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Abstract:  As Century 21 just opened up, it is a fitting 
time to reflect on the evolution of the fault-tolerant 
distributed computing technology that occurred in the last 
century.  The author's view of that evolution is sketched 
in this paper with emphasis on the major issues 
insufficiently resolved in Century 20.  Such issues are 
naturally among what this author believes to be the prime 
subjects that need to be addressed in this decade by the 
research community.  A substantial part of this paper 
deals with the issues that need to be resolved to advance 
the real-time fault-tolerant distributed computing branch 
into a mature practicing field.  
Keywords:  abort, availability, detection, distributed 
computing, fault, network surveillance, object, real time, 
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1.  Introduction 
From the beginning of the distributed computing 

(DC) era that occurred around mid-1970's, fault tolerance 
has been touted as one of the main advantages of shifting 
the computer system design from the centralized structure 
into a more distributed structure.  As Century 21 just 
opened up, it is a fitting time to reflect on the evolution of 
the fault-tolerant (FT) DC technology that occurred in the 
last century, to be more precise, in the final quarter of 
Century 20.  In this paper, the author sketches his view of 
that evolution.   

In this short review, the author's emphasis is on the 
major issues insufficiently resolved in Century 20 rather 
than those well resolved.  Such issues are naturally among 
what this author believes to be the prime subjects that 
need to be addressed in this decade by the research 
community.  Some of those issues may not be sufficiently 
resolved even through this decade.   

A substantial part of this paper deals with the issues 
that need to be resolved to advance the real-time (RT) FT 
DC branch into a mature practicing field.   

In the next section, the liveliness aspect of the FT DC 
field as both a practicing field and a research and 
development (R&D) field is reviewed.  The advances 
achieved in Century 20 are then briefly reviewed in 
Section 3.  Major issues that remained insufficiently 

resolved through Century 20 are discussed in Section 4.  
The final section provides a summary and an argument 
for some cautious attitudes in tackling the research issues 
in this new century.   

 
2.  Liveliness of the FT DC field 

2.1  Up, down, and up again   
As far as industry specializing in fault tolerance is 

concerned, it is probably safe to say that such industry 
never flourished.  To this author it appeared to be 
somewhat more lively in 1980's than in 1990's.   

As major reasons, the following could be cited:  
(1)  The reliability of hardware components showed 
spectacular improvements in the last two decades.  For 
example, by mid-1990's, the reliability of desk-top 
personal computer workstations and supporting file 
servers had shown steady improvements and it had caused 
the reliability concerns of common users of non-real-time 
computer-based application systems to have diminished 
considerably.  On the other hand, general-purpose 
database management system (DBMS) vendors success-
fully incorporated into their system software reasonable 
abilities to keep the integrity of data in spite of compo-
nent failures in non-real-time application environments.  
(2)  Besides the data backup and simple transaction 
[Gra94] mechanisms of DBMS software, the system 
software support needed for higher-coverage FT 
computing (e.g., automatic retry of a failed transaction) in 
environments where specially hardened FT hardware 
modules are not used, did not advance into mature forms 
in Century 20.  
(3)  RT computing applications remained a small segment 
of the computing applications and did not attract serious 
attentions of main-stream computing industry during 
1980's and a large part of the 1990's.   

Therefore, the concerns of main-stream computing 
industry were to merely maintain the integrity of the 
DBMS.  It sufficed for them to facilitate clean abort of 
transactions whenever faults in intermediate computation 
results or uncommitted data were found.  They did not 
feel that additional execution overhead and hardware and 
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software costs involved in facilitating higher-coverage FT 
computing, e.g., automatic retry of a failed transaction, 
were worthwhile.  If they tried to do that, their products 
would not be competitive in the market of those times.  

Now the FT DC field is bouncing back up again.  
There is still no sign of growth (or one can even say, 
resurrection) of specialized FT computing industry.  
However, the interests of main-stream computing industry 
in FT DC are now growing fast for at least two reasons:   
(1)  Rapid growth of the Web server market and 
customers' growing demands for high-availability Web 
servers, and  
(2)  Rapid growth of RT computing applications that 
started around mid-1990's, especially growing demands 
for computer-embedded communication-equipped devices 
/ systems in this new decade.   
The main-stream computing industry is trying to meet 
these demands by incorporating cost-effective FT DC 
mechanisms within the framework of general-purpose 
hardware facilities and general-purpose operating system 
(OS) architecture. 

Now with the explosive growth of the electronic 
commerce activities under way, the Web server market 
appears to be becoming the most important market for 
major vendors of computing platforms.  Some say that 
end users lose patience when Web sites handling 
competitive commercial activities take longer than 8 
seconds to show results.  This means that  
(1)  Such Web sites must be up "all the time", i.e., meet 
high-availability requirements; and  
(2)  Web sites must respond fast even when they are 
accessed by a large number of clients concurrently.   
Therefore, the main-stream computing industry is now 
becoming better motivated to explore higher-coverage FT 
DC approaches than ever before.    

In this new decade, the RT computing application 
market is no longer a negligible market even for major 
platform vendors.  In RT applications, mere clean abort of 
transactions is rarely an acceptable approach because an 
abortion of a transaction leads more often than not to 
abandoning the application.  Most sizable RT computing 
applications are now of DC type.  Again, higher-coverage 
FT DC is becoming a lively field.   

Overall, it is safe to say that the desire in any 
computing industry and any system design team for 
adopting fault tolerance approaches has fluctuated as 
changes in the following have occurred:  
(1)  Natural failure rates of hardware and software 
components,  
(2)  Environmental factors inducing disturbances into 
computing,   
(3)  Costs of computing failures to applications / missions,  
(4)  Costs of redundancy relative to the computer system 
budget.   

2.2  Clean abort, high-availability server, and RT 
recovery   

As discussed in the preceding section, high-
availability Web servers must be capable of doing more 
than clean abort.  If a node crashes, the impacted on-going 
transactions must be cleanly aborted and the server 
function of the crashed node must be resurrected in 
another node within a reasonable amount of time.  
Therefore, this high-availability server approach is aimed 
for higher coverage in FT DC than the coverage goal of 
the conventional server relying on clean abort only.  The 
former leads clients to experiencing disconnection from 
the server for shorter duration and incurs less costs to the 
applications / missions than the latter does.  

When wireless network components are used in Web 
server applications, the fault rate and the needs for fault 
tolerance mechanisms tend to become more significant.  

RT computing applications, e.g., video-conferencing, 
voice over IP (internet protocol), factory automation, 
defense applications, etc.,  require even higher coverage 
in FT DC.  Attempts for automated retry of a failed 
transaction or concurrent redundant tries of a transaction 
are usually essential.  That is, attempts to avoid any loss 
of a transaction are desirable.  Therefore, forward or 
backward RT recovery from faults is a usual attempt.  

This means that the interests of main-stream 
computing industry in FT DC technologies have been 
advancing in the past two decades as follows:  

Clean abort technologies   
  !  high-availability server technologies  
   !  RT recovery technologies.   
Of course, research communities dealt with all three types 
of FT DC approaches and various proven or promising 
solutions have been produced.  However, the amount of 
research invested in the three areas has been largely 
proportional to the degree of interests of the main-stream 
industry shown in the areas.   
 

3.  FT DC advances in Century 20 
3.1  Advances in hardened hardware component 
technologies   

Spectacular advances in integration of numerous 
logic components which were earlier-generation building-
blocks of computer systems into a smaller number of 
VLSI modules, have already melted considerably the 
reliability concerns of common users of non-real-time 
systems.  In addition, computer industry achieved 
significant advances in late 1970’s and 1980’s in 
producing specially hardened hardware modules which 
were attractive building-blocks of high-reliability 
computing systems in safety-critical applications.  
Representative examples of such hardened modules are:  
(1)  Hardened processor modules:  comparing processor-
pair, pair of self-checking processors, and voting-TMR 
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(triple modular redundancy) processor module [Toy87].   
(2)  RAID (redundant array of inexpensive disks):  This 
has become popular even in database-centric business 
computing applications.  
(3)  Error-detection and error-correction coding subunit:  
This has been extensively used in CPUs and 
communication processors and various peripheral devices.  

Industry generally feels that these technologies are 
mature.  Yet since standard general-purpose hardware 
modules have become so reliable and powerful in 
performance, much of the main-stream industry has 
growing interests in using software techniques instead of 
specially hardened hardware components to realize 
acceptable levels of system reliability.   
3.2  Fault detection and network surveillance   

Various basic approaches for fault detection were 
established in Century 20.  
(1)  Timeout, enforced by use of watch-dog timers;  
(2)  Comparison of the results of repeated or redundant 
executions; 
(3)  Error-detection and error-correction code;  
(4)  Acceptance test or reasonableness check, which is to 
check the reasonableness of intermediate computation 
results [Ran75, Ran95].  

The first three techniques have generally matured and 
the last technique has also been used extensively although 
there is still large room for further research on the latter.   

Another important category of fault detection 
techniques are those for:  
(5)  Network surveillance which is also called 
membership maintenance [Kop89].  Network surveillance 
is basically a (partially or fully) decentralized mode of 
detecting faulty and repaired status of DC components.  It 
is aimed for minimizing the periods during which faulty 
components (e.g., processing nodes and communication 
links) are lurking in DC systems.  This means to facilitate 
fast learning by each interested fault-free node of the 
faults or repair completion events occurring in other parts 
of the DC system.   

The simplest version of the network surveillance 
technique is to have a master node make a periodic roll-
call of other nodes in the system [Hec91].  This simple 
version has been practiced extensively but its limitation in 
scalability due to the high overhead is severe.  Efforts 
made in Century 20 to find higher-performance versions 
exploiting further decentralization were extensive.  
However, the number of produced techniques which are 
practical and also yield to rigorous quantitative analyses 
of fault coverage, has been small.  Examples of such 
techniques are:  
The periodic reception history broadcast (PRHB) scheme 
[Kim93, Kop89] and the time-triggered protocol (TTP) 

scheme [Kop93] for RT network surveillance in bus-LAN 
based systems; and  
The supervisor-based network surveillance (SNS) scheme 
[Kim99a] for use in point-to-point network based 
systems.   

The important metrics in this area is the detection 
latency bound [Kim93].   
3.3  Transaction   

The scheme for transaction structuring was 
established by the database research community on the 
basis of the notion of atomicity and sphere of control 
formulated earlier [Dav73].  The basic transaction model 
is aimed for maintaining properties such as atomicity, 
consistency, isolation, and durability in spite of 
component failures [Gra94].   

A transaction must end with either commitment of an 
update to the database in case of a successful execution or 
clean abortion in case of an execution failure.  Once a 
transaction is aborted, the client which requested the 
transaction may repeat the request or take an alternative 
course of actions.  This atomicity and clean abort rules 
must be observed regardless of whether the database is 
concentrated in one site or distributed over multiple sites.   

Log-based schemes for efficient abort and commit 
and schemes for concurrent execution of multiple 
transactions have been well developed.  Integrations of 
the transaction scheme with disk mirroring approaches 
and the use of RAIDs have also been used widely.  The 
basic transaction technology has matured.    

Various extensions of the basic transaction scheme 
have been studied [Gra94] but only the basic transaction 
scheme has been widely used in the practicing field.  
3.4  Checkpointing and  recovery line   

Rollback-retry, also called checkpointing-recovery, 
was a technique developed in 1960's to increase the 
probability of successful completion of a sequential 
atomic real-time computation-segment [Cha72].  
Checkpointing is an act of taking a snapshot of the state 
of a computation and saving the snapshot in a safe storage 
device.  In the case of executing a database transaction, 
the same act of saving a snapshot is often called a save-
point establishment.  

In a system of interacting processes, each of which 
performs checkpointing at various execution-points in a 
manner independent of checkpointing by other processes, 
a rollback of a process could cause an avalanche of 
rollbacks of interacting processes.  This phenomenon was 
called the domino effect in [Ran75].  Since then, 
numerous researchers have studied how to make 
interacting processes to establish checkpoints in a 
coordinated manner so that a domino effect or a cyclic 
rollback propagation may be prevented [Ran95,Ssu99].  A 
recovery line for a process, say P1, is a set of checkpoints, 
each belonging to a different process, which will not be 
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crossed by a rollback of any process caused by the failure 
of P1.  The techniques for managing recovery lines were 
extensively studied for the past 25 years but it appears 
they have not yet met much acceptance by practitioners.  
3.4  Replication  

Replication of databases and processes was a subject 
of extensive studies in the past three decades.  Replicated 
databases where every transaction is executed on the 
replica designed as the primary and a subsequent update 
command is sent to other replicas, represent the simplest 
type of replicated databases [Bha87].  It has also been the 
most popular approach although the falling costs of 
RAIDs have also produced incentives for reducing the 
degree of replication.  Other types of replicated databases 
have also been studied extensively but they have not met 
wide acceptance by practitioners yet.   

For replication of processes, the types of needs and 
the types of replication structures are more diverse.  
About six basic types of replication structures were 
established in Century 20 [Kim94a, Kim98].  Numerous 
other replication structures can be viewed as minor 
variations of these six basic structures.  Here a 
combination of replicated processes and executing node 
facilities is called a FT computing station.  The six types 
of FT computing stations are briefly summarized below.   
Structure 1:  Comparing pair and rollback  

Two replicas of a process run on two different nodes 
in parallel and their results of replicated execution of a 
task are compared [Toy87].  If a mismatch occurs, then 
the replicas roll back and make a retry.  
Structure 2:  Pair of Self-checking Processing nodes 

(PSP)   
   Structure 2a:  A pair of single-processor nodes with an 

application-independent fault detection software 
component  

Two replicas of a process run on two different nodes 
in parallel.  Computational results of task execution on 
each node are validated by both the lack of signals from 
the fault-detection hardware and OS in the system and the 
execution of a common (i.e., application-independent) 
fault-detection software component.  A typical fault-
detection software component considered here is one that 
does a consistency check on the data structures in OS.  
The primary-shadow cooperation scheme is used in that 
the shadow node delivers its output (i.e., task results) to 
the rest of the DC system only when the primary node 
cannot produce an output [Kim95].    
   Structure 2b:  Pair of Comparing Pairs (PCP) with 

result comparison   
As depicted in Figure 1, replicas of a process run on 

four different nodes, organized as two pairs each of which 
is in turn a comparing pair, in parallel.  The primary-
shadow cooperation scheme is used in that the shadow 
pair delivers its output to the rest of the distributed 

computer system only when 
the primary pair cannot 
produce an output due to a 
mismatch or crash.  
Structure 3:  Distributed 

recovery block (DRB) 
station  

Figure 2 depicts this 
computing station.  The DRB 
station [Kim94, Kim95] is 
essentially a PSP (Structure-
2a or Structure-2b) station 
plus at least one of the following two optional software 
components:  (1) an acceptance test which is an 
"application-dependent" fault-detection software 
component and (2) alternate application algorithms.  As a 
part of the DRB development, a rigorous implementation 
model for the Structure-2a PSP station has been 
formulated [Kim95].  The acceptance and alternate 
algorithms, also called try blocks, can be incorporated by 
use of an elegant language construct, recovery block 
[Ran75, Ran95].  When two try blocks are used, the 
operating rule is that the primary node tries to execute the 
primary try block whenever possible whereas the shadow 
node tries to execute the alternate try block.   
In Figure 2, primary node X uses try block A as the first 
try block initially, whereas shadow node Y uses try block 
B as the initial first try block.  The two nodes pick up the 
same input data (by making the shadow to pick the data 
picked by the primary) and process the data in parallel by 
use of their current first try blocks, respectively.  Both 
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nodes then execute the same acceptance test to check if 
their computational results are reasonable.  Timeout is a 
part of the acceptance test.  If the primary node passes the 
acceptance test, it performs an output if its results without 
delay.  This output action includes updating its local 
database and sending a data message to the successor 
computing station(s).  If one of the two nodes fails before 
or at the acceptance test, the other node takes the role of 
the primary as soon as it discovers the failure of its 
partner and performs an output of its results.  Meanwhile, 
the failed node attempts to become a healthy shadow node 
without disturbing the (new) primary node; it attempts to 
roll back and retry with its second try block to bring its 
application computation state including local database up-
to-date.   
Approaches for using more than two try blocks and/or 
more than two processing nodes in a DRB station and 
those for using the same node-pair to form multiple 
virtual DRB stations have also been developed [Kim95].  
The DRB scheme has the following major useful 
characteristics:   
a)  Forward recovery can be accomplished in the same 
manner regardless of whether a node fails due to 
hardware faults or software faults;  
b)  The increase in the normal task turnaround time is 
minimal because the primary node does not wait for any 
status message from the shadow node;  
c)  The cost-effectiveness and the flexibility are high 
because  
   c1)  a DRB computing station can operate with just two 
try blocks and two processing nodes and  
   c2)  the two try blocks are not required to produce 
identical results and the second try block need not be as 
sophisticated as the first try block.  
If software fault tolerance is not a goal, the application 
task designer is not required to provide alternate 
algorithms and providing acceptance tests is also optional.  
In other words, the DRB structure becomes PSP Structure 
2a.  Considerable research has been performed on how to 
maintain consistency between the primary and the shadow 
nodes [Kim96].  
Structure 4:  Voting triple modular redundancy (TMR) 

station (more generally, Voting N-modular 
redundancy station)  

Three replicas of a process run on three different 
nodes, respectively, and they take a vote with their 
execution results [Toy87].  When there is discrepancy, the 
result with a majority vote is used.  
Structure 5:  N-Version programming (NVP) station  

This station is essentially a Structure-4 station plus 3 
or more different application algorithms for each 
application task [Avi88].  While the voting logic is 
application-independent, the scheme requires designing 
multiple versions expected to generate truly identical 
computation results, which could be a restriction in cases 
where complexity of a task logic is high.  

3.5  Software fault tolerance  
Software faults are essentially design faults.  

Software fault tolerance has been studied by a relatively 
small segment of the research community over more than 
25 years.  It is fair to say that this technology has so far 
been practiced only by a tiny segment of the industry in  a 
limited form.   

 
4.  Issues insufficiently resolved  

4.1  Quantitative treatment  
FT in DC systems is realized basically via allocating 

resources for redundant computation.  In most systems, 
resource allocation cannot be done arbitrarily or 
carelessly.  Needless to say, effective, let alone optimal, 
resource allocation is not possible in the absence of 
quantitative characterizations of FT schemes.  Yet the 
research efforts made by the FT research community in 
Century 20 for such characterization are grossly 
inadequate.   

In the application environments where clean abort is 
the recovery goal and high-availability servers are 
desirable, the most important metrics are:  
(1)  Fault types and rates covered,  
(2)  The extra hardware costs, and  
(3)  The extra time costs including the overhead for 
enabling fault detection, the abortion time, and the server-
down time.  

On the other hand, in the application environments 
where RT recovery is desirable, the most important 
metrics are:  
(1)  Fault types and rates covered, and  
(2)  Recovery time bound which is the maximum 
difference between a normal execution time for a task and 
the time for a task execution involving fault detection and 
recovery events.  
In some applications such as space-borne applications, 
extra hardware costs are also an equally important metric.  

One can say that FT approaches not yielding to easy 
quantitative analyses are unsafe to use.  Using such 
approaches is a blind exercise of an art.  In this author's 
opinion, the quantitative treatment needs to be 
emphasized the most by the FT DC research community 
in this new decade.  

One can also see that the software reliability problem 
is fundamentally one of obtaining analyzable software.  
Ideally, analyzable node OS, analyzable middleware, and 
analyzable application software must be used to realize 
reliable DC systems.  Adding FT capabilities cannot be 
an excuse for violating this law.  
   Fair and unfair modeling of fault sources 

A component of a DC system exhibits faulty 
behavior as a function of its internal organization, the 
reliability of its subcomponents, and its operating 
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environment.  Since a non-trivial component can exhibit 
faulty behavior in an unlimited number of different ways, 
a manageable model of faulty behavior of a component is 
an absolute requirement for the designer who decided or 
considers to use the component in construction of a FT 
DC system.  Such a model is called here a faulty 
behavior model of a component.  A combination or an 
abstraction of a combination of the faulty behavior 
models of components used in composing a DC system is 
called a fault source model of the system.   

Numerous fault source models were used and 
proposed by the research community in Century 20.  
Unfortunately, more often than not,  

subjective and non-scientific reasoning was used in 
adopting and assessing the reasonableness of fault 
source models.   

This often led to the lack of harmony, the lack of trust, 
and the lack of open-minded spirits among the 
researchers in the FT DC field.  

A good fault source model must be a 
characterization of all "non-negligible" patterns of fault 
occurrences.  Such a model must be based on good faulty 
behavior models of the components used in the system.   

In the literature dealing with the analysis of FT DC 
algorithms, replaceable components have been most 
often modeled as units of one of the two extreme types.   
(1)  One extreme model, which is at the simplest end in 
the spectrum of conceivable faulty behavior models, is 
the fail-silent unit (FSU) model.  An FSU can exhibit only 
absence of an explicit output upon occurrence of any 
internal fault.  No erroneous values are explicitly sent out 
from such units.   
(2)  The model at the other extreme end is the malicious 
unit (MaU) model, also called the Byzantine unit model.  
A malicious unit is capable of not only sending out 
erroneous values but also sending out sequences of values 
as if they were carefully manufactured to cause troubles 
to monitoring and diagnosing units.  

The following limitations of the two extreme 
modeling approaches were pointed out in [Kim94b]:  
(1)  The FSU model is an idealistic component model 
which should be taken as a "design goal" for each 
replaceable component.  So far the main-stream business 
computing industry has generally relied on this faulty 
behavior model.  However, it is also too simplistic a 
model of components for use in designing and evaluating 
some complex systems, even if absence of software faults 
can be assured before the modeling step.  It is dangerous 
to rely completely on this model in constructing future 
complex safety-critical application systems;  
(2)  The MaU model (or at least all the versions appeared 
in literature) appears to have fundamental flaws.  The 
main flaw is in that the probability of malicious behavior 
occurring in a real system is much smaller than the 
probability of one of other assumptions adopted in 

conjunction with the MaU model being violated.  
Typically an MaU model is accompanied by an 
assumption such as "the number nodes that can fail is 
limited to one third of the total number of nodes in the 
system".  It is an "unfair" model in that it tends to draw 
attention to events of negligible occurrence probabilities 
while taking attention away from events of higher 
occurrence probabilities.  

Therefore, an idealistic direction for advancing the 
state of the art in this important area is to develop a 
systematic method for fair distribution of concerns over 
possible occurrences of anomalous events during system 
design and validation.  This author believes that the most 
promising direction is to lay out possible occurrences of 
all types of anomalous events in the space of occurrence 
probabilities and choosing "in a fair manner" the subset of 
the possible events to deal with.  Figure 3 depicts such a 
view.  The space of occurrence probabilities can be 
divided into concentric rings.  Any event which has the 
occurrence probability of at least 10-3 is positioned within 
the innermost ring.  Events which have occurrence 
probabilities between  10-4 and 10-3  must be positioned 
in the space between the innermost ring and the second 
innermost ring, etc.   

Formulating a fault source model amounts to 
selecting a set of anomalous events to be concerned with.  
The way these selected events are spread in the space of 
occurrence probabilities determines the fairness or 
unfairness of the distribution of concerns.  As illustrated 
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by a solid rugged circle in Figure 3, in a fairly distributed 
case, it should be possible to draw a circular boundary in 
the space of occurrence probabilities that meets the 
following requirements.  
Fair distribution requirements: 
(FDR1)  All non-negligible events which the designer can 
envision are placed within the encircled space,  
(FDR2)  No events which are placed outside the circular 
boundary and thus to be ignored by designers and/or 
evaluators, have occurrence probabilities which are more 
than several magnitudes-of-order (e.g., 10 - 100 times) 
greater than the occurrence probability of any event 
placed within the encircled space.  

Figure 3 also illustrates a case where the events to 
deal with are unfairly chosen.  In this case, some events 
considered in conjunction with MaU models are selected 
but numerous events which have 1015 times greater 
occurrence probabilities than the probabilities of the 
selected malicious fault occurrences are ignored.  
Therefore, the FDR2 requirement is clearly not met.   

Although fair distribution of concerns may sound like 
a natural thing to do, its effective practice requires 
considerable research in this new decade in areas which 
have been neglected up to now.  Among other things, 
more statistical data on various types of component 
failures including correlation among different component 
failures and correlation between internal faults of 
components and observed failures, must be obtained.   
   Server-down time and recovery time bound   

As mentioned in Section 2.1, the FT DC field is 
bouncing back up again.  The main-stream computing 
industry is now becoming better motivated to explore 
high-availability server technologies and RT recovery 
technologies than just clean abort technologies.  
Therefore, the demands for quantitative treatment of 
server-down times and recovery time bounds are now 
growing.  Since research conducted in Century 20 on such 
quantitative treatment was grossly inadequate, this 
represents a large important space for the FT DC research 
community to invade in this new decade.   
4.2  RT FT DC (Real-Time Fault-Tolerant Distributed 
Computing)  

In RT FT DC systems, fault detection and recovery 
actions should ideally be executed such that intended 
output actions of RT computations always take place on 
time in spite of fault occurrences.  When it is not feasible, 
the fault tolerance actions which lead to the least damages 
to the application missions / users must be attempted.   

In order to be practically useful in RT DC systems, a 
fault detection technique must at least yield a tightly 
bounded detection latency and a recovery technique must 
at least yield a tightly bounded recovery time.  Only a tiny 
fraction of the research conducted in Century 20 dealt 
with rigorous analyses of detection latency bounds and 

recovery time bounds.   
Even in non-RT application systems such as many 

Web server applications, detection latency and recovery 
time are becoming important performance metrics since 
they are major contributors to the server-down time.  
However, in such environments, average server-down 
times are more relevant than tight bounds on the server-
down time are.  

In fact, there are signs that even the major vendors of 
OS and communication infrastructure are gradually 
stepping up their efforts in making the timing behavior of 
their products more predictable.  The justifications for 
keeping their products to continue to show wildly 
unpredictable timing behavior are losing strength.  This 
will make the boundary between FT DC approaches used 
in non-RT application systems and those used in RT 
application systems to become blurred somewhat.  

Currently the main challenge in development of the 
RT FT DC technology appears to be the integration.  The 
state of the art has reached the point where promising 
component techniques which are effective in achieving 
specialized fault tolerance capabilities of subsystems 
when used in isolation, are available but their cost-
effective integration remains insufficiently done.  There is 
of course a large room for research to mature and further 
enhance these component techniques.  However, a more 
urgent and important issue from the viewpoint of 
balanced technology development is cost-effective 
integration of such component techniques.  There are two 
major types of integration that need to be developed.  
   RT FT computing stations + Network surveillance 
and reconfiguration (NSR):  

The six fundamental types of replication structures 
that incorporate some fault detection capabilities were 
reviewed in Section 3.4.  These or variations of these can 
be used to construct RT FT computing stations each 
dedicated to execution of one or a few types of RT tasks.  
Also, limited research conducted on network surveillance 
techniques was discussed in Section 3.2.  In order to 
construct RT FT DC systems in a cost-effective manner, 
both categories of techniques need to be mobilized.   

In addition, techniques for fast reconfiguration, 
which includes functional amputation of faulty 
components and redistribution of tasks to existing, newly 
incorporated, and repaired nodes, need to be used.  
Nevertheless, the three categories of techniques remain 
insufficiently integrated.  This is considered a timely 
subject for research in this new decade.  
   Fault detection and replication principles + Object-
oriented (OO) RT DC structuring techniques:  

Nearly all RT fault tolerance techniques practiced in 
Century 20 were coupled with the approaches for process 
structuring of RT DC software.  On the other hand, one of 
the several cutting-edge technology movements initiated 
in 1990's in software engineering is the RT OO 
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programming movement [IEE00, ISO, Kim97b,Kim00b, 
Sch00, WOR].  In this author's view, the most important 
goal of that movement has been to instigate a quantum 
productivity jump in software engineering for RT DC 
application systems.  The movement is still in its youthful 
stage and its impact has just started surfacing up.  
However, its great potential is now much more clearly 
and widely recognized than it was in mid-1990's.  

Therefore, adapting the existing RT fault tolerance 
techniques for integration into the powerful RT OO DC 
structure is an important integration issue.  Fault detection 
and network surveillance techniques require easy 
adaptation.  However, adaptation of replication and 
recovery techniques is a challenging research issue as 
witnessed in the case of applying the cooperating 
primary-shadow replication principle of the PSP/DBR 
scheme to the high-level RT OO programming and 
execution scheme called the time-triggered message-
triggered object (TMO) scheme [Kim97a, Kim00a].   
   Scalability  

Another major issue in RT FT DC is scalability.  The 
complexity of RT FT DC application systems started 
growing faster as we entered this new century.  Wide area 
network infrastructure is also increasingly used in new 
applications.  To cope with this trend, the research 
community needs to enhance the scalability of network 
surveillance techniques and recovery techniques.   

Also, one fundamental approach in RT DC which 
only a tiny fraction of the computer science community 
has explored is the time-based coordination of distributed 
actions [Kop97].  This approach is greatly effective in 
handling many FT related problems, e.g., network 
surveillance, keeping state consistency among replicas, 
and RT FT multicasts [Kim99b], etc.   
4.3  Reliable multicast  

Group communication in RT DC systems has been a 
subject of research for almost two decades but it is not yet 
a mature technological field [Cha84, Kem99, Kop97, 
Moc99, Tac98].  The main challenge in establishing 
group communication protocols is to deal with possible 
fault occurrences.  Conversely, multicasts in absence of 
the possibility of component failures are simple 
programming problems [Kim99b].  In systems based on 
point-to-point networks, a multicast is merely a finite 
sequence of point-to-point single message 
communications.  In systems based on physical broadcast 
facilities, a multicast may become a single broadcast with 
a group ID in the message header field.   

There have been some proposals for using group 
communication protocols, in particular, hypothetical 
reliable multicast mechanisms, as basic building-blocks 
for FT DC systems.  The validity of this thesis cannot be 
established until practical reliable multicast mechanisms 
get established.  Until then, this author feels that it is 
sensible to cast group communication protocols as 

distributed application programs supported by execution 
engines using established RT fault tolerance techniques.  
Such engines should be capable of effectively handling 
failures of low-level components such as processors, 
paths in communication / interconnection networks, 
processor-network interfaces, and OS components.  

Some challenging issues in implementing RT FT 
multicasts are:  
(1)  To ensure that the sender and all receivers reach the 
same correct conclusion without excessive delay that all 
the receivers correctly received the message;  
(2)  To ensure that the sender and all healthy receivers 
reach the same correct conclusion without excessive delay 
that at least one receiver failed to receive the message and 
thus the multicast was cancelled;  
(3)  To ensure that all healthy receivers reach the same 
correct conclusion without excessive delay that the sender 
became permanently disabled before confirming the 
successful receiving of the message by every receiver and 
thus the multicast was cancelled;  

One fundamental approach that makes meeting the 
above requirements relatively easy is to make every 
receiver to process the message at a certain time called the 
official release time, e.g., 10am, by which the multicast 
can definitely be completed [Kim99b].  Then it is possible 
that an acknowledgment-message from a certain receiver 
arrives at the sender but the sender later notifies the 
receiver about the cancellation of the multicast.  The 
cancellation notice must arrive at the receiver before the 
official release time.   

Therefore, one problem with the above conservative 
approach is the large delay in completing a multicast.  
This is because the delay should include the time needed 
for the sender or some other authority to notify the 
receivers which received the message already, of the 
cancellation of the multicast.  The delay and the official 
release time that can be adopted are functions of the fault 
source model adopted.  RT FT multicasts require much 
more research.  
4.4  OO FT DC  

In recent years the OO DC movement, e.g., CORBA 
movement [Sch00], Java-based DC movement, DCOM 
and SOAP movement by Microsoft, etc., has become a 
major technological movement and most of the major 
industrial forces have now joined in the movement.  As 
mentioned in Section 4.2, even the RT OO DC branch of 
the movement has become a significant movement.  
Justifications for process-structured DC have started 
losing strength.  

FT OO DC technology is expected to become an 
active R&D field soon if it has not already [WOR, 
Nar99].  The challenging research issue is exploitation of 
intra-object concurrency while enabling high-coverage FT 
computing such as RT recovery.   
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4.5  Software fault tolerance  
This author has not heard about any significant 

progress in this technology area in the past five years.  An 
effective method for validating the schemes aimed at 
handling design faults is still lacking [Kim95].  The main 
difficulty is in creation of realistic fault conditions.  In 
fact, the research community has not yet fulfilled its 
mission of demonstrating the software fault tolerance 
capability in convincing application contexts.  Some 
successful demonstrations of the capabilities for detecting 
symptoms of design faults at run time have taken place 
but they did not include any successful RT recovery 
actions other than stopping the system operation.  
Successful accomplishment of this mission will require 
long-term persistent research effort since use of 
artificially injected faults will not be a fully valid 
approach.  The DC application system used also needs to 
be of considerable complexity since otherwise the 
convincing cases of software fault occurrences are not 
likely to be encountered.  

 
5.  Summary and cautious attitudes  

The liveliness of the FT DC field is in an upward 
move at this opening juncture of Century 21.  A basic 
technical foundation for FT DC was laid out in the last 
quarter of Century 20.  It contains among others basic 
techniques for fault detection and network surveillance, 
transaction structuring and execution, checkpointing and 
rollback, and replicated processing and recovery.   

Major holes in the established foundation that need to 
be closed up in this new century include:  
Quantitative characterizations of FT DC techniques,  
Enhancement of RT FT DC technologies, especially,  
 integration of RT FT computing station construction 
techniques and network surveillance and reconfiguration 
techniques, and  
 application of established fault detection and 
replication principles to OO RT DC structuring 
techniques, and  
OO FT DC, and  
Software fault tolerance.   

FT is essentially a redundancy management game.  
Fundamental types of redundancy, even if we restrict our 
concerns to the types formulated in the contexts of 
electronic computing, were identified in 1950's or earlier 
[von56].  FT is not a young field.  Therefore, it pays for 
the research community active in this new decade to 
become familiar with the technical foundation established 
in Century 20.  In fact, as early as 14 years ago, the 
following statement was made by Brian Randell, who 
made important pioneering contributions to FT 
computation models, and his co-author, J. Dobson:   

"As a profession, we seem to specialise in  
re-inventing the wheel, and in inventing jargon that, 
by accident or design, obscures the fact of  

re-invention."  [Ran86]  
Also, FT problems for which hardware solutions of 

moderate costs exist but pure software solutions are 
sought merely because if found, they can be more cost-
effective under the current hardware economy, should be 
viewed as short-term research problems.  Who knows 
when RAIDs and a few more CPUs will become so cheap 
that nobody hesitate to add them to an existing 
configuration  ?  

The author believes that future emphasis by the FT 
DC research community on quantitative treatment of 
design techniques and protocols and scientific assessment 
of fault source models will lead to accelerated advances in 
FT DC technologies.  It will also hopefully lead to more 
efficient open-minded unemotional reasoning atmosphere, 
which will have better effect of encouraging young 
researchers to enter and stay in the field.  
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