QUANTUM COMPUTING
 an introduction

Jean V. Bellissard

Georgia Institute of Technology
\&
Institut Universitaire de France

A FAST GROWING SUBJECT:

elements for a history

Feynman's proposal:

He suggested in 1982 that quantum computers might have fundamentally more powerful computational abilities than conventional ones (basing his conjecture on the extreme difficulty encountered in computing the result of quantum mechanical processes on conventional computers, in marked contrast to the ease with which Nature computes the same results), a suggestion which has been followed up by fits and starts, and has recently led to the conclusion that either quantum mechanics is wrong in some respect, or else a quantum mechanical computer can make factoring integers "easy", destroying the entire existing edifice of publicKey cryptography, the current proposed basis for the electronic community of the future.

Richard P. Feynman.
Quantum mechanical computers. Optics News, 11(2):11-20, 1985.

Deutsch's computer:

David Deutsch.
Quantum theory, the ChurchTuring Principle and universal quantum computer.

Proc. R. Soc. London A, 400, 11-20, (1985).

David Deutsch.

Conditional quantum dynamics and logic gates.
Phys. Rev. Letters, 74, 4083-6, (1995).

Shor's algorithm:

This algorithm shows that a quantum computer can factorize integers into primes in polynomial time

Peter W. Shor.
Algorithm for quantum computation: discrete logarithms and factoring
Proc. 35th Annual Symposium on Foundation of Computer Science, IEEE Press, Los Alamitos CA, (1994).

CSS error-correcting code:

A. R. Calderbank \& B. P. W. Shor.

Good quantum error-correcting codes exist
Phys. Rev. A, 54, 1086, (1996).
A. M. Steane

Error-correcting codes in quantum theory
Phys. R. Letters, 77, 793, (1996).

Topological error-correcting codes:

Alex Yu. Kitaev.
Fault-tolerant quantum computation by anyons arXiv: quant-phys/970r021, (1997).

Books, books, books...

And much more at...

http://www.nsf.gov/pubs/2000/nsf00101/nsf00101.htm\#preface http://www.math.gatech.edu/~jeanbel/4803/

reports
articles,
books,
journals,

list of laboratories,
list of courses,
list of conferences,

QUBITS:

a unit of quantum information 10110101

Qubits:

- George BOOLE (1815-1864) used only two characters to code logical operations

- John von NEUMANN

Qubits:

(1903-1957)
developed the concept of programming using also binary system to code
all information

0
 1

- Claude E. SHANNON

Qubits:

«A Mathematical Theory
of Communication » (1948)
-Information theory

- unit of information bit

01

Qubits:

$$
\begin{aligned}
0 & |0\rangle=\binom{\mathbf{1}}{\mathbf{0}} \\
\text { quantizing } & \longrightarrow \text { canonical basis in } \mathbb{C}^{2}
\end{aligned}
$$

$$
1 \longrightarrow \quad \left\lvert\, 1>=\binom{0}{1}\right.
$$

Qubits:

$$
\begin{aligned}
& |\square\rangle=\binom{a}{b}=\mathbf{a}|0\rangle+\mathbf{b}|1\rangle \\
& \langle\square|=\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right)=\mathbf{a}^{*}\langle 0|+\mathbf{b}^{*}<1 \mid
\end{aligned}
$$

Dirac's bra and ket in \mathbb{C}^{2} and its dual

Qubits:

$$
\begin{gathered}
\left|\square_{\mathrm{i}}\right\rangle=\binom{\mathbf{a}_{\mathrm{i}}}{\mathbf{b}_{\mathrm{i}}}=\mathbf{a}_{\mathrm{i}}|\mathbf{0}\rangle+\mathbf{b}_{\mathrm{i}}|\mathbf{1}\rangle \\
\left\langle\square_{1} \mid \square_{2}\right\rangle=\mathbf{a}_{1}{ }^{*} \mathbf{a}_{2}+\mathbf{b}_{1}{ }^{*} \mathbf{b}_{2}
\end{gathered}
$$

inner product in \mathbb{C}^{2} using Dirac's notations

Qubits:

$$
\begin{gathered}
\left|\square_{1}\right\rangle\left\langle\square_{2}\right|=\left(\begin{array}{ll}
\mathbf{a}_{1} \mathbf{a}_{2}^{*} & \mathbf{a}_{1} \mathbf{b}_{2}^{*} \\
\mathbf{b}_{1} \mathbf{a}_{2}^{*} & \mathbf{b}_{1} \mathbf{b}_{2}^{*}
\end{array}\right) \\
\operatorname{Tr}\left(\left|\square_{1}\right\rangle\left\langle\square_{2}\right|\right)=\left\langle\square_{2} \mid \square_{1}\right\rangle
\end{gathered}
$$

using Dirac's bra-ket's

Qubits:

$$
\begin{aligned}
& |\square\rangle=\binom{a}{b}=a|0\rangle+b|1\rangle \\
& \langle\square \mid \square\rangle=|a|^{2}+|b|^{2}=1
\end{aligned}
$$

one qubit $=$ element of the unit sphere in \mathbb{C}^{2}

Qubits:

$$
\begin{aligned}
& \left.\left|\square>=\binom{\mathbf{a}}{\mathbf{b}}=\mathbf{a}\right| 0\right\rangle+\mathbf{b}|1\rangle \\
& \left.|\mathbf{a}|^{2}=\operatorname{Prob}(\mathbf{x}=0)=|<\square| 0\right\rangle\left.\right|^{2} \\
& |\mathbf{b}|^{2}=\operatorname{Prob}(x=1)=|<\square| 1>\left.\right|^{2}
\end{aligned}
$$

Born's interpretation of a qubit

Qubits:

$$
\begin{gathered}
|\square><\square|=\operatorname{Projection~on~} \square \\
p_{i} \geq 0, \sum_{i} p_{i}=1 \\
\square=\sum_{i} p_{i}\left|\square_{i}><\square_{i}\right| \\
\square \geq 0, \operatorname{Tr}(\square)=1
\end{gathered}
$$

statistical mixtures of states:
density matrices

Qubits:

1 qubit: mixtures

Pauli matrices generate $M_{2}(C)$

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Qubits:

1 qubit: mixtures

$$
\begin{gathered}
\square \geq 0, \operatorname{Tr}(\square)=1 \\
\square=\left(1+a_{x} X+a_{y} Y+a_{z} Z\right) / 2 \\
\mathbf{a}_{\mathrm{x}}^{2}+{\mathbf{a}_{\mathrm{y}}}^{2}+\mathbf{a}_{\mathrm{z}}^{2} \leq 1
\end{gathered}
$$

density matrices:
the Bloch ball

Qubits:

1 qubit: Bloch's ball

Qubits:

$01001 \rightarrow|01001\rangle=|0\rangle \otimes|1\rangle \otimes|0\rangle \otimes|0\rangle \otimes|1\rangle$

quantizing

Qubits:

$$
\begin{gathered}
|\square\rangle=\sum \mathbf{a}\left(x_{1}, \ldots, x_{N}\right)\left|x_{1} \ldots x_{N}\right\rangle \\
\sum\left|\mathbf{a}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}=\mathbf{1}
\end{gathered}
$$

Qubits:

$$
\begin{aligned}
& \left|\square_{00}\right\rangle=(|00\rangle+|11\rangle) / \sqrt{ } 2 \\
& \left|\square_{01}\right\rangle=(|01\rangle+|10\rangle) / \sqrt{ } 2 \\
& \left|\square_{10}\right\rangle=(|00\rangle-|11\rangle) / \sqrt{ } 2 \\
& \left|\square_{01}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{ } 2
\end{aligned}
$$

entanglement: Bell's states

QUANTUM GATES:

computing in quantum world

Quantum gates: 1-qubit gates

U is unitary in $M_{2}(\mathbb{C})$

$$
\begin{gathered}
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
\text { Pauli basis in } M_{2}(\mathbb{C})
\end{gathered}
$$

Quantum gates:

$$
\begin{aligned}
& |x>\longrightarrow \boldsymbol{U} \quad U| x\rangle \\
& U \text { is unitary in } M_{2}(\mathbb{C}) \\
& H=2^{-1 / 2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \nabla / 4}
\end{array}\right) \\
& \text { Hadamard, phase and } \square / 8 \text { gates }
\end{aligned}
$$

Quantum gates:
 N-qubit gates

U is unitary in $M_{2^{v}}(\mathbb{C})$

Quantum gates:

U is unitary in $M_{2}(\mathbb{C})$

Quantum gates:

 controlled gates
flipping a bit in a controlled way: the CNOT gate

$$
U=X
$$

Quantum gates:

controlled gates

flipping bits in a controlled way

Quantum gates:

flipping bits in a controlled way
The Toffoli gate

QUANTUM CIRCUITS:

computing in quantum world

Quantum circuits:

- Device that produces a value of the bit x
- The part of the state corresponding to this line is lost.

Quantum circuits:

teleportation

QUANTUM COMPUTERS:

machines and laws of Physics

Computers:

Computers are machines obeying to laws of Physics:

- Non equilibrium Thermodynamics,
- Electromagnetism
- Quantum Mechanics

Computers:

Second Law of Thermodynamics

- Over time, the information contained in an isolated system can only be
destroyed
- Equivalently, its entropy can only
increase

Computers:

Computers are machines producing information:

- Coding, transmission, reconstruction
- Computation,
- Cryptography
- Coding theory uses redundancy to
transmit binary bits of information

Computers:

0
coding
1

- Coding theory uses redundancy to

Computers:

transmit binary bits of
information
$\mathrm{O} \longrightarrow 000$
coding
$1 \longrightarrow 111$

- Coding theory uses redundancy to transmit binary bits of information
$\mathrm{O} \longrightarrow 000$
Transmission
coding
$1 \rightarrow 111$

Computers:

- Coding theory uses redundancy to transmit binary bits of information

Computers:

$0 \longrightarrow 000$

coding $1 \rightarrow 111$

errors
(and Law)

010

110

- Coding theory uses redundancy to transmit binary bits of information

Computers:

$0 \longrightarrow 000$

coding
$1 \rightarrow 111$ (and Law)

errors

- Coding theory uses redundancy to transmit binary bits of information

Computers:

 redundancy to
$0 \longrightarrow 000$
 Transmission
 coding
 $1 \rightarrow 111$ (ind Law)

010
Reconstruction
000

111

Computers:

Principles of Quantum Mechanics

- States (pure) of a system are given by units vectors in a Hilbert space \mathcal{H}
- Observables are selfadjoint operators on H (Hamiltonian H, Angular momentum L, etc)

Computers:

Principles of Quantum Mechanics

- Quantum Physics is fundamentally probabilistic:
-theory can only predicts the probability distribution of a possible state or of the values of an observable
-it cannot predict the actual value observed in experiment.

Computers:

Principles of Quantum Mechanics

Where one specific electron shows up is unpredictable But the distribution of images of many electrons can be predicted

Computers:

Principles of Quantum Mechanics

- $|\langle\square \mid \square\rangle|^{2}$ represents the probability that $|\square\rangle$ is in the state $\mid \bar{\square}$.
- Measurement of A in a state \square is given by

$$
\langle f(A)\rangle=\langle\square| f(A)|\square\rangle=\int d \mu_{\square}(a) f(a)
$$

where μ_{\square} is the probability distribution for possible values of A

Computers:

Principles of Quantum Mechanics

- Time evolution is given by the Schroedinger equation

$$
\text { id }|\square>/ d t=H| \square>\quad H=H^{*} \text {. }
$$

- Time evolution is given by the unitary operator $e^{-i+H} \Rightarrow$ no loss of information!

Computers:

Principles of Quantum Mechanics

- Loss of information occurs:
- in the measurement procedure
- when the system interacts with the outside world (dissipation)
- Computing is much faster: the loss of information is postponed to the last operation

Computers:

Principles of Quantum Mechanics

- Measurement implies a loss of information (Heisenberg inequalities) requires mixed states
- Mixed states are described by density matrices with evolution

$$
\mathrm{d} \square / \mathrm{d} t=-\mathrm{i}[\mathrm{H}, \square]
$$

Computers:

Principles of Quantum Mechanics

- Measurement produces loss of information described by a completely positive map of the form

$$
\varepsilon(\square)=\Sigma E_{k} \square E_{k}{ }^{*}
$$

preserving the trace if

$$
\Sigma E_{k}{ }^{*} E_{k}=I .
$$

- Each k represents one possible outcome of the measurement.

Computers:

Principles of Quantum Mechanics

- If the outcome of the measurement is given by k then the new state of the system after the measurement is given by

$$
\begin{aligned}
\square_{k}= & \underline{E}_{k} \square E_{k-}^{\star} \\
& \operatorname{Tr}\left(E_{k} \square E_{k}^{*}\right)
\end{aligned}
$$

Computers:

Principles of Quantum Mechanics

- In quantum computers, the result of a calculation is obtained through the measurement of the label indexing the digital basis
- The algorithm has to be such that the desired result is right whatever the outcome of the measurement !!

Computers:

Principles of Quantum Mechanics

- In quantum computers, dissipative processes (interaction within or with the outside) may destroy partly the information unwillingly.
- Error-correcting codes and speed of calculation should be used to make dissipation harmless.

TO CONCLUDE (PART I):

quantum computers may work

To conclude (part I)

- The elementary unit of quantum information is the qubit, with states represented by the Bloch ball.
- Several qubits are given by tensor products leading to entanglement.
- Quantum gates are given by unitary operators and lead to quantum circuits
- Law of physics must be considered for a quantum computer to work: measurement, dissipation...

See you next week!!

