;

First architecture has no variables

Second architecture uses variable V

Third architecture uses additional signal V

Their operation is different because signal V is
scheduled and variable immediately assigned

The same
statements

v calculated
immediately

Uses old value
of v, because it

is a signal



SourcesSourcesSources
➤➤ VLSI. Ohio University, VLSI. Ohio University, StarzykStarzyk


