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A FAST GROWING SUBJECT:

elements for a history



Feynman’s proposal:

Richard P. Feynman.
Quantum mechanical computers.
Optics News,
11(2):11-20, 1985.

He suggested in 1982 that quantum computers might have fundamentally more powerful
computational abilities than conventional ones (basing his conjecture on the extreme difficulty
encountered in computing the result of quantum mechanical processes on conventional computers, in
marked contrast to the ease with which Nature computes the same results), a suggestion which has been
followed up by fits and starts,and has recently led to the conclusion that either quantum mechanics is
wrong in some respect, or else a quantum mechanical computer can make factoring integers "easy",
destroying the entire existing edifice of publicKey cryptography, the current proposed basis for the
electronic community of the future.



Deutsch’s computer:

David Deutsch.
Conditional quantum dynamics
and logic gates.
Phys. Rev. Letters,
74, 4083-6, (1995).

David Deutsch.
Quantum theory, the Church-
Turing Principle and universal
quantum computer.
Proc. R. Soc. London A,
400, 11-20, (1985).



Shor’s algorithm:

Peter W. Shor.
Algorithm for quantum
computation: discrete logarithms
and factoring
Proc. 35th Annual Symposium
on Foundation of Computer
Science,
IEEE Press, Los Alamitos CA,
(1994).

This algorithm shows that a quantum computer can
factorize integers into primes in polynomial time



CSS error-correcting code:
A. R. Calderbank &
B. P. W. Shor.
Good quantum error-correcting
codes exist
Phys. Rev. A, 54, 1086, (1996).

A. M. Steane
Error-correcting codes in quantum
theory
Phys. R. Letters, 77, 793, (1996).



Topological error-correcting codes:

Alex Yu. Kitaev.
Fault-tolerant quantum
computation by anyons
arXiv : quant-phys/9707021,
(1997).



Books, books, books…



And much more at…
http://www.nsf.gov/pubs/2000/nsf00101/nsf00101.htm#preface
http://www.math.gatech.edu/~jeanbel/4803/

reports
articles, 
books, 
journals, 

list of laboratories, 
list of courses, 
list of conferences,  



QUBITS:

a unit of quantum information



Qubits:
• George BOOLE
    (1815-1864)
    used only two characters
    to code logical operations

 0   1



Qubits:
• John von NEUMANN
    (1903-1957)
    developed the concept of

programming using also
binary system  to code

    all information

 0   1



Qubits:
• Claude E.  SHANNON
«!A Mathematical Theory
of Communication!»!(1948)
-Information theory
- unit of information bit

 0   1



Qubits:

0

     quantizing

1

              1
| 0 > = 

              0

              0
| 1 > = 

              1

canonical basis in  C 2

1-qubit



Qubits: 1 general qubit

              a
| y > =          = a |0> + b |1> 
              b

Dirac’s  bra  and ket  in C 2 and its dual

< y |=(a* ,  b*) = a* <0| + b*<1| 



Qubits: 1 general qubit

              ai
| yi > =          = ai |0> + bi |1> 
              bi

< y1 | y2 > = a1
* a2

 + b1
* b2

inner product in C 2 using Dirac’s notations



Qubits:

                    a1 a2
*       a1 b2

*

| y1 > < y2 | =
                    b1 a2

*
         b1 b2

*

Tr (| y1 > < y2 |) = <y2| y1 >

using Dirac’s bra-ket’s

1 general qubit



Qubits: 1 general qubit

              a
| y > =          = a |0> + b |1> 
              b

< y | y > = | a |2+ | b |2 = 1

one qubit = element of the unit sphere in C 2



Qubits: 1 general qubit

              a
| y > =          = a |0> + b |1> 
              b

| a |2 = Prob (x=0) = |<y|0>|2

Born’s interpretation of a qubit

| b |2 = Prob (x=1) = |<y|1>|2



Qubits: 1 qubit: mixed states

| y >< y | =  Projection on y

pi ≥ 0 ,  ∑i pi = 1

statistical mixtures of states:
density matrices

r ≥ 0 , Tr(r) = 1

r = ∑i pi | yi>< yi|



Qubits: 1 qubit: mixtures

          0     1
X =
          1     0

          0    -i
Y =
          i     0

          1     0
Z =
          0   -1

          1     0
I =
          0    1

Pauli matrices generate M2(CC)



Qubits: 1 qubit: mixtures

density matrices:
the Bloch ball

r ≥ 0 , Tr(r) = 1

r = (1+axX +ayY +azZ )/2

ax
2 +ay

2 +az
2 ≤ 1



Qubits: 1 qubit: Bloch’s ball

x̂

ŷ
0

1

10 +10 -

1i0 +

1i0 -



Qubits:

01001 |01001> =|0>  |1>  |0>  |0>  |1> 

tensor basis in  C 2n
quantizing

general N-qubits states



Qubits: general N-qubits states

| y > =  ∑ a(x1,…,xN)  |x1…xN>

∑ |a(x1,…,xN)|2 = 1

entanglement: an N-qubit state is NOT a tensor product 



Qubits: general N-qubits states

| b00 > = (|00> + |11>)/√2

entanglement: Bell’s states 

| b01 > = (|01> + |10>)/√2

| b10 > = (|00> - |11>)/√2

| b01 > = (|01> - |10>)/√2



QUANTUM GATES:

computing in quantum world



Quantum gates:

U| x > U |x >

1-qubit gates

          0     1
X =
          1     0

          0    -i
Y =
          i     0

          1     0
Z =
          0   -1

          1     0
I =
          0    1

Pauli basis in  M2 ( C )

U is unitary in  M2 ( C )



Quantum gates:

U| x > U |x >

1-qubit gates

          1     0
S =
          0     i

          1     0
T =
          0   eip/4

                   1     1
H =2-1/2 

                   1    -1
Hadamard, phase and p/8 gates

U is unitary in  M2 ( C )



Quantum gates: N-qubit gates

| x1 >

U |x1 x2 …xN >

U is unitary in  M2N ( C )

| x2 >
| x3 >

| xN>

|x1 x2 …xN > = U



Quantum gates:

| x >

U is unitary in  M2 ( C )

| y >

| x >

Ux| y >U

controlled gates



Quantum gates:

| x >

flipping a bit in a controlled way: the CNOT gate

| y >

| x >

| x  y >

U=X

x   =  0  ,  1

y , 1-y

CNOT

controlled gates



Quantum gates:

| x1 >

flipping bits in a controlled way

| y > Ux1…xn | y >

| xn> | xn>

| x1 >

U

controlled gates



Quantum gates:

| x1 >

| y > | x1x2   y >

| x2> | x2>

| x1 >

controlled gates

flipping bits in a controlled way

The Toffoli gate



QUANTUM CIRCUITS:

computing in quantum world



• Device that produces a
value of the bit x

• The part of the state
corresponding to this
line is lost.

Quantum circuits: measurement



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

|x00>+|x11>
        √2



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

|xx0>+|x(1-x)1>
        √2



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

(|0x0>+(-) x|1x0>+|0 (1-x)1>+(-) x|1 (1-x)1>)
2



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

(|0xx>+(-) x|1xx>+|0 (1-x) x>+(-) x|1 (1-x)x>)
2



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

(|0x>+|1x>+|0 (1-x) >+|1 (1-x) >)     |x>
2



Quantum circuits: teleportation

| y >

| b00>
| y >

H

X Z

(|00>+|11>+|01>+|10>)     |x>
2



QUANTUM COMPUTERS:

machines and laws of Physics



Computers:

• Non equilibrium Thermodynamics,
• Electromagnetism
• Quantum Mechanics

Computers are machines obeying to laws of
Physics:



Computers:

• Over time, the information contained in an
isolated system can only be

                           destroyed
• Equivalently, its entropy can only
                           increase

Second Law of Thermodynamics



Computers:

• Coding, transmission, reconstruction
• Computation,
• Cryptography

Computers are machines producing
information:



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:

0       000
   coding

1       111



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:

0       000
   coding

1       111

Transmission



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:

0       000
   coding

1       111

TransmissionTransmission

      errors
   (2nd Law)

010

110



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:

0       000
   coding

1       111

TransmissionTransmission

      errors
   (2nd Law)

010

110

Reconstruction



• Coding theory uses
redundancy to
transmit binary bits of
information

0
   coding

1

Computers:

0       000
   coding

1       111

TransmissionTransmission

      errors
   (2nd Law)

010

110

Reconstruction

at reception
(correction)

000

111



Computers:

• States (pure) of a system are given by
units vectors in a Hilbert space H

• Observables are selfadjoint operators on
H (Hamiltonian H, Angular momentum L,
etc)

Principles of Quantum Mechanics



Computers:

• Quantum Physics is fundamentally
probabilistic:

    -theory can only predicts the probability
distribution of a possible state or of the
values of an observable

    -it cannot predict the actual value
observed in experiment.

Principles of Quantum Mechanics



Computers:

Principles of Quantum Mechanics

electron shows up

Where one specific electron shows up is unpredictable
But the distribution of images of many electrons can
be predicted



Computers:

• |<f|y>|2  represents the probability that
|y> is in the state |f> .

• Measurement of A in a state y is given by

          <f(A)> = <y| f(A) |y> = ∫dµy(a) f(a)

where  µy  is the probability distribution for
possible values of A

Principles of Quantum Mechanics



Computers:

• Time evolution is given by the Schrœdinger
equation

          i d|y> /dt = H |y>                H=H*.

• Time evolution is given by the unitary
operator e-itH        no loss of information !

Principles of Quantum Mechanics



Computers:

• Loss of information occurs:
     - in the measurement procedure
     - when the system interacts with the

outside world (dissipation)

• Computing is much faster: the loss of
information is postponed to the last
operation

Principles of Quantum Mechanics



Computers:

• Measurement implies a loss of information
(Heisenberg inequalities) requires mixed
states

•  Mixed states are described by density
matrices with evolution

dr/dt = -i [H , r]

Principles of Quantum Mechanics



Computers:

• Measurement produces loss of information
described by a completely positive map of
the form

                     E(r) = ∑ Ek r Ek*
    preserving the trace if

                        ∑ Ek* Ek =I .
• Each k represents one possible outcome of

the measurement.

Principles of Quantum Mechanics



Computers:

• If the outcome of the measurement is given
by k then the new state of the system after
the measurement is given by

rk  =      Ek r Ek*
           Tr(Ek r Ek* )

Principles of Quantum Mechanics



Computers:

• In quantum computers, the result of a
calculation is obtained through the
measurement of the label indexing the
digital basis

• The algorithm has to be such that the
desired result is right whatever the
outcome of the measurement !!

Principles of Quantum Mechanics



Computers:

• In quantum computers, dissipative
processes (interaction within or with the
outside) may destroy partly the information
unwillingly.

• Error-correcting codes and speed of
calculation should be used to make
dissipation harmless.

Principles of Quantum Mechanics



TO   CONCLUDE  (PART I):

quantum computers may work



To conclude (part I)

• The elementary unit of quantum information is the
qubit, with states represented by the Bloch ball.

• Several qubits are given by tensor products
leading to entanglement.

• Quantum gates are given by unitary operators and
lead to quantum circuits

• Law of physics must be considered for a quantum
computer to work: measurement, dissipation…




