
Proc. SRDS 2000 (IEEE CS 19th Symp. on Reliable Distributed
Systems), Nuremberg, Germany, Oct. 2000, pp. 106-115.

106
1060-9857/00 $10.00  2000 IEEE

Issues Insufficiently Resolved in Century 20
in the Fault-Tolerant Distributed Computing Field

(Invited Paper)

K. H. (Kane) Kim
DREAM Laboratory

University of California
Irvine, CA 92697, U.S.A.

 khkim@uci.edu , http://dream.eng.uci.edu/

Abstract: As Century 21 just opened up, it is a fitting
time to reflect on the evolution of the fault-tolerant
distributed computing technology that occurred in the last
century. The author's view of that evolution is sketched
in this paper with emphasis on the major issues
insufficiently resolved in Century 20. Such issues are
naturally among what this author believes to be the prime
subjects that need to be addressed in this decade by the
research community. A substantial part of this paper
deals with the issues that need to be resolved to advance
the real-time fault-tolerant distributed computing branch
into a mature practicing field.
Keywords: abort, availability, detection, distributed
computing, fault, network surveillance, object, real time,
recovery, reliability, replication, transaction, tolerance.

1. Introduction
From the beginning of the distributed computing

(DC) era that occurred around mid-1970's, fault tolerance
has been touted as one of the main advantages of shifting
the computer system design from the centralized structure
into a more distributed structure. As Century 21 just
opened up, it is a fitting time to reflect on the evolution of
the fault-tolerant (FT) DC technology that occurred in the
last century, to be more precise, in the final quarter of
Century 20. In this paper, the author sketches his view of
that evolution.

In this short review, the author's emphasis is on the
major issues insufficiently resolved in Century 20 rather
than those well resolved. Such issues are naturally among
what this author believes to be the prime subjects that
need to be addressed in this decade by the research
community. Some of those issues may not be sufficiently
resolved even through this decade.

A substantial part of this paper deals with the issues
that need to be resolved to advance the real-time (RT) FT
DC branch into a mature practicing field.

In the next section, the liveliness aspect of the FT DC
field as both a practicing field and a research and
development (R&D) field is reviewed. The advances
achieved in Century 20 are then briefly reviewed in
Section 3. Major issues that remained insufficiently

resolved through Century 20 are discussed in Section 4.
The final section provides a summary and an argument
for some cautious attitudes in tackling the research issues
in this new century.

2. Liveliness of the FT DC field

2.1 Up, down, and up again
As far as industry specializing in fault tolerance is

concerned, it is probably safe to say that such industry
never flourished. To this author it appeared to be
somewhat more lively in 1980's than in 1990's.

As major reasons, the following could be cited:
(1) The reliability of hardware components showed
spectacular improvements in the last two decades. For
example, by mid-1990's, the reliability of desk-top
personal computer workstations and supporting file
servers had shown steady improvements and it had caused
the reliability concerns of common users of non-real-time
computer-based application systems to have diminished
considerably. On the other hand, general-purpose
database management system (DBMS) vendors success-
fully incorporated into their system software reasonable
abilities to keep the integrity of data in spite of compo-
nent failures in non-real-time application environments.
(2) Besides the data backup and simple transaction
[Gra94] mechanisms of DBMS software, the system
software support needed for higher-coverage FT
computing (e.g., automatic retry of a failed transaction) in
environments where specially hardened FT hardware
modules are not used, did not advance into mature forms
in Century 20.
(3) RT computing applications remained a small segment
of the computing applications and did not attract serious
attentions of main-stream computing industry during
1980's and a large part of the 1990's.

Therefore, the concerns of main-stream computing
industry were to merely maintain the integrity of the
DBMS. It sufficed for them to facilitate clean abort of
transactions whenever faults in intermediate computation
results or uncommitted data were found. They did not
feel that additional execution overhead and hardware and

107

software costs involved in facilitating higher-coverage FT
computing, e.g., automatic retry of a failed transaction,
were worthwhile. If they tried to do that, their products
would not be competitive in the market of those times.

Now the FT DC field is bouncing back up again.
There is still no sign of growth (or one can even say,
resurrection) of specialized FT computing industry.
However, the interests of main-stream computing industry
in FT DC are now growing fast for at least two reasons:
(1) Rapid growth of the Web server market and
customers' growing demands for high-availability Web
servers, and
(2) Rapid growth of RT computing applications that
started around mid-1990's, especially growing demands
for computer-embedded communication-equipped devices
/ systems in this new decade.
The main-stream computing industry is trying to meet
these demands by incorporating cost-effective FT DC
mechanisms within the framework of general-purpose
hardware facilities and general-purpose operating system
(OS) architecture.

Now with the explosive growth of the electronic
commerce activities under way, the Web server market
appears to be becoming the most important market for
major vendors of computing platforms. Some say that
end users lose patience when Web sites handling
competitive commercial activities take longer than 8
seconds to show results. This means that
(1) Such Web sites must be up "all the time", i.e., meet
high-availability requirements; and
(2) Web sites must respond fast even when they are
accessed by a large number of clients concurrently.
Therefore, the main-stream computing industry is now
becoming better motivated to explore higher-coverage FT
DC approaches than ever before.

In this new decade, the RT computing application
market is no longer a negligible market even for major
platform vendors. In RT applications, mere clean abort of
transactions is rarely an acceptable approach because an
abortion of a transaction leads more often than not to
abandoning the application. Most sizable RT computing
applications are now of DC type. Again, higher-coverage
FT DC is becoming a lively field.

Overall, it is safe to say that the desire in any
computing industry and any system design team for
adopting fault tolerance approaches has fluctuated as
changes in the following have occurred:
(1) Natural failure rates of hardware and software
components,
(2) Environmental factors inducing disturbances into
computing,
(3) Costs of computing failures to applications / missions,
(4) Costs of redundancy relative to the computer system
budget.

2.2 Clean abort, high-availability server, and RT
recovery

As discussed in the preceding section, high-
availability Web servers must be capable of doing more
than clean abort. If a node crashes, the impacted on-going
transactions must be cleanly aborted and the server
function of the crashed node must be resurrected in
another node within a reasonable amount of time.
Therefore, this high-availability server approach is aimed
for higher coverage in FT DC than the coverage goal of
the conventional server relying on clean abort only. The
former leads clients to experiencing disconnection from
the server for shorter duration and incurs less costs to the
applications / missions than the latter does.

When wireless network components are used in Web
server applications, the fault rate and the needs for fault
tolerance mechanisms tend to become more significant.

RT computing applications, e.g., video-conferencing,
voice over IP (internet protocol), factory automation,
defense applications, etc., require even higher coverage
in FT DC. Attempts for automated retry of a failed
transaction or concurrent redundant tries of a transaction
are usually essential. That is, attempts to avoid any loss
of a transaction are desirable. Therefore, forward or
backward RT recovery from faults is a usual attempt.

This means that the interests of main-stream
computing industry in FT DC technologies have been
advancing in the past two decades as follows:

Clean abort technologies
 ! high-availability server technologies
 ! RT recovery technologies.
Of course, research communities dealt with all three types
of FT DC approaches and various proven or promising
solutions have been produced. However, the amount of
research invested in the three areas has been largely
proportional to the degree of interests of the main-stream
industry shown in the areas.

3. FT DC advances in Century 20
3.1 Advances in hardened hardware component
technologies

Spectacular advances in integration of numerous
logic components which were earlier-generation building-
blocks of computer systems into a smaller number of
VLSI modules, have already melted considerably the
reliability concerns of common users of non-real-time
systems. In addition, computer industry achieved
significant advances in late 1970’s and 1980’s in
producing specially hardened hardware modules which
were attractive building-blocks of high-reliability
computing systems in safety-critical applications.
Representative examples of such hardened modules are:
(1) Hardened processor modules: comparing processor-
pair, pair of self-checking processors, and voting-TMR

108

(triple modular redundancy) processor module [Toy87].
(2) RAID (redundant array of inexpensive disks): This
has become popular even in database-centric business
computing applications.
(3) Error-detection and error-correction coding subunit:
This has been extensively used in CPUs and
communication processors and various peripheral devices.

Industry generally feels that these technologies are
mature. Yet since standard general-purpose hardware
modules have become so reliable and powerful in
performance, much of the main-stream industry has
growing interests in using software techniques instead of
specially hardened hardware components to realize
acceptable levels of system reliability.
3.2 Fault detection and network surveillance

Various basic approaches for fault detection were
established in Century 20.
(1) Timeout, enforced by use of watch-dog timers;
(2) Comparison of the results of repeated or redundant
executions;
(3) Error-detection and error-correction code;
(4) Acceptance test or reasonableness check, which is to
check the reasonableness of intermediate computation
results [Ran75, Ran95].

The first three techniques have generally matured and
the last technique has also been used extensively although
there is still large room for further research on the latter.

Another important category of fault detection
techniques are those for:
(5) Network surveillance which is also called
membership maintenance [Kop89]. Network surveillance
is basically a (partially or fully) decentralized mode of
detecting faulty and repaired status of DC components. It
is aimed for minimizing the periods during which faulty
components (e.g., processing nodes and communication
links) are lurking in DC systems. This means to facilitate
fast learning by each interested fault-free node of the
faults or repair completion events occurring in other parts
of the DC system.

The simplest version of the network surveillance
technique is to have a master node make a periodic roll-
call of other nodes in the system [Hec91]. This simple
version has been practiced extensively but its limitation in
scalability due to the high overhead is severe. Efforts
made in Century 20 to find higher-performance versions
exploiting further decentralization were extensive.
However, the number of produced techniques which are
practical and also yield to rigorous quantitative analyses
of fault coverage, has been small. Examples of such
techniques are:
The periodic reception history broadcast (PRHB) scheme
[Kim93, Kop89] and the time-triggered protocol (TTP)

scheme [Kop93] for RT network surveillance in bus-LAN
based systems; and
The supervisor-based network surveillance (SNS) scheme
[Kim99a] for use in point-to-point network based
systems.

The important metrics in this area is the detection
latency bound [Kim93].
3.3 Transaction

The scheme for transaction structuring was
established by the database research community on the
basis of the notion of atomicity and sphere of control
formulated earlier [Dav73]. The basic transaction model
is aimed for maintaining properties such as atomicity,
consistency, isolation, and durability in spite of
component failures [Gra94].

A transaction must end with either commitment of an
update to the database in case of a successful execution or
clean abortion in case of an execution failure. Once a
transaction is aborted, the client which requested the
transaction may repeat the request or take an alternative
course of actions. This atomicity and clean abort rules
must be observed regardless of whether the database is
concentrated in one site or distributed over multiple sites.

Log-based schemes for efficient abort and commit
and schemes for concurrent execution of multiple
transactions have been well developed. Integrations of
the transaction scheme with disk mirroring approaches
and the use of RAIDs have also been used widely. The
basic transaction technology has matured.

Various extensions of the basic transaction scheme
have been studied [Gra94] but only the basic transaction
scheme has been widely used in the practicing field.
3.4 Checkpointing and recovery line

Rollback-retry, also called checkpointing-recovery,
was a technique developed in 1960's to increase the
probability of successful completion of a sequential
atomic real-time computation-segment [Cha72].
Checkpointing is an act of taking a snapshot of the state
of a computation and saving the snapshot in a safe storage
device. In the case of executing a database transaction,
the same act of saving a snapshot is often called a save-
point establishment.

In a system of interacting processes, each of which
performs checkpointing at various execution-points in a
manner independent of checkpointing by other processes,
a rollback of a process could cause an avalanche of
rollbacks of interacting processes. This phenomenon was
called the domino effect in [Ran75]. Since then,
numerous researchers have studied how to make
interacting processes to establish checkpoints in a
coordinated manner so that a domino effect or a cyclic
rollback propagation may be prevented [Ran95,Ssu99]. A
recovery line for a process, say P1, is a set of checkpoints,
each belonging to a different process, which will not be

109

crossed by a rollback of any process caused by the failure
of P1. The techniques for managing recovery lines were
extensively studied for the past 25 years but it appears
they have not yet met much acceptance by practitioners.
3.4 Replication

Replication of databases and processes was a subject
of extensive studies in the past three decades. Replicated
databases where every transaction is executed on the
replica designed as the primary and a subsequent update
command is sent to other replicas, represent the simplest
type of replicated databases [Bha87]. It has also been the
most popular approach although the falling costs of
RAIDs have also produced incentives for reducing the
degree of replication. Other types of replicated databases
have also been studied extensively but they have not met
wide acceptance by practitioners yet.

For replication of processes, the types of needs and
the types of replication structures are more diverse.
About six basic types of replication structures were
established in Century 20 [Kim94a, Kim98]. Numerous
other replication structures can be viewed as minor
variations of these six basic structures. Here a
combination of replicated processes and executing node
facilities is called a FT computing station. The six types
of FT computing stations are briefly summarized below.
Structure 1: Comparing pair and rollback

Two replicas of a process run on two different nodes
in parallel and their results of replicated execution of a
task are compared [Toy87]. If a mismatch occurs, then
the replicas roll back and make a retry.
Structure 2: Pair of Self-checking Processing nodes

(PSP)
 Structure 2a: A pair of single-processor nodes with an

application-independent fault detection software
component

Two replicas of a process run on two different nodes
in parallel. Computational results of task execution on
each node are validated by both the lack of signals from
the fault-detection hardware and OS in the system and the
execution of a common (i.e., application-independent)
fault-detection software component. A typical fault-
detection software component considered here is one that
does a consistency check on the data structures in OS.
The primary-shadow cooperation scheme is used in that
the shadow node delivers its output (i.e., task results) to
the rest of the DC system only when the primary node
cannot produce an output [Kim95].
 Structure 2b: Pair of Comparing Pairs (PCP) with

result comparison
As depicted in Figure 1, replicas of a process run on

four different nodes, organized as two pairs each of which
is in turn a comparing pair, in parallel. The primary-
shadow cooperation scheme is used in that the shadow
pair delivers its output to the rest of the distributed

computer system only when
the primary pair cannot
produce an output due to a
mismatch or crash.
Structure 3: Distributed

recovery block (DRB)
station

Figure 2 depicts this
computing station. The DRB
station [Kim94, Kim95] is
essentially a PSP (Structure-
2a or Structure-2b) station
plus at least one of the following two optional software
components: (1) an acceptance test which is an
"application-dependent" fault-detection software
component and (2) alternate application algorithms. As a
part of the DRB development, a rigorous implementation
model for the Structure-2a PSP station has been
formulated [Kim95]. The acceptance and alternate
algorithms, also called try blocks, can be incorporated by
use of an elegant language construct, recovery block
[Ran75, Ran95]. When two try blocks are used, the
operating rule is that the primary node tries to execute the
primary try block whenever possible whereas the shadow
node tries to execute the alternate try block.
In Figure 2, primary node X uses try block A as the first
try block initially, whereas shadow node Y uses try block
B as the initial first try block. The two nodes pick up the
same input data (by making the shadow to pick the data
picked by the primary) and process the data in parallel by
use of their current first try blocks, respectively. Both

Predecessor Computing Station

A

B

Logical &Time
AT

Time
AT

F

Input
Buffer

B

A

Logical &Time
AT

Time
AT

F

Input
Buffer

F

F S S

YX

Successor Computing Station

Figure 2. DRB station (adapted from [Kim96])

Figure 1. PCP station

C
X

C
X

110

nodes then execute the same acceptance test to check if
their computational results are reasonable. Timeout is a
part of the acceptance test. If the primary node passes the
acceptance test, it performs an output if its results without
delay. This output action includes updating its local
database and sending a data message to the successor
computing station(s). If one of the two nodes fails before
or at the acceptance test, the other node takes the role of
the primary as soon as it discovers the failure of its
partner and performs an output of its results. Meanwhile,
the failed node attempts to become a healthy shadow node
without disturbing the (new) primary node; it attempts to
roll back and retry with its second try block to bring its
application computation state including local database up-
to-date.
Approaches for using more than two try blocks and/or
more than two processing nodes in a DRB station and
those for using the same node-pair to form multiple
virtual DRB stations have also been developed [Kim95].
The DRB scheme has the following major useful
characteristics:
a) Forward recovery can be accomplished in the same
manner regardless of whether a node fails due to
hardware faults or software faults;
b) The increase in the normal task turnaround time is
minimal because the primary node does not wait for any
status message from the shadow node;
c) The cost-effectiveness and the flexibility are high
because
 c1) a DRB computing station can operate with just two
try blocks and two processing nodes and
 c2) the two try blocks are not required to produce
identical results and the second try block need not be as
sophisticated as the first try block.
If software fault tolerance is not a goal, the application
task designer is not required to provide alternate
algorithms and providing acceptance tests is also optional.
In other words, the DRB structure becomes PSP Structure
2a. Considerable research has been performed on how to
maintain consistency between the primary and the shadow
nodes [Kim96].
Structure 4: Voting triple modular redundancy (TMR)

station (more generally, Voting N-modular
redundancy station)

Three replicas of a process run on three different
nodes, respectively, and they take a vote with their
execution results [Toy87]. When there is discrepancy, the
result with a majority vote is used.
Structure 5: N-Version programming (NVP) station

This station is essentially a Structure-4 station plus 3
or more different application algorithms for each
application task [Avi88]. While the voting logic is
application-independent, the scheme requires designing
multiple versions expected to generate truly identical
computation results, which could be a restriction in cases
where complexity of a task logic is high.

3.5 Software fault tolerance
Software faults are essentially design faults.

Software fault tolerance has been studied by a relatively
small segment of the research community over more than
25 years. It is fair to say that this technology has so far
been practiced only by a tiny segment of the industry in a
limited form.

4. Issues insufficiently resolved

4.1 Quantitative treatment
FT in DC systems is realized basically via allocating

resources for redundant computation. In most systems,
resource allocation cannot be done arbitrarily or
carelessly. Needless to say, effective, let alone optimal,
resource allocation is not possible in the absence of
quantitative characterizations of FT schemes. Yet the
research efforts made by the FT research community in
Century 20 for such characterization are grossly
inadequate.

In the application environments where clean abort is
the recovery goal and high-availability servers are
desirable, the most important metrics are:
(1) Fault types and rates covered,
(2) The extra hardware costs, and
(3) The extra time costs including the overhead for
enabling fault detection, the abortion time, and the server-
down time.

On the other hand, in the application environments
where RT recovery is desirable, the most important
metrics are:
(1) Fault types and rates covered, and
(2) Recovery time bound which is the maximum
difference between a normal execution time for a task and
the time for a task execution involving fault detection and
recovery events.
In some applications such as space-borne applications,
extra hardware costs are also an equally important metric.

One can say that FT approaches not yielding to easy
quantitative analyses are unsafe to use. Using such
approaches is a blind exercise of an art. In this author's
opinion, the quantitative treatment needs to be
emphasized the most by the FT DC research community
in this new decade.

One can also see that the software reliability problem
is fundamentally one of obtaining analyzable software.
Ideally, analyzable node OS, analyzable middleware, and
analyzable application software must be used to realize
reliable DC systems. Adding FT capabilities cannot be
an excuse for violating this law.
 Fair and unfair modeling of fault sources

A component of a DC system exhibits faulty
behavior as a function of its internal organization, the
reliability of its subcomponents, and its operating

111

environment. Since a non-trivial component can exhibit
faulty behavior in an unlimited number of different ways,
a manageable model of faulty behavior of a component is
an absolute requirement for the designer who decided or
considers to use the component in construction of a FT
DC system. Such a model is called here a faulty
behavior model of a component. A combination or an
abstraction of a combination of the faulty behavior
models of components used in composing a DC system is
called a fault source model of the system.

Numerous fault source models were used and
proposed by the research community in Century 20.
Unfortunately, more often than not,

subjective and non-scientific reasoning was used in
adopting and assessing the reasonableness of fault
source models.

This often led to the lack of harmony, the lack of trust,
and the lack of open-minded spirits among the
researchers in the FT DC field.

A good fault source model must be a
characterization of all "non-negligible" patterns of fault
occurrences. Such a model must be based on good faulty
behavior models of the components used in the system.

In the literature dealing with the analysis of FT DC
algorithms, replaceable components have been most
often modeled as units of one of the two extreme types.
(1) One extreme model, which is at the simplest end in
the spectrum of conceivable faulty behavior models, is
the fail-silent unit (FSU) model. An FSU can exhibit only
absence of an explicit output upon occurrence of any
internal fault. No erroneous values are explicitly sent out
from such units.
(2) The model at the other extreme end is the malicious
unit (MaU) model, also called the Byzantine unit model.
A malicious unit is capable of not only sending out
erroneous values but also sending out sequences of values
as if they were carefully manufactured to cause troubles
to monitoring and diagnosing units.

The following limitations of the two extreme
modeling approaches were pointed out in [Kim94b]:
(1) The FSU model is an idealistic component model
which should be taken as a "design goal" for each
replaceable component. So far the main-stream business
computing industry has generally relied on this faulty
behavior model. However, it is also too simplistic a
model of components for use in designing and evaluating
some complex systems, even if absence of software faults
can be assured before the modeling step. It is dangerous
to rely completely on this model in constructing future
complex safety-critical application systems;
(2) The MaU model (or at least all the versions appeared
in literature) appears to have fundamental flaws. The
main flaw is in that the probability of malicious behavior
occurring in a real system is much smaller than the
probability of one of other assumptions adopted in

conjunction with the MaU model being violated.
Typically an MaU model is accompanied by an
assumption such as "the number nodes that can fail is
limited to one third of the total number of nodes in the
system". It is an "unfair" model in that it tends to draw
attention to events of negligible occurrence probabilities
while taking attention away from events of higher
occurrence probabilities.

Therefore, an idealistic direction for advancing the
state of the art in this important area is to develop a
systematic method for fair distribution of concerns over
possible occurrences of anomalous events during system
design and validation. This author believes that the most
promising direction is to lay out possible occurrences of
all types of anomalous events in the space of occurrence
probabilities and choosing "in a fair manner" the subset of
the possible events to deal with. Figure 3 depicts such a
view. The space of occurrence probabilities can be
divided into concentric rings. Any event which has the
occurrence probability of at least 10-3 is positioned within
the innermost ring. Events which have occurrence
probabilities between 10-4 and 10-3 must be positioned
in the space between the innermost ring and the second
innermost ring, etc.

Formulating a fault source model amounts to
selecting a set of anomalous events to be concerned with.
The way these selected events are spread in the space of
occurrence probabilities determines the fairness or
unfairness of the distribution of concerns. As illustrated

> 10 10 10

e.g. ,
malicious
 faultFair Distribution

Unfair
Distribution

E.g., # (Faulty nodes)
 = N/2

-3 -4 -5
10

-6 -15
10 10

-20

Figure 3. Fair distribution of concerns
(adapted from [Kim94b]

112

by a solid rugged circle in Figure 3, in a fairly distributed
case, it should be possible to draw a circular boundary in
the space of occurrence probabilities that meets the
following requirements.
Fair distribution requirements:
(FDR1) All non-negligible events which the designer can
envision are placed within the encircled space,
(FDR2) No events which are placed outside the circular
boundary and thus to be ignored by designers and/or
evaluators, have occurrence probabilities which are more
than several magnitudes-of-order (e.g., 10 - 100 times)
greater than the occurrence probability of any event
placed within the encircled space.

Figure 3 also illustrates a case where the events to
deal with are unfairly chosen. In this case, some events
considered in conjunction with MaU models are selected
but numerous events which have 1015 times greater
occurrence probabilities than the probabilities of the
selected malicious fault occurrences are ignored.
Therefore, the FDR2 requirement is clearly not met.

Although fair distribution of concerns may sound like
a natural thing to do, its effective practice requires
considerable research in this new decade in areas which
have been neglected up to now. Among other things,
more statistical data on various types of component
failures including correlation among different component
failures and correlation between internal faults of
components and observed failures, must be obtained.
 Server-down time and recovery time bound

As mentioned in Section 2.1, the FT DC field is
bouncing back up again. The main-stream computing
industry is now becoming better motivated to explore
high-availability server technologies and RT recovery
technologies than just clean abort technologies.
Therefore, the demands for quantitative treatment of
server-down times and recovery time bounds are now
growing. Since research conducted in Century 20 on such
quantitative treatment was grossly inadequate, this
represents a large important space for the FT DC research
community to invade in this new decade.
4.2 RT FT DC (Real-Time Fault-Tolerant Distributed
Computing)

In RT FT DC systems, fault detection and recovery
actions should ideally be executed such that intended
output actions of RT computations always take place on
time in spite of fault occurrences. When it is not feasible,
the fault tolerance actions which lead to the least damages
to the application missions / users must be attempted.

In order to be practically useful in RT DC systems, a
fault detection technique must at least yield a tightly
bounded detection latency and a recovery technique must
at least yield a tightly bounded recovery time. Only a tiny
fraction of the research conducted in Century 20 dealt
with rigorous analyses of detection latency bounds and

recovery time bounds.
Even in non-RT application systems such as many

Web server applications, detection latency and recovery
time are becoming important performance metrics since
they are major contributors to the server-down time.
However, in such environments, average server-down
times are more relevant than tight bounds on the server-
down time are.

In fact, there are signs that even the major vendors of
OS and communication infrastructure are gradually
stepping up their efforts in making the timing behavior of
their products more predictable. The justifications for
keeping their products to continue to show wildly
unpredictable timing behavior are losing strength. This
will make the boundary between FT DC approaches used
in non-RT application systems and those used in RT
application systems to become blurred somewhat.

Currently the main challenge in development of the
RT FT DC technology appears to be the integration. The
state of the art has reached the point where promising
component techniques which are effective in achieving
specialized fault tolerance capabilities of subsystems
when used in isolation, are available but their cost-
effective integration remains insufficiently done. There is
of course a large room for research to mature and further
enhance these component techniques. However, a more
urgent and important issue from the viewpoint of
balanced technology development is cost-effective
integration of such component techniques. There are two
major types of integration that need to be developed.
 RT FT computing stations + Network surveillance
and reconfiguration (NSR):

The six fundamental types of replication structures
that incorporate some fault detection capabilities were
reviewed in Section 3.4. These or variations of these can
be used to construct RT FT computing stations each
dedicated to execution of one or a few types of RT tasks.
Also, limited research conducted on network surveillance
techniques was discussed in Section 3.2. In order to
construct RT FT DC systems in a cost-effective manner,
both categories of techniques need to be mobilized.

In addition, techniques for fast reconfiguration,
which includes functional amputation of faulty
components and redistribution of tasks to existing, newly
incorporated, and repaired nodes, need to be used.
Nevertheless, the three categories of techniques remain
insufficiently integrated. This is considered a timely
subject for research in this new decade.
 Fault detection and replication principles + Object-
oriented (OO) RT DC structuring techniques:

Nearly all RT fault tolerance techniques practiced in
Century 20 were coupled with the approaches for process
structuring of RT DC software. On the other hand, one of
the several cutting-edge technology movements initiated
in 1990's in software engineering is the RT OO

113

programming movement [IEE00, ISO, Kim97b,Kim00b,
Sch00, WOR]. In this author's view, the most important
goal of that movement has been to instigate a quantum
productivity jump in software engineering for RT DC
application systems. The movement is still in its youthful
stage and its impact has just started surfacing up.
However, its great potential is now much more clearly
and widely recognized than it was in mid-1990's.

Therefore, adapting the existing RT fault tolerance
techniques for integration into the powerful RT OO DC
structure is an important integration issue. Fault detection
and network surveillance techniques require easy
adaptation. However, adaptation of replication and
recovery techniques is a challenging research issue as
witnessed in the case of applying the cooperating
primary-shadow replication principle of the PSP/DBR
scheme to the high-level RT OO programming and
execution scheme called the time-triggered message-
triggered object (TMO) scheme [Kim97a, Kim00a].
 Scalability

Another major issue in RT FT DC is scalability. The
complexity of RT FT DC application systems started
growing faster as we entered this new century. Wide area
network infrastructure is also increasingly used in new
applications. To cope with this trend, the research
community needs to enhance the scalability of network
surveillance techniques and recovery techniques.

Also, one fundamental approach in RT DC which
only a tiny fraction of the computer science community
has explored is the time-based coordination of distributed
actions [Kop97]. This approach is greatly effective in
handling many FT related problems, e.g., network
surveillance, keeping state consistency among replicas,
and RT FT multicasts [Kim99b], etc.
4.3 Reliable multicast

Group communication in RT DC systems has been a
subject of research for almost two decades but it is not yet
a mature technological field [Cha84, Kem99, Kop97,
Moc99, Tac98]. The main challenge in establishing
group communication protocols is to deal with possible
fault occurrences. Conversely, multicasts in absence of
the possibility of component failures are simple
programming problems [Kim99b]. In systems based on
point-to-point networks, a multicast is merely a finite
sequence of point-to-point single message
communications. In systems based on physical broadcast
facilities, a multicast may become a single broadcast with
a group ID in the message header field.

There have been some proposals for using group
communication protocols, in particular, hypothetical
reliable multicast mechanisms, as basic building-blocks
for FT DC systems. The validity of this thesis cannot be
established until practical reliable multicast mechanisms
get established. Until then, this author feels that it is
sensible to cast group communication protocols as

distributed application programs supported by execution
engines using established RT fault tolerance techniques.
Such engines should be capable of effectively handling
failures of low-level components such as processors,
paths in communication / interconnection networks,
processor-network interfaces, and OS components.

Some challenging issues in implementing RT FT
multicasts are:
(1) To ensure that the sender and all receivers reach the
same correct conclusion without excessive delay that all
the receivers correctly received the message;
(2) To ensure that the sender and all healthy receivers
reach the same correct conclusion without excessive delay
that at least one receiver failed to receive the message and
thus the multicast was cancelled;
(3) To ensure that all healthy receivers reach the same
correct conclusion without excessive delay that the sender
became permanently disabled before confirming the
successful receiving of the message by every receiver and
thus the multicast was cancelled;

One fundamental approach that makes meeting the
above requirements relatively easy is to make every
receiver to process the message at a certain time called the
official release time, e.g., 10am, by which the multicast
can definitely be completed [Kim99b]. Then it is possible
that an acknowledgment-message from a certain receiver
arrives at the sender but the sender later notifies the
receiver about the cancellation of the multicast. The
cancellation notice must arrive at the receiver before the
official release time.

Therefore, one problem with the above conservative
approach is the large delay in completing a multicast.
This is because the delay should include the time needed
for the sender or some other authority to notify the
receivers which received the message already, of the
cancellation of the multicast. The delay and the official
release time that can be adopted are functions of the fault
source model adopted. RT FT multicasts require much
more research.
4.4 OO FT DC

In recent years the OO DC movement, e.g., CORBA
movement [Sch00], Java-based DC movement, DCOM
and SOAP movement by Microsoft, etc., has become a
major technological movement and most of the major
industrial forces have now joined in the movement. As
mentioned in Section 4.2, even the RT OO DC branch of
the movement has become a significant movement.
Justifications for process-structured DC have started
losing strength.

FT OO DC technology is expected to become an
active R&D field soon if it has not already [WOR,
Nar99]. The challenging research issue is exploitation of
intra-object concurrency while enabling high-coverage FT
computing such as RT recovery.

114

4.5 Software fault tolerance
This author has not heard about any significant

progress in this technology area in the past five years. An
effective method for validating the schemes aimed at
handling design faults is still lacking [Kim95]. The main
difficulty is in creation of realistic fault conditions. In
fact, the research community has not yet fulfilled its
mission of demonstrating the software fault tolerance
capability in convincing application contexts. Some
successful demonstrations of the capabilities for detecting
symptoms of design faults at run time have taken place
but they did not include any successful RT recovery
actions other than stopping the system operation.
Successful accomplishment of this mission will require
long-term persistent research effort since use of
artificially injected faults will not be a fully valid
approach. The DC application system used also needs to
be of considerable complexity since otherwise the
convincing cases of software fault occurrences are not
likely to be encountered.

5. Summary and cautious attitudes

The liveliness of the FT DC field is in an upward
move at this opening juncture of Century 21. A basic
technical foundation for FT DC was laid out in the last
quarter of Century 20. It contains among others basic
techniques for fault detection and network surveillance,
transaction structuring and execution, checkpointing and
rollback, and replicated processing and recovery.

Major holes in the established foundation that need to
be closed up in this new century include:
Quantitative characterizations of FT DC techniques,
Enhancement of RT FT DC technologies, especially,
 integration of RT FT computing station construction
techniques and network surveillance and reconfiguration
techniques, and
 application of established fault detection and
replication principles to OO RT DC structuring
techniques, and
OO FT DC, and
Software fault tolerance.

FT is essentially a redundancy management game.
Fundamental types of redundancy, even if we restrict our
concerns to the types formulated in the contexts of
electronic computing, were identified in 1950's or earlier
[von56]. FT is not a young field. Therefore, it pays for
the research community active in this new decade to
become familiar with the technical foundation established
in Century 20. In fact, as early as 14 years ago, the
following statement was made by Brian Randell, who
made important pioneering contributions to FT
computation models, and his co-author, J. Dobson:

"As a profession, we seem to specialise in
re-inventing the wheel, and in inventing jargon that,
by accident or design, obscures the fact of

re-invention." [Ran86]
Also, FT problems for which hardware solutions of

moderate costs exist but pure software solutions are
sought merely because if found, they can be more cost-
effective under the current hardware economy, should be
viewed as short-term research problems. Who knows
when RAIDs and a few more CPUs will become so cheap
that nobody hesitate to add them to an existing
configuration ?

The author believes that future emphasis by the FT
DC research community on quantitative treatment of
design techniques and protocols and scientific assessment
of fault source models will lead to accelerated advances in
FT DC technologies. It will also hopefully lead to more
efficient open-minded unemotional reasoning atmosphere,
which will have better effect of encouraging young
researchers to enter and stay in the field.
Acknowledgements: The research work reported here
was supported in part by the US Defense Advanced
Research Project Agency under Contract N66001-97-C-
8516 monitored by SPAWAR, and in part by the NSF
Next-Generation Software (NGS) Program under Grant
99-75053.

References
[Avi88] Avizienis, A., Lyu, M.R., and Schutz, W., "In
Search of Effective Diversity: A Six-Language Study of
Fault-Tolerant Flight Control Software.", Proc. IEEE CS
18th Int'l Symp. on Fault-Tolerant Computing (FTCS-
18), pp.15-22.
[Bha87] Bhargava, B. ed., 'Concurrency Control and
Reliability in Distributed Systems', North-Holland Pub.
Co., 1987
[Cha72] Chandy, K.M., and Ramamoorthy, C.V.,
"Rollback and recovery strategies for computer programs
", IEEE Trans. on Comp., June 1972, pp.546-556.
[Cha84] Chang, J. M. and Maxemchunk, N., "Realiable
Broadcast Protocols", ACM Transactions on Computer
Systems, Vol. 2, No. 3, pp. 251-273, Aug. 1984.
[Dav73] Davies, C.T., "Recovery Semantics for a
DB/DC System", Proc. 1973 ACM Annual Conf.,
Atlanta, Aug. 1973, pp.136-141.
[Gra94] Gray, J., and Reuter, A., ′Transaction
Processing: Concepts and Techniques′, Morgan Kaufman
Publishers, 1994.
[Hec91] Hecht, M., et al., "A Distributed Fault Tolerant
Architecture for Nuclear Reactor and Other Critical
Process Control Applications.", Proc. IEEE CS 21st Int'l
Symp. on Fault-Tolerant Computing (FTCS-21), June
1991, Montreal, pp.462-469.
[IEE00] 'A special issue of Computer (a magazine of
IEEE Computer Society) on Object-oriented Real-time
distributed Computing', June 2000.
[ISO] ISORC '98 (IEEE CS Int'l Symp. on Object-

115

oriented Real-time distributed Computing) Series; 1st
held in April 1998, Kyoto, Japan; 2nd in May 1999, St.
Malo, France; 3rd in March 2000, Newport Beach, CA.
Proceedings are available from IEEE CS Press.
[Kem99] Kemme, B., Pedone, F., Alonso, G., and
Schiper, A., "Processing transactions over optimistic
atomic broadcast protocols", Proc. 19th Int'l Conf. on
Distributed Computing Systems (ICDCS '99), June 1999,
pp.424-431.
[Kim93] Kim, K.H. and Shokri, E.H., "Minimal-Delay
Decentralized Maintenance of Processor-Group
Membership in TDMA-Bus LAN Systems", Proc. IEEE
CS 13th Int'l Conf. on Distributed Computing Systems
(ICDCS '93), Pittsburg, May 1993, pp. 410-419.
[Kim94a] Kim, K.H., "Action-Level Fault Tolerance",
Ch. 17 in Sang H. Son, 'Advances in Real-Time Systems',
Prentice Hall, 1994, pp.415-434.
[Kim94b] Kim, K.H., "Fair Modeling of Fault-Tolerant
Distributed Systems", Computer Communications,
Vol.17, No.10, Oct. 1994, pp.699-707. (An earlier version
appeared in Proc. IEEE CS 4th FTDCS, Lisbon, Sept.
1993, pp. 173-180.)
[Kim95] Kim, K.H., "The Distributed Recovery Block
Scheme", Ch. 8 in Michael R. Lyu, ed., ′Software Fault
Tolerance′, 1995, pp. 189-209.
[Kim96] Kim, K.H., Bacellar, L., and Subbaraman, C.,
"Primary-Shadow Consistency Issues in the DRB Scheme
and the Recovery Time Bound", Proc. IEEE CS 7th Int'l
Symp. on Software Reliability Engineering, White Plains,
NY, Oct. 1996, pp.319-329.
[Kim97a] Kim, K.H., and Subbaraman, C., "Fault-
Tolerant Real-Time Objects", Communications of the
ACM, January 1997, pp. 75-82.
[Kim97b] Kim, K.H., "Object Structures for Real-Time
Systems and Simulators", IEEE Computer, Vol. 30, No.8,
August 1997, pp. 62-70.
[Kim98] Kim, K.H., "ROAFTS: A Middleware
Architecture for Real-time Object-oriented Adaptive Fault
Tolerance Support", Proc. HASE '98 (IEEE CS 1998
High-Assurance Systems Engineering Symp.),
Washington, D.C., Nov. 1998, pp.50-57.
[Kim99a] Kim, K.H. and Subbaraman, C., "Dynamic
Configuration Management in Reliable Distributed Real-
Time Information Systems", IEEE Trans. on Knowledge
and Data Engr., Vol.11, Jan./Feb. 1999, pp.239-254.
[Kim99b] Kim, K.H., "Group Communication in Real-
Time Computing Systems: Issues and Directions", Proc.
FTDCS '99 (7th IEEE Workshop on Future Trends of
Distributed Computing Systems), Cape Town, South
Africa, Dec. 1999, pp.252-258.
[Kim00a] Kim, K.H. and Subbaraman, C., "The
PSTR/SNS Scheme for Real-Time Fault Tolerance via
Active Object Replication and Network Surveillance",
IEEE Trans. on Knowledge and Data Engr., Vol.12,
No.2, Mar./April 2000, pp.145-159.

[Kim00b] Kim, K.H., "APIs Enabling High-Level Real-
Time Distributed Object Programming", IEEE Computer,
June 2000, pp.72-80.
[Kop89] Kopetz, H., et al., "Fault-Tolerant Membership
Service in a Synchronous Distributed Real-Time
System.", Proc. IFIP WG 10.4 Conf. on Dependable
Computing for Critical Appl., Santa Barbara, Aug. 1989,
pp.167-174.
[Kop93] Kopetz, H., and Gruensteidl, G., "TTP - A
Time-Triggered Protocol for Fault-Tolerant Real-Time
Systems", Proc. 23rd IEEE Int'l Symp. on Fault-Tolerant
Computing (FTCS-23), Toulouse, France, 1993, pp. 524-
533. A revised version appeared in IEEE Computer, vol.
27 (1), 1994, pp. 14-23.
[Kop97] Kopetz, H., 'Real-Time Systems', Kluwer
Academic Pub., 1997.
[Moc99] Mock, M., Edgar, N., Schemmer, S., "Efficient
Reliable Real-Time Group Communication for Wireless
Local Area Networks", Proc. EDCC 1999, pp.380-400.
[Nar99] Narasimhan, P., Moser, L. E., and Melliar-
Smith, P. M., "Using Interceptors to Enhance CORBA,"
IEEE Computer, July 1999, pp. 62-68.
[Ran75] Randell, B., "System Structure for Software
Fault Tolerance.", IEEE Trans. on Software Engineering,
June 1975, pp.220-232.
[Ran86] Randell, B., and Dobson, J. E., "Reliability and
Security Issues in Distributed Computing Systems",
Proc. IEEE CS Symp. on Reliable Distributed Systems
(SRDS '86), Jan. 1986, pp. 113-118.
[Ran95] Randell, B. and Xu, J., “The Evolution of the
Recovery Block Concept”, Ch. 1 in M. R. Lyu ed.,
‘Software Fault Tolerance’, John Wiley & Sons,
Chichester, England, 1995, pp.1-21.
[Sch00] Schmidt, D.C., and Kuhns, F., "An Overview of
the Real-Time CORBA Specification", IEEE Computer,
June 2000, pp.56-63.
[Ssu99] Ssu, K., Yao, B., and Fuchs, K., "An Adaptive
Checkpointing Protocol to Bound Recovery Time with
Message Logging", Proc. SRDS '99, Lausanne, Oct. '99.
[Tac98] Tachikawa, T., Higaki, H., and Takizawa, M.,
"Group Communication Protocols for Realtime
Applications", Proc. 18th IEEE ICDCS, 1998, pp.40-47.
[Toy87] Toy, W.N., "Fault-Tolerant Computing.", A
chapter in Advances in Computers, Vol. 26, Academic
Press, 1987, pp.201-279.
[von56] von Neumann, J., "Probabilistic Logics and the
Synthesis of Reliable Organisms from Unreliable Compo-
nents", Automata Studies, Princeton, 1956, pp.43-97.
[WOR] WORDS (IEEE CS's Workshop on Object-
oriented Real-time Dependable Systems) Series; 1st held
in Oct. '94, Dana Point; 2nd in Feb. 1996, Laguna Beach;
3rd in Feb. 1997, Newport Beach; 4th in Jan. 1999, Santa
Barbara; 5th in Nov. 1999, Monterey. Proceedings are
available from IEEE CS Press.

